Actual source code: nepbasic.c
slepc-3.22.2 2024-12-02
1: /*
2: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3: SLEPc - Scalable Library for Eigenvalue Problem Computations
4: Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
6: This file is part of SLEPc.
7: SLEPc is distributed under a 2-clause BSD license (see LICENSE).
8: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9: */
10: /*
11: Basic NEP routines
12: */
14: #include <slepc/private/nepimpl.h>
16: /* Logging support */
17: PetscClassId NEP_CLASSID = 0;
18: PetscLogEvent NEP_SetUp = 0,NEP_Solve = 0,NEP_Refine = 0,NEP_FunctionEval = 0,NEP_JacobianEval = 0,NEP_Resolvent = 0,NEP_CISS_SVD = 0;
20: /* List of registered NEP routines */
21: PetscFunctionList NEPList = NULL;
22: PetscBool NEPRegisterAllCalled = PETSC_FALSE;
24: /* List of registered NEP monitors */
25: PetscFunctionList NEPMonitorList = NULL;
26: PetscFunctionList NEPMonitorCreateList = NULL;
27: PetscFunctionList NEPMonitorDestroyList = NULL;
28: PetscBool NEPMonitorRegisterAllCalled = PETSC_FALSE;
30: /*@
31: NEPCreate - Creates the default NEP context.
33: Collective
35: Input Parameter:
36: . comm - MPI communicator
38: Output Parameter:
39: . outnep - location to put the NEP context
41: Level: beginner
43: .seealso: NEPSetUp(), NEPSolve(), NEPDestroy(), NEP
44: @*/
45: PetscErrorCode NEPCreate(MPI_Comm comm,NEP *outnep)
46: {
47: NEP nep;
49: PetscFunctionBegin;
50: PetscAssertPointer(outnep,2);
51: PetscCall(NEPInitializePackage());
52: PetscCall(SlepcHeaderCreate(nep,NEP_CLASSID,"NEP","Nonlinear Eigenvalue Problem","NEP",comm,NEPDestroy,NEPView));
54: nep->max_it = PETSC_DETERMINE;
55: nep->nev = 1;
56: nep->ncv = PETSC_DETERMINE;
57: nep->mpd = PETSC_DETERMINE;
58: nep->nini = 0;
59: nep->target = 0.0;
60: nep->tol = PETSC_DETERMINE;
61: nep->conv = NEP_CONV_REL;
62: nep->stop = NEP_STOP_BASIC;
63: nep->which = (NEPWhich)0;
64: nep->problem_type = (NEPProblemType)0;
65: nep->refine = NEP_REFINE_NONE;
66: nep->npart = 1;
67: nep->rtol = PETSC_DETERMINE;
68: nep->rits = PETSC_DETERMINE;
69: nep->scheme = (NEPRefineScheme)0;
70: nep->trackall = PETSC_FALSE;
71: nep->twosided = PETSC_FALSE;
73: nep->computefunction = NULL;
74: nep->computejacobian = NULL;
75: nep->functionctx = NULL;
76: nep->jacobianctx = NULL;
77: nep->converged = NEPConvergedRelative;
78: nep->convergeduser = NULL;
79: nep->convergeddestroy= NULL;
80: nep->stopping = NEPStoppingBasic;
81: nep->stoppinguser = NULL;
82: nep->stoppingdestroy = NULL;
83: nep->convergedctx = NULL;
84: nep->stoppingctx = NULL;
85: nep->numbermonitors = 0;
87: nep->ds = NULL;
88: nep->V = NULL;
89: nep->W = NULL;
90: nep->rg = NULL;
91: nep->function = NULL;
92: nep->function_pre = NULL;
93: nep->jacobian = NULL;
94: nep->A = NULL;
95: nep->f = NULL;
96: nep->nt = 0;
97: nep->mstr = UNKNOWN_NONZERO_PATTERN;
98: nep->P = NULL;
99: nep->mstrp = UNKNOWN_NONZERO_PATTERN;
100: nep->IS = NULL;
101: nep->eigr = NULL;
102: nep->eigi = NULL;
103: nep->errest = NULL;
104: nep->perm = NULL;
105: nep->nwork = 0;
106: nep->work = NULL;
107: nep->data = NULL;
109: nep->state = NEP_STATE_INITIAL;
110: nep->nconv = 0;
111: nep->its = 0;
112: nep->n = 0;
113: nep->nloc = 0;
114: nep->nrma = NULL;
115: nep->fui = (NEPUserInterface)0;
116: nep->useds = PETSC_FALSE;
117: nep->resolvent = NULL;
118: nep->reason = NEP_CONVERGED_ITERATING;
120: PetscCall(PetscNew(&nep->sc));
121: *outnep = nep;
122: PetscFunctionReturn(PETSC_SUCCESS);
123: }
125: /*@
126: NEPSetType - Selects the particular solver to be used in the NEP object.
128: Logically Collective
130: Input Parameters:
131: + nep - the nonlinear eigensolver context
132: - type - a known method
134: Options Database Key:
135: . -nep_type <method> - Sets the method; use -help for a list
136: of available methods
138: Notes:
139: See "slepc/include/slepcnep.h" for available methods.
141: Normally, it is best to use the NEPSetFromOptions() command and
142: then set the NEP type from the options database rather than by using
143: this routine. Using the options database provides the user with
144: maximum flexibility in evaluating the different available methods.
145: The NEPSetType() routine is provided for those situations where it
146: is necessary to set the iterative solver independently of the command
147: line or options database.
149: Level: intermediate
151: .seealso: NEPType
152: @*/
153: PetscErrorCode NEPSetType(NEP nep,NEPType type)
154: {
155: PetscErrorCode (*r)(NEP);
156: PetscBool match;
158: PetscFunctionBegin;
160: PetscAssertPointer(type,2);
162: PetscCall(PetscObjectTypeCompare((PetscObject)nep,type,&match));
163: if (match) PetscFunctionReturn(PETSC_SUCCESS);
165: PetscCall(PetscFunctionListFind(NEPList,type,&r));
166: PetscCheck(r,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_UNKNOWN_TYPE,"Unknown NEP type given: %s",type);
168: PetscTryTypeMethod(nep,destroy);
169: PetscCall(PetscMemzero(nep->ops,sizeof(struct _NEPOps)));
171: nep->state = NEP_STATE_INITIAL;
172: PetscCall(PetscObjectChangeTypeName((PetscObject)nep,type));
173: PetscCall((*r)(nep));
174: PetscFunctionReturn(PETSC_SUCCESS);
175: }
177: /*@
178: NEPGetType - Gets the NEP type as a string from the NEP object.
180: Not Collective
182: Input Parameter:
183: . nep - the eigensolver context
185: Output Parameter:
186: . type - name of NEP method
188: Level: intermediate
190: .seealso: NEPSetType()
191: @*/
192: PetscErrorCode NEPGetType(NEP nep,NEPType *type)
193: {
194: PetscFunctionBegin;
196: PetscAssertPointer(type,2);
197: *type = ((PetscObject)nep)->type_name;
198: PetscFunctionReturn(PETSC_SUCCESS);
199: }
201: /*@C
202: NEPRegister - Adds a method to the nonlinear eigenproblem solver package.
204: Not Collective
206: Input Parameters:
207: + name - name of a new user-defined solver
208: - function - routine to create the solver context
210: Notes:
211: NEPRegister() may be called multiple times to add several user-defined solvers.
213: Example Usage:
214: .vb
215: NEPRegister("my_solver",MySolverCreate);
216: .ve
218: Then, your solver can be chosen with the procedural interface via
219: $ NEPSetType(nep,"my_solver")
220: or at runtime via the option
221: $ -nep_type my_solver
223: Level: advanced
225: .seealso: NEPRegisterAll()
226: @*/
227: PetscErrorCode NEPRegister(const char *name,PetscErrorCode (*function)(NEP))
228: {
229: PetscFunctionBegin;
230: PetscCall(NEPInitializePackage());
231: PetscCall(PetscFunctionListAdd(&NEPList,name,function));
232: PetscFunctionReturn(PETSC_SUCCESS);
233: }
235: /*@C
236: NEPMonitorRegister - Adds NEP monitor routine.
238: Not Collective
240: Input Parameters:
241: + name - name of a new monitor routine
242: . vtype - a PetscViewerType for the output
243: . format - a PetscViewerFormat for the output
244: . monitor - monitor routine
245: . create - creation routine, or NULL
246: - destroy - destruction routine, or NULL
248: Notes:
249: NEPMonitorRegister() may be called multiple times to add several user-defined monitors.
251: Example Usage:
252: .vb
253: NEPMonitorRegister("my_monitor",PETSCVIEWERASCII,PETSC_VIEWER_ASCII_INFO_DETAIL,MyMonitor,NULL,NULL);
254: .ve
256: Then, your monitor can be chosen with the procedural interface via
257: $ NEPMonitorSetFromOptions(nep,"-nep_monitor_my_monitor","my_monitor",NULL)
258: or at runtime via the option
259: $ -nep_monitor_my_monitor
261: Level: advanced
263: .seealso: NEPMonitorRegisterAll()
264: @*/
265: PetscErrorCode NEPMonitorRegister(const char name[],PetscViewerType vtype,PetscViewerFormat format,PetscErrorCode (*monitor)(NEP,PetscInt,PetscInt,PetscScalar*,PetscScalar*,PetscReal*,PetscInt,PetscViewerAndFormat*),PetscErrorCode (*create)(PetscViewer,PetscViewerFormat,void*,PetscViewerAndFormat**),PetscErrorCode (*destroy)(PetscViewerAndFormat**))
266: {
267: char key[PETSC_MAX_PATH_LEN];
269: PetscFunctionBegin;
270: PetscCall(NEPInitializePackage());
271: PetscCall(SlepcMonitorMakeKey_Internal(name,vtype,format,key));
272: PetscCall(PetscFunctionListAdd(&NEPMonitorList,key,monitor));
273: if (create) PetscCall(PetscFunctionListAdd(&NEPMonitorCreateList,key,create));
274: if (destroy) PetscCall(PetscFunctionListAdd(&NEPMonitorDestroyList,key,destroy));
275: PetscFunctionReturn(PETSC_SUCCESS);
276: }
278: /*
279: NEPReset_Problem - Destroys the problem matrices.
280: */
281: PetscErrorCode NEPReset_Problem(NEP nep)
282: {
283: PetscInt i;
285: PetscFunctionBegin;
287: PetscCall(MatDestroy(&nep->function));
288: PetscCall(MatDestroy(&nep->function_pre));
289: PetscCall(MatDestroy(&nep->jacobian));
290: if (nep->fui==NEP_USER_INTERFACE_SPLIT) {
291: PetscCall(MatDestroyMatrices(nep->nt,&nep->A));
292: for (i=0;i<nep->nt;i++) PetscCall(FNDestroy(&nep->f[i]));
293: PetscCall(PetscFree(nep->f));
294: PetscCall(PetscFree(nep->nrma));
295: if (nep->P) PetscCall(MatDestroyMatrices(nep->nt,&nep->P));
296: nep->nt = 0;
297: }
298: PetscFunctionReturn(PETSC_SUCCESS);
299: }
300: /*@
301: NEPReset - Resets the NEP context to the initial state (prior to setup)
302: and destroys any allocated Vecs and Mats.
304: Collective
306: Input Parameter:
307: . nep - eigensolver context obtained from NEPCreate()
309: Level: advanced
311: .seealso: NEPDestroy()
312: @*/
313: PetscErrorCode NEPReset(NEP nep)
314: {
315: PetscFunctionBegin;
317: if (!nep) PetscFunctionReturn(PETSC_SUCCESS);
318: PetscTryTypeMethod(nep,reset);
319: if (nep->refineksp) PetscCall(KSPReset(nep->refineksp));
320: PetscCall(NEPReset_Problem(nep));
321: PetscCall(BVDestroy(&nep->V));
322: PetscCall(BVDestroy(&nep->W));
323: PetscCall(VecDestroyVecs(nep->nwork,&nep->work));
324: PetscCall(MatDestroy(&nep->resolvent));
325: nep->nwork = 0;
326: nep->state = NEP_STATE_INITIAL;
327: PetscFunctionReturn(PETSC_SUCCESS);
328: }
330: /*@
331: NEPDestroy - Destroys the NEP context.
333: Collective
335: Input Parameter:
336: . nep - eigensolver context obtained from NEPCreate()
338: Level: beginner
340: .seealso: NEPCreate(), NEPSetUp(), NEPSolve()
341: @*/
342: PetscErrorCode NEPDestroy(NEP *nep)
343: {
344: PetscFunctionBegin;
345: if (!*nep) PetscFunctionReturn(PETSC_SUCCESS);
347: if (--((PetscObject)*nep)->refct > 0) { *nep = NULL; PetscFunctionReturn(PETSC_SUCCESS); }
348: PetscCall(NEPReset(*nep));
349: PetscTryTypeMethod(*nep,destroy);
350: if ((*nep)->eigr) PetscCall(PetscFree4((*nep)->eigr,(*nep)->eigi,(*nep)->errest,(*nep)->perm));
351: PetscCall(RGDestroy(&(*nep)->rg));
352: PetscCall(DSDestroy(&(*nep)->ds));
353: PetscCall(KSPDestroy(&(*nep)->refineksp));
354: PetscCall(PetscSubcommDestroy(&(*nep)->refinesubc));
355: PetscCall(PetscFree((*nep)->sc));
356: /* just in case the initial vectors have not been used */
357: PetscCall(SlepcBasisDestroy_Private(&(*nep)->nini,&(*nep)->IS));
358: if ((*nep)->convergeddestroy) PetscCall((*(*nep)->convergeddestroy)((*nep)->convergedctx));
359: PetscCall(NEPMonitorCancel(*nep));
360: PetscCall(PetscHeaderDestroy(nep));
361: PetscFunctionReturn(PETSC_SUCCESS);
362: }
364: /*@
365: NEPSetBV - Associates a basis vectors object to the nonlinear eigensolver.
367: Collective
369: Input Parameters:
370: + nep - eigensolver context obtained from NEPCreate()
371: - bv - the basis vectors object
373: Note:
374: Use NEPGetBV() to retrieve the basis vectors context (for example,
375: to free it at the end of the computations).
377: Level: advanced
379: .seealso: NEPGetBV()
380: @*/
381: PetscErrorCode NEPSetBV(NEP nep,BV bv)
382: {
383: PetscFunctionBegin;
386: PetscCheckSameComm(nep,1,bv,2);
387: PetscCall(PetscObjectReference((PetscObject)bv));
388: PetscCall(BVDestroy(&nep->V));
389: nep->V = bv;
390: PetscFunctionReturn(PETSC_SUCCESS);
391: }
393: /*@
394: NEPGetBV - Obtain the basis vectors object associated to the nonlinear
395: eigensolver object.
397: Not Collective
399: Input Parameters:
400: . nep - eigensolver context obtained from NEPCreate()
402: Output Parameter:
403: . bv - basis vectors context
405: Level: advanced
407: .seealso: NEPSetBV()
408: @*/
409: PetscErrorCode NEPGetBV(NEP nep,BV *bv)
410: {
411: PetscFunctionBegin;
413: PetscAssertPointer(bv,2);
414: if (!nep->V) {
415: PetscCall(BVCreate(PetscObjectComm((PetscObject)nep),&nep->V));
416: PetscCall(PetscObjectIncrementTabLevel((PetscObject)nep->V,(PetscObject)nep,0));
417: PetscCall(PetscObjectSetOptions((PetscObject)nep->V,((PetscObject)nep)->options));
418: }
419: *bv = nep->V;
420: PetscFunctionReturn(PETSC_SUCCESS);
421: }
423: /*@
424: NEPSetRG - Associates a region object to the nonlinear eigensolver.
426: Collective
428: Input Parameters:
429: + nep - eigensolver context obtained from NEPCreate()
430: - rg - the region object
432: Note:
433: Use NEPGetRG() to retrieve the region context (for example,
434: to free it at the end of the computations).
436: Level: advanced
438: .seealso: NEPGetRG()
439: @*/
440: PetscErrorCode NEPSetRG(NEP nep,RG rg)
441: {
442: PetscFunctionBegin;
444: if (rg) {
446: PetscCheckSameComm(nep,1,rg,2);
447: }
448: PetscCall(PetscObjectReference((PetscObject)rg));
449: PetscCall(RGDestroy(&nep->rg));
450: nep->rg = rg;
451: PetscFunctionReturn(PETSC_SUCCESS);
452: }
454: /*@
455: NEPGetRG - Obtain the region object associated to the
456: nonlinear eigensolver object.
458: Not Collective
460: Input Parameters:
461: . nep - eigensolver context obtained from NEPCreate()
463: Output Parameter:
464: . rg - region context
466: Level: advanced
468: .seealso: NEPSetRG()
469: @*/
470: PetscErrorCode NEPGetRG(NEP nep,RG *rg)
471: {
472: PetscFunctionBegin;
474: PetscAssertPointer(rg,2);
475: if (!nep->rg) {
476: PetscCall(RGCreate(PetscObjectComm((PetscObject)nep),&nep->rg));
477: PetscCall(PetscObjectIncrementTabLevel((PetscObject)nep->rg,(PetscObject)nep,0));
478: PetscCall(PetscObjectSetOptions((PetscObject)nep->rg,((PetscObject)nep)->options));
479: }
480: *rg = nep->rg;
481: PetscFunctionReturn(PETSC_SUCCESS);
482: }
484: /*@
485: NEPSetDS - Associates a direct solver object to the nonlinear eigensolver.
487: Collective
489: Input Parameters:
490: + nep - eigensolver context obtained from NEPCreate()
491: - ds - the direct solver object
493: Note:
494: Use NEPGetDS() to retrieve the direct solver context (for example,
495: to free it at the end of the computations).
497: Level: advanced
499: .seealso: NEPGetDS()
500: @*/
501: PetscErrorCode NEPSetDS(NEP nep,DS ds)
502: {
503: PetscFunctionBegin;
506: PetscCheckSameComm(nep,1,ds,2);
507: PetscCall(PetscObjectReference((PetscObject)ds));
508: PetscCall(DSDestroy(&nep->ds));
509: nep->ds = ds;
510: PetscFunctionReturn(PETSC_SUCCESS);
511: }
513: /*@
514: NEPGetDS - Obtain the direct solver object associated to the
515: nonlinear eigensolver object.
517: Not Collective
519: Input Parameters:
520: . nep - eigensolver context obtained from NEPCreate()
522: Output Parameter:
523: . ds - direct solver context
525: Level: advanced
527: .seealso: NEPSetDS()
528: @*/
529: PetscErrorCode NEPGetDS(NEP nep,DS *ds)
530: {
531: PetscFunctionBegin;
533: PetscAssertPointer(ds,2);
534: if (!nep->ds) {
535: PetscCall(DSCreate(PetscObjectComm((PetscObject)nep),&nep->ds));
536: PetscCall(PetscObjectIncrementTabLevel((PetscObject)nep->ds,(PetscObject)nep,0));
537: PetscCall(PetscObjectSetOptions((PetscObject)nep->ds,((PetscObject)nep)->options));
538: }
539: *ds = nep->ds;
540: PetscFunctionReturn(PETSC_SUCCESS);
541: }
543: /*@
544: NEPRefineGetKSP - Obtain the ksp object used by the eigensolver
545: object in the refinement phase.
547: Collective
549: Input Parameters:
550: . nep - eigensolver context obtained from NEPCreate()
552: Output Parameter:
553: . ksp - ksp context
555: Level: advanced
557: .seealso: NEPSetRefine()
558: @*/
559: PetscErrorCode NEPRefineGetKSP(NEP nep,KSP *ksp)
560: {
561: MPI_Comm comm;
563: PetscFunctionBegin;
565: PetscAssertPointer(ksp,2);
566: if (!nep->refineksp) {
567: if (nep->npart>1) {
568: /* Split in subcomunicators */
569: PetscCall(PetscSubcommCreate(PetscObjectComm((PetscObject)nep),&nep->refinesubc));
570: PetscCall(PetscSubcommSetNumber(nep->refinesubc,nep->npart));
571: PetscCall(PetscSubcommSetType(nep->refinesubc,PETSC_SUBCOMM_CONTIGUOUS));
572: PetscCall(PetscSubcommGetChild(nep->refinesubc,&comm));
573: } else PetscCall(PetscObjectGetComm((PetscObject)nep,&comm));
574: PetscCall(KSPCreate(comm,&nep->refineksp));
575: PetscCall(PetscObjectIncrementTabLevel((PetscObject)nep->refineksp,(PetscObject)nep,0));
576: PetscCall(PetscObjectSetOptions((PetscObject)nep->refineksp,((PetscObject)nep)->options));
577: PetscCall(KSPSetOptionsPrefix(*ksp,((PetscObject)nep)->prefix));
578: PetscCall(KSPAppendOptionsPrefix(*ksp,"nep_refine_"));
579: PetscCall(KSPSetTolerances(nep->refineksp,SlepcDefaultTol(nep->rtol),PETSC_CURRENT,PETSC_CURRENT,PETSC_CURRENT));
580: }
581: *ksp = nep->refineksp;
582: PetscFunctionReturn(PETSC_SUCCESS);
583: }
585: /*@
586: NEPSetTarget - Sets the value of the target.
588: Logically Collective
590: Input Parameters:
591: + nep - eigensolver context
592: - target - the value of the target
594: Options Database Key:
595: . -nep_target <scalar> - the value of the target
597: Notes:
598: The target is a scalar value used to determine the portion of the spectrum
599: of interest. It is used in combination with NEPSetWhichEigenpairs().
601: In the case of complex scalars, a complex value can be provided in the
602: command line with [+/-][realnumber][+/-]realnumberi with no spaces, e.g.
603: -nep_target 1.0+2.0i
605: Level: intermediate
607: .seealso: NEPGetTarget(), NEPSetWhichEigenpairs()
608: @*/
609: PetscErrorCode NEPSetTarget(NEP nep,PetscScalar target)
610: {
611: PetscFunctionBegin;
614: nep->target = target;
615: PetscFunctionReturn(PETSC_SUCCESS);
616: }
618: /*@
619: NEPGetTarget - Gets the value of the target.
621: Not Collective
623: Input Parameter:
624: . nep - eigensolver context
626: Output Parameter:
627: . target - the value of the target
629: Note:
630: If the target was not set by the user, then zero is returned.
632: Level: intermediate
634: .seealso: NEPSetTarget()
635: @*/
636: PetscErrorCode NEPGetTarget(NEP nep,PetscScalar* target)
637: {
638: PetscFunctionBegin;
640: PetscAssertPointer(target,2);
641: *target = nep->target;
642: PetscFunctionReturn(PETSC_SUCCESS);
643: }
645: /*@C
646: NEPSetFunction - Sets the function to compute the nonlinear Function T(lambda)
647: as well as the location to store the matrix.
649: Collective
651: Input Parameters:
652: + nep - the NEP context
653: . A - Function matrix
654: . B - preconditioner matrix (usually same as A)
655: . fun - Function evaluation routine (if NULL then NEP retains any
656: previously set value), see NEPFunctionFn for the calling sequence
657: - ctx - [optional] user-defined context for private data for the Function
658: evaluation routine (may be NULL) (if NULL then NEP retains any
659: previously set value)
661: Level: beginner
663: .seealso: NEPGetFunction(), NEPSetJacobian()
664: @*/
665: PetscErrorCode NEPSetFunction(NEP nep,Mat A,Mat B,NEPFunctionFn *fun,void *ctx)
666: {
667: PetscFunctionBegin;
671: if (A) PetscCheckSameComm(nep,1,A,2);
672: if (B) PetscCheckSameComm(nep,1,B,3);
674: if (nep->state) PetscCall(NEPReset(nep));
675: else if (nep->fui && nep->fui!=NEP_USER_INTERFACE_CALLBACK) PetscCall(NEPReset_Problem(nep));
677: if (fun) nep->computefunction = fun;
678: if (ctx) nep->functionctx = ctx;
679: if (A) {
680: PetscCall(PetscObjectReference((PetscObject)A));
681: PetscCall(MatDestroy(&nep->function));
682: nep->function = A;
683: }
684: if (B) {
685: PetscCall(PetscObjectReference((PetscObject)B));
686: PetscCall(MatDestroy(&nep->function_pre));
687: nep->function_pre = B;
688: }
689: nep->fui = NEP_USER_INTERFACE_CALLBACK;
690: nep->state = NEP_STATE_INITIAL;
691: PetscFunctionReturn(PETSC_SUCCESS);
692: }
694: /*@C
695: NEPGetFunction - Returns the Function matrix and optionally the user
696: provided context for evaluating the Function.
698: Not Collective
700: Input Parameter:
701: . nep - the nonlinear eigensolver context
703: Output Parameters:
704: + A - location to stash Function matrix (or NULL)
705: . B - location to stash preconditioner matrix (or NULL)
706: . fun - location to put Function function (or NULL)
707: - ctx - location to stash Function context (or NULL)
709: Level: advanced
711: .seealso: NEPSetFunction()
712: @*/
713: PetscErrorCode NEPGetFunction(NEP nep,Mat *A,Mat *B,NEPFunctionFn **fun,void **ctx)
714: {
715: PetscFunctionBegin;
717: NEPCheckCallback(nep,1);
718: if (A) *A = nep->function;
719: if (B) *B = nep->function_pre;
720: if (fun) *fun = nep->computefunction;
721: if (ctx) *ctx = nep->functionctx;
722: PetscFunctionReturn(PETSC_SUCCESS);
723: }
725: /*@C
726: NEPSetJacobian - Sets the function to compute the Jacobian T'(lambda) as well
727: as the location to store the matrix.
729: Collective
731: Input Parameters:
732: + nep - the NEP context
733: . A - Jacobian matrix
734: . jac - Jacobian evaluation routine (if NULL then NEP retains any
735: previously set value), see NEPJacobianFn for the calling sequence
736: - ctx - [optional] user-defined context for private data for the Jacobian
737: evaluation routine (may be NULL) (if NULL then NEP retains any
738: previously set value)
740: Level: beginner
742: .seealso: NEPSetFunction(), NEPGetJacobian()
743: @*/
744: PetscErrorCode NEPSetJacobian(NEP nep,Mat A,NEPJacobianFn *jac,void *ctx)
745: {
746: PetscFunctionBegin;
749: if (A) PetscCheckSameComm(nep,1,A,2);
751: if (nep->state) PetscCall(NEPReset(nep));
752: else if (nep->fui && nep->fui!=NEP_USER_INTERFACE_CALLBACK) PetscCall(NEPReset_Problem(nep));
754: if (jac) nep->computejacobian = jac;
755: if (ctx) nep->jacobianctx = ctx;
756: if (A) {
757: PetscCall(PetscObjectReference((PetscObject)A));
758: PetscCall(MatDestroy(&nep->jacobian));
759: nep->jacobian = A;
760: }
761: nep->fui = NEP_USER_INTERFACE_CALLBACK;
762: nep->state = NEP_STATE_INITIAL;
763: PetscFunctionReturn(PETSC_SUCCESS);
764: }
766: /*@C
767: NEPGetJacobian - Returns the Jacobian matrix and optionally the user
768: provided routine and context for evaluating the Jacobian.
770: Not Collective
772: Input Parameter:
773: . nep - the nonlinear eigensolver context
775: Output Parameters:
776: + A - location to stash Jacobian matrix (or NULL)
777: . jac - location to put Jacobian function (or NULL)
778: - ctx - location to stash Jacobian context (or NULL)
780: Level: advanced
782: .seealso: NEPSetJacobian()
783: @*/
784: PetscErrorCode NEPGetJacobian(NEP nep,Mat *A,NEPJacobianFn **jac,void **ctx)
785: {
786: PetscFunctionBegin;
788: NEPCheckCallback(nep,1);
789: if (A) *A = nep->jacobian;
790: if (jac) *jac = nep->computejacobian;
791: if (ctx) *ctx = nep->jacobianctx;
792: PetscFunctionReturn(PETSC_SUCCESS);
793: }
795: /*@
796: NEPSetSplitOperator - Sets the operator of the nonlinear eigenvalue problem
797: in split form.
799: Collective
801: Input Parameters:
802: + nep - the nonlinear eigensolver context
803: . nt - number of terms in the split form
804: . A - array of matrices
805: . f - array of functions
806: - str - structure flag for matrices
808: Notes:
809: The nonlinear operator is written as T(lambda) = sum_i A_i*f_i(lambda),
810: for i=1,...,n. The derivative T'(lambda) can be obtained using the
811: derivatives of f_i.
813: The structure flag provides information about A_i's nonzero pattern
814: (see MatStructure enum). If all matrices have the same pattern, then
815: use SAME_NONZERO_PATTERN. If the patterns are different but contained
816: in the pattern of the first one, then use SUBSET_NONZERO_PATTERN. If
817: patterns are known to be different, use DIFFERENT_NONZERO_PATTERN.
818: If set to UNKNOWN_NONZERO_PATTERN, the patterns will be compared to
819: determine if they are equal.
821: This function must be called before NEPSetUp(). If it is called again
822: after NEPSetUp() then the NEP object is reset.
824: Level: beginner
826: .seealso: NEPGetSplitOperatorTerm(), NEPGetSplitOperatorInfo(), NEPSetSplitPreconditioner()
827: @*/
828: PetscErrorCode NEPSetSplitOperator(NEP nep,PetscInt nt,Mat A[],FN f[],MatStructure str)
829: {
830: PetscInt i,n=0,m,m0=0,mloc,nloc,mloc0=0;
832: PetscFunctionBegin;
835: PetscCheck(nt>0,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"Must have one or more terms, you have %" PetscInt_FMT,nt);
836: PetscAssertPointer(A,3);
837: PetscAssertPointer(f,4);
840: for (i=0;i<nt;i++) {
842: PetscCheckSameComm(nep,1,A[i],3);
844: PetscCheckSameComm(nep,1,f[i],4);
845: PetscCall(MatGetSize(A[i],&m,&n));
846: PetscCall(MatGetLocalSize(A[i],&mloc,&nloc));
847: PetscCheck(m==n,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_WRONG,"A[%" PetscInt_FMT "] is a non-square matrix (%" PetscInt_FMT " rows, %" PetscInt_FMT " cols)",i,m,n);
848: PetscCheck(mloc==nloc,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_WRONG,"A[%" PetscInt_FMT "] does not have equal row and column local sizes (%" PetscInt_FMT ", %" PetscInt_FMT ")",i,mloc,nloc);
849: if (!i) { m0 = m; mloc0 = mloc; }
850: PetscCheck(m==m0,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_INCOMP,"Dimensions of A[%" PetscInt_FMT "] do not match with previous matrices (%" PetscInt_FMT ", %" PetscInt_FMT ")",i,m,m0);
851: PetscCheck(mloc==mloc0,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_INCOMP,"Local dimensions of A[%" PetscInt_FMT "] do not match with previous matrices (%" PetscInt_FMT ", %" PetscInt_FMT ")",i,mloc,mloc0);
852: PetscCall(PetscObjectReference((PetscObject)A[i]));
853: PetscCall(PetscObjectReference((PetscObject)f[i]));
854: }
856: if (nep->state && (n!=nep->n || nloc!=nep->nloc)) PetscCall(NEPReset(nep));
857: else PetscCall(NEPReset_Problem(nep));
859: /* allocate space and copy matrices and functions */
860: PetscCall(PetscMalloc1(nt,&nep->A));
861: for (i=0;i<nt;i++) nep->A[i] = A[i];
862: PetscCall(PetscMalloc1(nt,&nep->f));
863: for (i=0;i<nt;i++) nep->f[i] = f[i];
864: PetscCall(PetscCalloc1(nt,&nep->nrma));
865: nep->nt = nt;
866: nep->mstr = str;
867: nep->fui = NEP_USER_INTERFACE_SPLIT;
868: nep->state = NEP_STATE_INITIAL;
869: PetscFunctionReturn(PETSC_SUCCESS);
870: }
872: /*@
873: NEPGetSplitOperatorTerm - Gets the matrices and functions associated with
874: the nonlinear operator in split form.
876: Not Collective
878: Input Parameters:
879: + nep - the nonlinear eigensolver context
880: - k - the index of the requested term (starting in 0)
882: Output Parameters:
883: + A - the matrix of the requested term
884: - f - the function of the requested term
886: Level: intermediate
888: .seealso: NEPSetSplitOperator(), NEPGetSplitOperatorInfo()
889: @*/
890: PetscErrorCode NEPGetSplitOperatorTerm(NEP nep,PetscInt k,Mat *A,FN *f)
891: {
892: PetscFunctionBegin;
895: NEPCheckSplit(nep,1);
896: PetscCheck(k>=0 && k<nep->nt,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"k must be between 0 and %" PetscInt_FMT,nep->nt-1);
897: if (A) *A = nep->A[k];
898: if (f) *f = nep->f[k];
899: PetscFunctionReturn(PETSC_SUCCESS);
900: }
902: /*@
903: NEPGetSplitOperatorInfo - Returns the number of terms of the split form of
904: the nonlinear operator, as well as the structure flag for matrices.
906: Not Collective
908: Input Parameter:
909: . nep - the nonlinear eigensolver context
911: Output Parameters:
912: + n - the number of terms passed in NEPSetSplitOperator()
913: - str - the matrix structure flag passed in NEPSetSplitOperator()
915: Level: intermediate
917: .seealso: NEPSetSplitOperator(), NEPGetSplitOperatorTerm()
918: @*/
919: PetscErrorCode NEPGetSplitOperatorInfo(NEP nep,PetscInt *n,MatStructure *str)
920: {
921: PetscFunctionBegin;
923: NEPCheckSplit(nep,1);
924: if (n) *n = nep->nt;
925: if (str) *str = nep->mstr;
926: PetscFunctionReturn(PETSC_SUCCESS);
927: }
929: /*@
930: NEPSetSplitPreconditioner - Sets an operator in split form from which
931: to build the preconditioner to be used when solving the nonlinear
932: eigenvalue problem in split form.
934: Collective
936: Input Parameters:
937: + nep - the nonlinear eigensolver context
938: . ntp - number of terms in the split preconditioner
939: . P - array of matrices
940: - strp - structure flag for matrices
942: Notes:
943: The matrix for the preconditioner is expressed as P(lambda) =
944: sum_i P_i*f_i(lambda), for i=1,...,n, where the f_i functions
945: are the same as in NEPSetSplitOperator(). It is not necessary to call
946: this function. If it is not invoked, then the preconditioner is
947: built from T(lambda), i.e., both matrices and functions passed in
948: NEPSetSplitOperator().
950: The structure flag provides information about P_i's nonzero pattern
951: in the same way as in NEPSetSplitOperator().
953: If the functions defining the preconditioner operator were different
954: from the ones given in NEPSetSplitOperator(), then the split form
955: cannot be used. Use the callback interface instead.
957: Use ntp=0 to reset a previously set split preconditioner.
959: Level: advanced
961: .seealso: NEPGetSplitPreconditionerTerm(), NEPGetSplitPreconditionerInfo(), NEPSetSplitOperator()
962: @*/
963: PetscErrorCode NEPSetSplitPreconditioner(NEP nep,PetscInt ntp,Mat P[],MatStructure strp)
964: {
965: PetscInt i,n=0,m,m0=0,mloc,nloc,mloc0=0;
967: PetscFunctionBegin;
970: PetscCheck(ntp>=0,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"Negative value of ntp = %" PetscInt_FMT,ntp);
971: PetscCheck(nep->fui==NEP_USER_INTERFACE_SPLIT,PetscObjectComm((PetscObject)nep),PETSC_ERR_ORDER,"Must call NEPSetSplitOperator first");
972: PetscCheck(ntp==0 || nep->nt==ntp,PetscObjectComm((PetscObject)nep),PETSC_ERR_SUP,"The number of terms must be the same as in NEPSetSplitOperator()");
973: if (ntp) PetscAssertPointer(P,3);
976: for (i=0;i<ntp;i++) {
978: PetscCheckSameComm(nep,1,P[i],3);
979: PetscCall(MatGetSize(P[i],&m,&n));
980: PetscCall(MatGetLocalSize(P[i],&mloc,&nloc));
981: PetscCheck(m==n,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_WRONG,"P[%" PetscInt_FMT "] is a non-square matrix (%" PetscInt_FMT " rows, %" PetscInt_FMT " cols)",i,m,n);
982: PetscCheck(mloc==nloc,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_WRONG,"P[%" PetscInt_FMT "] does not have equal row and column local sizes (%" PetscInt_FMT ", %" PetscInt_FMT ")",i,mloc,nloc);
983: if (!i) { m0 = m; mloc0 = mloc; }
984: PetscCheck(m==m0,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_INCOMP,"Dimensions of P[%" PetscInt_FMT "] do not match with previous matrices (%" PetscInt_FMT ", %" PetscInt_FMT ")",i,m,m0);
985: PetscCheck(mloc==mloc0,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_INCOMP,"Local dimensions of P[%" PetscInt_FMT "] do not match with previous matrices (%" PetscInt_FMT ", %" PetscInt_FMT ")",i,mloc,mloc0);
986: PetscCall(PetscObjectReference((PetscObject)P[i]));
987: }
989: PetscCheck(!nep->state,PetscObjectComm((PetscObject)nep),PETSC_ERR_ORDER,"To call this function after NEPSetUp(), you must call NEPSetSplitOperator() again");
990: if (nep->P) PetscCall(MatDestroyMatrices(nep->nt,&nep->P));
992: /* allocate space and copy matrices */
993: if (ntp) {
994: PetscCall(PetscMalloc1(ntp,&nep->P));
995: for (i=0;i<ntp;i++) nep->P[i] = P[i];
996: }
997: nep->mstrp = strp;
998: nep->state = NEP_STATE_INITIAL;
999: PetscFunctionReturn(PETSC_SUCCESS);
1000: }
1002: /*@
1003: NEPGetSplitPreconditionerTerm - Gets the matrices associated with
1004: the split preconditioner.
1006: Not Collective
1008: Input Parameters:
1009: + nep - the nonlinear eigensolver context
1010: - k - the index of the requested term (starting in 0)
1012: Output Parameter:
1013: . P - the matrix of the requested term
1015: Level: advanced
1017: .seealso: NEPSetSplitPreconditioner(), NEPGetSplitPreconditionerInfo()
1018: @*/
1019: PetscErrorCode NEPGetSplitPreconditionerTerm(NEP nep,PetscInt k,Mat *P)
1020: {
1021: PetscFunctionBegin;
1024: PetscAssertPointer(P,3);
1025: NEPCheckSplit(nep,1);
1026: PetscCheck(k>=0 && k<nep->nt,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"k must be between 0 and %" PetscInt_FMT,nep->nt-1);
1027: PetscCheck(nep->P,PetscObjectComm((PetscObject)nep),PETSC_ERR_ORDER,"You have not called NEPSetSplitPreconditioner()");
1028: *P = nep->P[k];
1029: PetscFunctionReturn(PETSC_SUCCESS);
1030: }
1032: /*@
1033: NEPGetSplitPreconditionerInfo - Returns the number of terms of the split
1034: preconditioner, as well as the structure flag for matrices.
1036: Not Collective
1038: Input Parameter:
1039: . nep - the nonlinear eigensolver context
1041: Output Parameters:
1042: + n - the number of terms passed in NEPSetSplitPreconditioner()
1043: - strp - the matrix structure flag passed in NEPSetSplitPreconditioner()
1045: Level: advanced
1047: .seealso: NEPSetSplitPreconditioner(), NEPGetSplitPreconditionerTerm()
1048: @*/
1049: PetscErrorCode NEPGetSplitPreconditionerInfo(NEP nep,PetscInt *n,MatStructure *strp)
1050: {
1051: PetscFunctionBegin;
1053: NEPCheckSplit(nep,1);
1054: if (n) *n = nep->P? nep->nt: 0;
1055: if (strp) *strp = nep->mstrp;
1056: PetscFunctionReturn(PETSC_SUCCESS);
1057: }