Actual source code: lmedense.c

slepc-3.22.2 2024-12-02
Report Typos and Errors
  1: /*
  2:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  3:    SLEPc - Scalable Library for Eigenvalue Problem Computations
  4:    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain

  6:    This file is part of SLEPc.
  7:    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
  8:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  9: */
 10: /*
 11:    Routines for solving dense matrix equations, in some cases calling SLICOT
 12: */

 14: #include <slepc/private/lmeimpl.h>
 15: #include <slepcblaslapack.h>

 17: /*
 18:    LMEDenseRankSVD - given a square matrix A, compute its SVD U*S*V', and determine the
 19:    numerical rank. On exit, U contains U*S and A is overwritten with V'
 20: */
 21: PetscErrorCode LMEDenseRankSVD(LME lme,PetscInt n,PetscScalar *A,PetscInt lda,PetscScalar *U,PetscInt ldu,PetscInt *rank)
 22: {
 23:   PetscInt       i,j,rk=0;
 24:   PetscScalar    *work;
 25:   PetscReal      tol,*sg,*rwork;
 26:   PetscBLASInt   n_,lda_,ldu_,info,lw_;

 28:   PetscFunctionBegin;
 29:   PetscCall(PetscCalloc3(n,&sg,10*n,&work,5*n,&rwork));
 30:   PetscCall(PetscBLASIntCast(n,&n_));
 31:   PetscCall(PetscBLASIntCast(lda,&lda_));
 32:   PetscCall(PetscBLASIntCast(ldu,&ldu_));
 33:   lw_ = 10*n_;
 34:   PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
 35: #if !defined (PETSC_USE_COMPLEX)
 36:   PetscCallBLAS("LAPACKgesvd",LAPACKgesvd_("S","O",&n_,&n_,A,&lda_,sg,U,&ldu_,NULL,&n_,work,&lw_,&info));
 37: #else
 38:   PetscCallBLAS("LAPACKgesvd",LAPACKgesvd_("S","O",&n_,&n_,A,&lda_,sg,U,&ldu_,NULL,&n_,work,&lw_,rwork,&info));
 39: #endif
 40:   PetscCall(PetscFPTrapPop());
 41:   SlepcCheckLapackInfo("gesvd",info);
 42:   tol = 10*PETSC_MACHINE_EPSILON*n*sg[0];
 43:   for (j=0;j<n;j++) {
 44:     if (sg[j]>tol) {
 45:       for (i=0;i<n;i++) U[i+j*n] *= sg[j];
 46:       rk++;
 47:     } else break;
 48:   }
 49:   *rank = rk;
 50:   PetscCall(PetscFree3(sg,work,rwork));
 51:   PetscFunctionReturn(PETSC_SUCCESS);
 52: }

 54: #if defined(PETSC_USE_INFO)
 55: /*
 56:    LyapunovCholResidual - compute the residual norm ||A*U'*U+U'*U*A'+B*B'||
 57: */
 58: static PetscErrorCode LyapunovCholResidual(PetscInt m,PetscScalar *A,PetscInt lda,PetscInt k,PetscScalar *B,PetscInt ldb,PetscScalar *U,PetscInt ldu,PetscReal *res)
 59: {
 60:   PetscBLASInt   n,kk,la,lb,lu;
 61:   PetscScalar    *M,*R,zero=0.0,done=1.0;

 63:   PetscFunctionBegin;
 64:   *res = 0;
 65:   PetscCall(PetscBLASIntCast(lda,&la));
 66:   PetscCall(PetscBLASIntCast(ldb,&lb));
 67:   PetscCall(PetscBLASIntCast(ldu,&lu));
 68:   PetscCall(PetscBLASIntCast(m,&n));
 69:   PetscCall(PetscBLASIntCast(k,&kk));
 70:   PetscCall(PetscMalloc2(m*m,&M,m*m,&R));

 72:   /* R = B*B' */
 73:   PetscCallBLAS("BLASgemm",BLASgemm_("N","C",&n,&n,&kk,&done,B,&lb,B,&lb,&zero,R,&n));
 74:   /* M = A*U' */
 75:   PetscCallBLAS("BLASgemm",BLASgemm_("N","C",&n,&n,&n,&done,A,&la,U,&lu,&zero,M,&n));
 76:   /* R = R+M*U */
 77:   PetscCallBLAS("BLASgemm",BLASgemm_("N","N",&n,&n,&n,&done,M,&n,U,&lu,&done,R,&n));
 78:   /* R = R+U'*M' */
 79:   PetscCallBLAS("BLASgemm",BLASgemm_("C","C",&n,&n,&n,&done,U,&lu,M,&n,&done,R,&n));

 81:   *res = LAPACKlange_("F",&n,&n,R,&n,NULL);
 82:   PetscCall(PetscFree2(M,R));
 83:   PetscFunctionReturn(PETSC_SUCCESS);
 84: }

 86: /*
 87:    LyapunovResidual - compute the residual norm ||A*X+X*A'+B||
 88: */
 89: static PetscErrorCode LyapunovResidual(PetscInt m,PetscScalar *A,PetscInt lda,PetscScalar *B,PetscInt ldb,PetscScalar *X,PetscInt ldx,PetscReal *res)
 90: {
 91:   PetscInt       i;
 92:   PetscBLASInt   n,la,lb,lx;
 93:   PetscScalar    *R,done=1.0;

 95:   PetscFunctionBegin;
 96:   *res = 0;
 97:   PetscCall(PetscBLASIntCast(lda,&la));
 98:   PetscCall(PetscBLASIntCast(ldb,&lb));
 99:   PetscCall(PetscBLASIntCast(ldx,&lx));
100:   PetscCall(PetscBLASIntCast(m,&n));
101:   PetscCall(PetscMalloc1(m*m,&R));

103:   /* R = B+A*X */
104:   for (i=0;i<m;i++) PetscCall(PetscArraycpy(R+i*m,B+i*ldb,m));
105:   PetscCallBLAS("BLASgemm",BLASgemm_("N","N",&n,&n,&n,&done,A,&la,X,&lx,&done,R,&n));
106:   /* R = R+X*A' */
107:   PetscCallBLAS("BLASgemm",BLASgemm_("N","C",&n,&n,&n,&done,X,&lx,A,&la,&done,R,&n));

109:   *res = LAPACKlange_("F",&n,&n,R,&n,NULL);
110:   PetscCall(PetscFree(R));
111:   PetscFunctionReturn(PETSC_SUCCESS);
112: }
113: #endif

115: #if defined(SLEPC_HAVE_SLICOT)
116: /*
117:    HessLyapunovChol_SLICOT - implementation used when SLICOT is available
118: */
119: static PetscErrorCode HessLyapunovChol_SLICOT(PetscInt m,PetscScalar *H,PetscInt ldh,PetscInt k,PetscScalar *B,PetscInt ldb,PetscScalar *U,PetscInt ldu,PetscReal *res)
120: {
121:   PetscBLASInt   lwork,info,n,kk,lu,ione=1,sdim;
122:   PetscInt       i,j;
123:   PetscReal      scal;
124:   PetscScalar    *Q,*W,*wr,*wi,*work;

126:   PetscFunctionBegin;
127:   PetscCall(PetscBLASIntCast(ldu,&lu));
128:   PetscCall(PetscBLASIntCast(m,&n));
129:   PetscCall(PetscBLASIntCast(k,&kk));
130:   PetscCall(PetscBLASIntCast(6*m,&lwork));
131:   PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));

133:   /* transpose W = H' */
134:   PetscCall(PetscMalloc5(m*m,&W,m*m,&Q,m,&wr,m,&wi,lwork,&work));
135:   for (j=0;j<m;j++) {
136:     for (i=0;i<m;i++) W[i+j*m] = H[j+i*ldh];
137:   }

139:   /* compute the real Schur form of W */
140:   PetscCallBLAS("LAPACKgees",LAPACKgees_("V","N",NULL,&n,W,&n,&sdim,wr,wi,Q,&n,work,&lwork,NULL,&info));
141:   SlepcCheckLapackInfo("gees",info);
142: #if defined(PETSC_USE_DEBUG)
143:   for (i=0;i<m;i++) PetscCheck(PetscRealPart(wr[i])<0.0,PETSC_COMM_SELF,PETSC_ERR_USER_INPUT,"Eigenvalue with non-negative real part, the coefficient matrix is not stable");
144: #endif

146:   /* copy B' into first rows of U */
147:   for (i=0;i<k;i++) {
148:     for (j=0;j<m;j++) U[i+j*ldu] = B[j+i*ldb];
149:   }

151:   /* solve Lyapunov equation (Hammarling) */
152:   PetscCallBLAS("SLICOTsb03od",SLICOTsb03od_("C","F","N",&n,&kk,W,&n,Q,&n,U,&lu,&scal,wr,wi,work,&lwork,&info));
153:   PetscCheck(!info,PETSC_COMM_SELF,PETSC_ERR_LIB,"Error in SLICOT subroutine SB03OD: info=%" PetscBLASInt_FMT,info);
154:   PetscCheck(scal==1.0,PETSC_COMM_SELF,PETSC_ERR_SUP,"Current implementation cannot handle scale factor %g",scal);

156:   /* resnorm = norm(H(m+1,:)*U'*U), use Q(:,1) = U'*U(:,m) */
157:   if (res) {
158:     for (j=0;j<m;j++) Q[j] = U[j+(m-1)*ldu];
159:     PetscCallBLAS("BLAStrmv",BLAStrmv_("U","C","N",&n,U,&lu,Q,&ione));
160:     PetscCheck(k==1,PETSC_COMM_SELF,PETSC_ERR_LIB,"Residual error is intended for k=1 only, but you set k=%" PetscInt_FMT,k);
161:     *res *= BLASnrm2_(&n,Q,&ione);
162:   }

164:   PetscCall(PetscFPTrapPop());
165:   PetscCall(PetscFree5(W,Q,wr,wi,work));
166:   PetscFunctionReturn(PETSC_SUCCESS);
167: }

169: #else

171: /*
172:    Compute the upper Cholesky factor of A
173:  */
174: static PetscErrorCode CholeskyFactor(PetscInt m,PetscScalar *A,PetscInt lda)
175: {
176:   PetscInt       i;
177:   PetscScalar    *S;
178:   PetscBLASInt   info,n,ld;

180:   PetscFunctionBegin;
181:   PetscCall(PetscBLASIntCast(m,&n));
182:   PetscCall(PetscBLASIntCast(lda,&ld));
183:   PetscCall(PetscMalloc1(m*m,&S));
184:   PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));

186:   /* save a copy of matrix in S */
187:   for (i=0;i<m;i++) PetscCall(PetscArraycpy(S+i*m,A+i*lda,m));

189:   /* compute upper Cholesky factor in R */
190:   PetscCallBLAS("LAPACKpotrf",LAPACKpotrf_("U",&n,A,&ld,&info));
191:   PetscCall(PetscLogFlops((1.0*n*n*n)/3.0));

193:   if (info) {
194:     for (i=0;i<m;i++) {
195:       PetscCall(PetscArraycpy(A+i*lda,S+i*m,m));
196:       A[i+i*lda] += 50.0*PETSC_MACHINE_EPSILON;
197:     }
198:     PetscCallBLAS("LAPACKpotrf",LAPACKpotrf_("U",&n,A,&ld,&info));
199:     SlepcCheckLapackInfo("potrf",info);
200:     PetscCall(PetscLogFlops((1.0*n*n*n)/3.0));
201:   }

203:   /* Zero out entries below the diagonal */
204:   for (i=0;i<m-1;i++) PetscCall(PetscArrayzero(A+i*lda+i+1,m-i-1));
205:   PetscCall(PetscFPTrapPop());
206:   PetscCall(PetscFree(S));
207:   PetscFunctionReturn(PETSC_SUCCESS);
208: }

210: /*
211:    HessLyapunovChol_LAPACK - alternative implementation when SLICOT is not available
212: */
213: static PetscErrorCode HessLyapunovChol_LAPACK(PetscInt m,PetscScalar *H,PetscInt ldh,PetscInt k,PetscScalar *B,PetscInt ldb,PetscScalar *U,PetscInt ldu,PetscReal *res)
214: {
215:   PetscBLASInt   ilo=1,lwork,info,n,kk,lu,lb,ione=1;
216:   PetscInt       i,j;
217:   PetscReal      scal;
218:   PetscScalar    *Q,*C,*W,*Z,*wr,*work,zero=0.0,done=1.0,dmone=-1.0;
219: #if !defined(PETSC_USE_COMPLEX)
220:   PetscScalar    *wi;
221: #endif

223:   PetscFunctionBegin;
224:   PetscCall(PetscBLASIntCast(ldb,&lb));
225:   PetscCall(PetscBLASIntCast(ldu,&lu));
226:   PetscCall(PetscBLASIntCast(m,&n));
227:   PetscCall(PetscBLASIntCast(k,&kk));
228:   PetscCall(PetscBLASIntCast(6*m,&lwork));
229:   PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
230:   C = U;

232: #if !defined(PETSC_USE_COMPLEX)
233:   PetscCall(PetscMalloc6(m*m,&Q,m*m,&W,m*k,&Z,m,&wr,m,&wi,lwork,&work));
234: #else
235:   PetscCall(PetscMalloc5(m*m,&Q,m*m,&W,m*k,&Z,m,&wr,lwork,&work));
236: #endif

238:   /* save a copy W = H */
239:   for (j=0;j<m;j++) {
240:     for (i=0;i<m;i++) W[i+j*m] = H[i+j*ldh];
241:   }

243:   /* compute the (real) Schur form of W */
244: #if !defined(PETSC_USE_COMPLEX)
245:   PetscCallBLAS("LAPACKhseqr",LAPACKhseqr_("S","I",&n,&ilo,&n,W,&n,wr,wi,Q,&n,work,&lwork,&info));
246: #else
247:   PetscCallBLAS("LAPACKhseqr",LAPACKhseqr_("S","I",&n,&ilo,&n,W,&n,wr,Q,&n,work,&lwork,&info));
248: #endif
249:   SlepcCheckLapackInfo("hseqr",info);
250: #if defined(PETSC_USE_DEBUG)
251:   for (i=0;i<m;i++) PetscCheck(PetscRealPart(wr[i])<0.0,PETSC_COMM_SELF,PETSC_ERR_USER_INPUT,"Eigenvalue with non-negative real part %g, the coefficient matrix is not stable",(double)PetscRealPart(wr[i]));
252: #endif

254:   /* C = -Z*Z', Z = Q'*B */
255:   PetscCallBLAS("BLASgemm",BLASgemm_("C","N",&n,&kk,&n,&done,Q,&n,B,&lb,&zero,Z,&n));
256:   PetscCallBLAS("BLASgemm",BLASgemm_("N","C",&n,&n,&kk,&dmone,Z,&n,Z,&n,&zero,C,&lu));

258:   /* solve triangular Sylvester equation */
259:   PetscCallBLAS("LAPACKtrsyl",LAPACKtrsyl_("N","C",&ione,&n,&n,W,&n,W,&n,C,&lu,&scal,&info));
260:   SlepcCheckLapackInfo("trsyl",info);
261:   PetscCheck(scal==1.0,PETSC_COMM_SELF,PETSC_ERR_SUP,"Current implementation cannot handle scale factor %g",(double)scal);

263:   /* back-transform C = Q*C*Q' */
264:   PetscCallBLAS("BLASgemm",BLASgemm_("N","N",&n,&n,&n,&done,Q,&n,C,&n,&zero,W,&n));
265:   PetscCallBLAS("BLASgemm",BLASgemm_("N","C",&n,&n,&n,&done,W,&n,Q,&n,&zero,C,&lu));

267:   /* resnorm = norm(H(m+1,:)*Y) */
268:   if (res) {
269:     PetscCheck(k==1,PETSC_COMM_SELF,PETSC_ERR_LIB,"Residual error is intended for k=1 only, but you set k=%" PetscInt_FMT,k);
270:     *res *= BLASnrm2_(&n,C+m-1,&n);
271:   }

273:   /* U = chol(C) */
274:   PetscCall(CholeskyFactor(m,C,ldu));

276:   PetscCall(PetscFPTrapPop());
277: #if !defined(PETSC_USE_COMPLEX)
278:   PetscCall(PetscFree6(Q,W,Z,wr,wi,work));
279: #else
280:   PetscCall(PetscFree5(Q,W,Z,wr,work));
281: #endif
282:   PetscFunctionReturn(PETSC_SUCCESS);
283: }

285: #endif /* SLEPC_HAVE_SLICOT */

287: /*@C
288:    LMEDenseHessLyapunovChol - Computes the Cholesky factor of the solution of a
289:    dense Lyapunov equation with an upper Hessenberg coefficient matrix.

291:    Logically Collective

293:    Input Parameters:
294: +  lme - linear matrix equation solver context
295: .  m   - number of rows and columns of H
296: .  H   - coefficient matrix
297: .  ldh - leading dimension of H
298: .  k   - number of columns of B
299: .  B   - right-hand side matrix
300: .  ldb - leading dimension of B
301: -  ldu - leading dimension of U

303:    Output Parameters:
304: +  U   - Cholesky factor of the solution
305: -  res - (optional) residual norm, on input it should contain H(m+1,m)

307:    Note:
308:    The Lyapunov equation has the form H*X + X*H' = -B*B', where H is an mxm
309:    upper Hessenberg matrix, B is an mxk matrix and the solution is expressed
310:    as X = U'*U, where U is upper triangular. H is supposed to be stable.

312:    When k=1 and the res argument is provided, the last row of X is used to
313:    compute the residual norm of a Lyapunov equation projected via Arnoldi.

315:    Level: developer

317: .seealso: LMEDenseLyapunov(), LMESolve()
318: @*/
319: PetscErrorCode LMEDenseHessLyapunovChol(LME lme,PetscInt m,PetscScalar *H,PetscInt ldh,PetscInt k,PetscScalar *B,PetscInt ldb,PetscScalar *U,PetscInt ldu,PetscReal *res)
320: {
321: #if defined(PETSC_USE_INFO)
322:   PetscReal      error;
323: #endif

325:   PetscFunctionBegin;
328:   PetscAssertPointer(H,3);
331:   PetscAssertPointer(B,6);
333:   PetscAssertPointer(U,8);

337: #if defined(SLEPC_HAVE_SLICOT)
338:   PetscCall(HessLyapunovChol_SLICOT(m,H,ldh,k,B,ldb,U,ldu,res));
339: #else
340:   PetscCall(HessLyapunovChol_LAPACK(m,H,ldh,k,B,ldb,U,ldu,res));
341: #endif

343: #if defined(PETSC_USE_INFO)
344:   if (PetscLogPrintInfo) {
345:     PetscCall(LyapunovCholResidual(m,H,ldh,k,B,ldb,U,ldu,&error));
346:     PetscCall(PetscInfo(lme,"Residual norm of dense Lyapunov equation = %g\n",(double)error));
347:   }
348: #endif
349:   PetscFunctionReturn(PETSC_SUCCESS);
350: }

352: #if defined(SLEPC_HAVE_SLICOT)
353: /*
354:    Lyapunov_SLICOT - implementation used when SLICOT is available
355: */
356: static PetscErrorCode Lyapunov_SLICOT(PetscInt m,PetscScalar *H,PetscInt ldh,PetscScalar *B,PetscInt ldb,PetscScalar *X,PetscInt ldx)
357: {
358:   PetscBLASInt   sdim,lwork,info,n,lx,*iwork;
359:   PetscInt       i,j;
360:   PetscReal      scal,sep,ferr,*work;
361:   PetscScalar    *Q,*W,*wr,*wi;

363:   PetscFunctionBegin;
364:   PetscCall(PetscBLASIntCast(ldx,&lx));
365:   PetscCall(PetscBLASIntCast(m,&n));
366:   PetscCall(PetscBLASIntCast(PetscMax(20,m*m),&lwork));
367:   PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));

369:   /* transpose W = H' */
370:   PetscCall(PetscMalloc6(m*m,&W,m*m,&Q,m,&wr,m,&wi,m*m,&iwork,lwork,&work));
371:   for (j=0;j<m;j++) {
372:     for (i=0;i<m;i++) W[i+j*m] = H[j+i*ldh];
373:   }

375:   /* compute the real Schur form of W */
376:   PetscCallBLAS("LAPACKgees",LAPACKgees_("V","N",NULL,&n,W,&n,&sdim,wr,wi,Q,&n,work,&lwork,NULL,&info));
377:   SlepcCheckLapackInfo("gees",info);

379:   /* copy -B into X */
380:   for (i=0;i<m;i++) {
381:     for (j=0;j<m;j++) X[i+j*ldx] = -B[i+j*ldb];
382:   }

384:   /* solve Lyapunov equation (Hammarling) */
385:   PetscCallBLAS("SLICOTsb03md",SLICOTsb03md_("C","X","F","N",&n,W,&n,Q,&n,X,&lx,&scal,&sep,&ferr,wr,wi,iwork,work,&lwork,&info));
386:   PetscCheck(!info,PETSC_COMM_SELF,PETSC_ERR_LIB,"Error in SLICOT subroutine SB03OD: info=%" PetscBLASInt_FMT,info);
387:   PetscCheck(scal==1.0,PETSC_COMM_SELF,PETSC_ERR_SUP,"Current implementation cannot handle scale factor %g",scal);

389:   PetscCall(PetscFPTrapPop());
390:   PetscCall(PetscFree6(W,Q,wr,wi,iwork,work));
391:   PetscFunctionReturn(PETSC_SUCCESS);
392: }

394: #else

396: /*
397:    Lyapunov_LAPACK - alternative implementation when SLICOT is not available
398: */
399: static PetscErrorCode Lyapunov_LAPACK(PetscInt m,PetscScalar *A,PetscInt lda,PetscScalar *B,PetscInt ldb,PetscScalar *X,PetscInt ldx)
400: {
401:   PetscBLASInt   sdim,lwork,info,n,lx,lb,ione=1;
402:   PetscInt       i,j;
403:   PetscReal      scal;
404:   PetscScalar    *Q,*W,*Z,*wr,*work,zero=0.0,done=1.0,dmone=-1.0;
405: #if defined(PETSC_USE_COMPLEX)
406:   PetscReal      *rwork;
407: #else
408:   PetscScalar    *wi;
409: #endif

411:   PetscFunctionBegin;
412:   PetscCall(PetscBLASIntCast(ldb,&lb));
413:   PetscCall(PetscBLASIntCast(ldx,&lx));
414:   PetscCall(PetscBLASIntCast(m,&n));
415:   PetscCall(PetscBLASIntCast(6*m,&lwork));
416:   PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));

418: #if !defined(PETSC_USE_COMPLEX)
419:   PetscCall(PetscMalloc6(m*m,&Q,m*m,&W,m*m,&Z,m,&wr,m,&wi,lwork,&work));
420: #else
421:   PetscCall(PetscMalloc6(m*m,&Q,m*m,&W,m*m,&Z,m,&wr,lwork,&work,m,&rwork));
422: #endif

424:   /* save a copy W = A */
425:   for (j=0;j<m;j++) {
426:     for (i=0;i<m;i++) W[i+j*m] = A[i+j*lda];
427:   }

429:   /* compute the (real) Schur form of W */
430: #if !defined(PETSC_USE_COMPLEX)
431:   PetscCallBLAS("LAPACKgees",LAPACKgees_("V","N",NULL,&n,W,&n,&sdim,wr,wi,Q,&n,work,&lwork,NULL,&info));
432: #else
433:   PetscCallBLAS("LAPACKgees",LAPACKgees_("V","N",NULL,&n,W,&n,&sdim,wr,Q,&n,work,&lwork,rwork,NULL,&info));
434: #endif
435:   SlepcCheckLapackInfo("gees",info);

437:   /* X = -Q'*B*Q */
438:   PetscCallBLAS("BLASgemm",BLASgemm_("C","N",&n,&n,&n,&done,Q,&n,B,&lb,&zero,Z,&n));
439:   PetscCallBLAS("BLASgemm",BLASgemm_("N","N",&n,&n,&n,&dmone,Z,&n,Q,&n,&zero,X,&lx));

441:   /* solve triangular Sylvester equation */
442:   PetscCallBLAS("LAPACKtrsyl",LAPACKtrsyl_("N","C",&ione,&n,&n,W,&n,W,&n,X,&lx,&scal,&info));
443:   SlepcCheckLapackInfo("trsyl",info);
444:   PetscCheck(scal==1.0,PETSC_COMM_SELF,PETSC_ERR_SUP,"Current implementation cannot handle scale factor %g",(double)scal);

446:   /* back-transform X = Q*X*Q' */
447:   PetscCallBLAS("BLASgemm",BLASgemm_("N","N",&n,&n,&n,&done,Q,&n,X,&n,&zero,W,&n));
448:   PetscCallBLAS("BLASgemm",BLASgemm_("N","C",&n,&n,&n,&done,W,&n,Q,&n,&zero,X,&lx));

450:   PetscCall(PetscFPTrapPop());
451: #if !defined(PETSC_USE_COMPLEX)
452:   PetscCall(PetscFree6(Q,W,Z,wr,wi,work));
453: #else
454:   PetscCall(PetscFree6(Q,W,Z,wr,work,rwork));
455: #endif
456:   PetscFunctionReturn(PETSC_SUCCESS);
457: }

459: #endif /* SLEPC_HAVE_SLICOT */

461: /*@C
462:    LMEDenseLyapunov - Computes the solution of a dense continuous-time Lyapunov
463:    equation.

465:    Logically Collective

467:    Input Parameters:
468: +  lme - linear matrix equation solver context
469: .  m   - number of rows and columns of A
470: .  A   - coefficient matrix
471: .  lda - leading dimension of A
472: .  B   - right-hand side matrix
473: .  ldb - leading dimension of B
474: -  ldx - leading dimension of X

476:    Output Parameter:
477: .  X   - the solution

479:    Note:
480:    The Lyapunov equation has the form A*X + X*A' = -B, where all are mxm
481:    matrices, and B is symmetric.

483:    Level: developer

485: .seealso: LMEDenseHessLyapunovChol(), LMESolve()
486: @*/
487: PetscErrorCode LMEDenseLyapunov(LME lme,PetscInt m,PetscScalar *A,PetscInt lda,PetscScalar *B,PetscInt ldb,PetscScalar *X,PetscInt ldx)
488: {
489: #if defined(PETSC_USE_INFO)
490:   PetscReal      error;
491: #endif

493:   PetscFunctionBegin;
496:   PetscAssertPointer(A,3);
498:   PetscAssertPointer(B,5);
500:   PetscAssertPointer(X,7);

503: #if defined(SLEPC_HAVE_SLICOT)
504:   PetscCall(Lyapunov_SLICOT(m,A,lda,B,ldb,X,ldx));
505: #else
506:   PetscCall(Lyapunov_LAPACK(m,A,lda,B,ldb,X,ldx));
507: #endif

509: #if defined(PETSC_USE_INFO)
510:   if (PetscLogPrintInfo) {
511:     PetscCall(LyapunovResidual(m,A,lda,B,ldb,X,ldx,&error));
512:     PetscCall(PetscInfo(lme,"Residual norm of dense Lyapunov equation = %g\n",(double)error));
513:   }
514: #endif
515:   PetscFunctionReturn(PETSC_SUCCESS);
516: }