Actual source code: lmebasic.c
slepc-3.22.2 2024-12-02
1: /*
2: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3: SLEPc - Scalable Library for Eigenvalue Problem Computations
4: Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
6: This file is part of SLEPc.
7: SLEPc is distributed under a 2-clause BSD license (see LICENSE).
8: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9: */
10: /*
11: Basic LME routines
12: */
14: #include <slepc/private/lmeimpl.h>
16: /* Logging support */
17: PetscClassId LME_CLASSID = 0;
18: PetscLogEvent LME_SetUp = 0,LME_Solve = 0,LME_ComputeError = 0;
20: /* List of registered LME routines */
21: PetscFunctionList LMEList = NULL;
22: PetscBool LMERegisterAllCalled = PETSC_FALSE;
24: /* List of registered LME monitors */
25: PetscFunctionList LMEMonitorList = NULL;
26: PetscFunctionList LMEMonitorCreateList = NULL;
27: PetscFunctionList LMEMonitorDestroyList = NULL;
28: PetscBool LMEMonitorRegisterAllCalled = PETSC_FALSE;
30: /*@
31: LMEView - Prints the LME data structure.
33: Collective
35: Input Parameters:
36: + lme - the linear matrix equation solver context
37: - viewer - optional visualization context
39: Options Database Key:
40: . -lme_view - Calls LMEView() at end of LMESolve()
42: Note:
43: The available visualization contexts include
44: + PETSC_VIEWER_STDOUT_SELF - standard output (default)
45: - PETSC_VIEWER_STDOUT_WORLD - synchronized standard
46: output where only the first processor opens
47: the file. All other processors send their
48: data to the first processor to print.
50: The user can open an alternative visualization context with
51: PetscViewerASCIIOpen() - output to a specified file.
53: Level: beginner
55: .seealso: LMECreate()
56: @*/
57: PetscErrorCode LMEView(LME lme,PetscViewer viewer)
58: {
59: PetscBool isascii;
60: const char *eqname[] = {
61: "continuous-time Lyapunov",
62: "continuous-time Sylvester",
63: "generalized Lyapunov",
64: "generalized Sylvester",
65: "Stein",
66: "discrete-time Lyapunov"
67: };
69: PetscFunctionBegin;
71: if (!viewer) PetscCall(PetscViewerASCIIGetStdout(PetscObjectComm((PetscObject)lme),&viewer));
73: PetscCheckSameComm(lme,1,viewer,2);
75: PetscCall(PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&isascii));
76: if (isascii) {
77: PetscCall(PetscObjectPrintClassNamePrefixType((PetscObject)lme,viewer));
78: PetscCall(PetscViewerASCIIPushTab(viewer));
79: PetscTryTypeMethod(lme,view,viewer);
80: PetscCall(PetscViewerASCIIPopTab(viewer));
81: PetscCall(PetscViewerASCIIPrintf(viewer," equation type: %s\n",eqname[lme->problem_type]));
82: PetscCall(PetscViewerASCIIPrintf(viewer," number of column vectors (ncv): %" PetscInt_FMT "\n",lme->ncv));
83: PetscCall(PetscViewerASCIIPrintf(viewer," maximum number of iterations: %" PetscInt_FMT "\n",lme->max_it));
84: PetscCall(PetscViewerASCIIPrintf(viewer," tolerance: %g\n",(double)lme->tol));
85: } else PetscTryTypeMethod(lme,view,viewer);
86: PetscCall(PetscViewerPushFormat(viewer,PETSC_VIEWER_ASCII_INFO));
87: if (!lme->V) PetscCall(LMEGetBV(lme,&lme->V));
88: PetscCall(BVView(lme->V,viewer));
89: PetscCall(PetscViewerPopFormat(viewer));
90: PetscFunctionReturn(PETSC_SUCCESS);
91: }
93: /*@
94: LMEViewFromOptions - View from options
96: Collective
98: Input Parameters:
99: + lme - the linear matrix equation context
100: . obj - optional object
101: - name - command line option
103: Level: intermediate
105: .seealso: LMEView(), LMECreate()
106: @*/
107: PetscErrorCode LMEViewFromOptions(LME lme,PetscObject obj,const char name[])
108: {
109: PetscFunctionBegin;
111: PetscCall(PetscObjectViewFromOptions((PetscObject)lme,obj,name));
112: PetscFunctionReturn(PETSC_SUCCESS);
113: }
114: /*@
115: LMEConvergedReasonView - Displays the reason an LME solve converged or diverged.
117: Collective
119: Input Parameters:
120: + lme - the linear matrix equation context
121: - viewer - the viewer to display the reason
123: Options Database Keys:
124: . -lme_converged_reason - print reason for convergence, and number of iterations
126: Note:
127: To change the format of the output call PetscViewerPushFormat(viewer,format) before
128: this call. Use PETSC_VIEWER_DEFAULT for the default, use PETSC_VIEWER_FAILED to only
129: display a reason if it fails. The latter can be set in the command line with
130: -lme_converged_reason ::failed
132: Level: intermediate
134: .seealso: LMESetTolerances(), LMEGetIterationNumber(), LMEConvergedReasonViewFromOptions()
135: @*/
136: PetscErrorCode LMEConvergedReasonView(LME lme,PetscViewer viewer)
137: {
138: PetscBool isAscii;
139: PetscViewerFormat format;
141: PetscFunctionBegin;
142: if (!viewer) viewer = PETSC_VIEWER_STDOUT_(PetscObjectComm((PetscObject)lme));
143: PetscCall(PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&isAscii));
144: if (isAscii) {
145: PetscCall(PetscViewerGetFormat(viewer,&format));
146: PetscCall(PetscViewerASCIIAddTab(viewer,((PetscObject)lme)->tablevel));
147: if (lme->reason > 0 && format != PETSC_VIEWER_FAILED) PetscCall(PetscViewerASCIIPrintf(viewer,"%s Linear matrix equation solve converged due to %s; iterations %" PetscInt_FMT "\n",((PetscObject)lme)->prefix?((PetscObject)lme)->prefix:"",LMEConvergedReasons[lme->reason],lme->its));
148: else if (lme->reason <= 0) PetscCall(PetscViewerASCIIPrintf(viewer,"%s Linear matrix equation solve did not converge due to %s; iterations %" PetscInt_FMT "\n",((PetscObject)lme)->prefix?((PetscObject)lme)->prefix:"",LMEConvergedReasons[lme->reason],lme->its));
149: PetscCall(PetscViewerASCIISubtractTab(viewer,((PetscObject)lme)->tablevel));
150: }
151: PetscFunctionReturn(PETSC_SUCCESS);
152: }
154: /*@
155: LMEConvergedReasonViewFromOptions - Processes command line options to determine if/how
156: the LME converged reason is to be viewed.
158: Collective
160: Input Parameter:
161: . lme - the linear matrix equation context
163: Level: developer
165: .seealso: LMEConvergedReasonView()
166: @*/
167: PetscErrorCode LMEConvergedReasonViewFromOptions(LME lme)
168: {
169: PetscViewer viewer;
170: PetscBool flg;
171: static PetscBool incall = PETSC_FALSE;
172: PetscViewerFormat format;
174: PetscFunctionBegin;
175: if (incall) PetscFunctionReturn(PETSC_SUCCESS);
176: incall = PETSC_TRUE;
177: PetscCall(PetscOptionsCreateViewer(PetscObjectComm((PetscObject)lme),((PetscObject)lme)->options,((PetscObject)lme)->prefix,"-lme_converged_reason",&viewer,&format,&flg));
178: if (flg) {
179: PetscCall(PetscViewerPushFormat(viewer,format));
180: PetscCall(LMEConvergedReasonView(lme,viewer));
181: PetscCall(PetscViewerPopFormat(viewer));
182: PetscCall(PetscViewerDestroy(&viewer));
183: }
184: incall = PETSC_FALSE;
185: PetscFunctionReturn(PETSC_SUCCESS);
186: }
188: /*@
189: LMECreate - Creates the default LME context.
191: Collective
193: Input Parameter:
194: . comm - MPI communicator
196: Output Parameter:
197: . outlme - location to put the LME context
199: Note:
200: The default LME type is LMEKRYLOV
202: Level: beginner
204: .seealso: LMESetUp(), LMESolve(), LMEDestroy(), LME
205: @*/
206: PetscErrorCode LMECreate(MPI_Comm comm,LME *outlme)
207: {
208: LME lme;
210: PetscFunctionBegin;
211: PetscAssertPointer(outlme,2);
212: PetscCall(LMEInitializePackage());
213: PetscCall(SlepcHeaderCreate(lme,LME_CLASSID,"LME","Linear Matrix Equation","LME",comm,LMEDestroy,LMEView));
215: lme->A = NULL;
216: lme->B = NULL;
217: lme->D = NULL;
218: lme->E = NULL;
219: lme->C = NULL;
220: lme->X = NULL;
221: lme->problem_type = LME_LYAPUNOV;
222: lme->max_it = PETSC_DETERMINE;
223: lme->ncv = PETSC_DETERMINE;
224: lme->tol = PETSC_DETERMINE;
225: lme->errorifnotconverged = PETSC_FALSE;
227: lme->numbermonitors = 0;
229: lme->V = NULL;
230: lme->nwork = 0;
231: lme->work = NULL;
232: lme->data = NULL;
234: lme->its = 0;
235: lme->errest = 0;
236: lme->setupcalled = 0;
237: lme->reason = LME_CONVERGED_ITERATING;
239: *outlme = lme;
240: PetscFunctionReturn(PETSC_SUCCESS);
241: }
243: /*@
244: LMESetType - Selects the particular solver to be used in the LME object.
246: Logically Collective
248: Input Parameters:
249: + lme - the linear matrix equation context
250: - type - a known method
252: Options Database Key:
253: . -lme_type <method> - Sets the method; use -help for a list
254: of available methods
256: Notes:
257: See "slepc/include/slepclme.h" for available methods. The default
258: is LMEKRYLOV
260: Normally, it is best to use the LMESetFromOptions() command and
261: then set the LME type from the options database rather than by using
262: this routine. Using the options database provides the user with
263: maximum flexibility in evaluating the different available methods.
264: The LMESetType() routine is provided for those situations where it
265: is necessary to set the iterative solver independently of the command
266: line or options database.
268: Level: intermediate
270: .seealso: LMEType
271: @*/
272: PetscErrorCode LMESetType(LME lme,LMEType type)
273: {
274: PetscErrorCode (*r)(LME);
275: PetscBool match;
277: PetscFunctionBegin;
279: PetscAssertPointer(type,2);
281: PetscCall(PetscObjectTypeCompare((PetscObject)lme,type,&match));
282: if (match) PetscFunctionReturn(PETSC_SUCCESS);
284: PetscCall(PetscFunctionListFind(LMEList,type,&r));
285: PetscCheck(r,PetscObjectComm((PetscObject)lme),PETSC_ERR_ARG_UNKNOWN_TYPE,"Unknown LME type given: %s",type);
287: PetscTryTypeMethod(lme,destroy);
288: PetscCall(PetscMemzero(lme->ops,sizeof(struct _LMEOps)));
290: lme->setupcalled = 0;
291: PetscCall(PetscObjectChangeTypeName((PetscObject)lme,type));
292: PetscCall((*r)(lme));
293: PetscFunctionReturn(PETSC_SUCCESS);
294: }
296: /*@
297: LMEGetType - Gets the LME type as a string from the LME object.
299: Not Collective
301: Input Parameter:
302: . lme - the linear matrix equation context
304: Output Parameter:
305: . type - name of LME method
307: Level: intermediate
309: .seealso: LMESetType()
310: @*/
311: PetscErrorCode LMEGetType(LME lme,LMEType *type)
312: {
313: PetscFunctionBegin;
315: PetscAssertPointer(type,2);
316: *type = ((PetscObject)lme)->type_name;
317: PetscFunctionReturn(PETSC_SUCCESS);
318: }
320: /*@C
321: LMERegister - Adds a method to the linear matrix equation solver package.
323: Not Collective
325: Input Parameters:
326: + name - name of a new user-defined solver
327: - function - routine to create the solver context
329: Notes:
330: LMERegister() may be called multiple times to add several user-defined solvers.
332: Example Usage:
333: .vb
334: LMERegister("my_solver",MySolverCreate);
335: .ve
337: Then, your solver can be chosen with the procedural interface via
338: $ LMESetType(lme,"my_solver")
339: or at runtime via the option
340: $ -lme_type my_solver
342: Level: advanced
344: .seealso: LMERegisterAll()
345: @*/
346: PetscErrorCode LMERegister(const char *name,PetscErrorCode (*function)(LME))
347: {
348: PetscFunctionBegin;
349: PetscCall(LMEInitializePackage());
350: PetscCall(PetscFunctionListAdd(&LMEList,name,function));
351: PetscFunctionReturn(PETSC_SUCCESS);
352: }
354: /*@C
355: LMEMonitorRegister - Adds LME monitor routine.
357: Not Collective
359: Input Parameters:
360: + name - name of a new monitor routine
361: . vtype - a PetscViewerType for the output
362: . format - a PetscViewerFormat for the output
363: . monitor - monitor routine
364: . create - creation routine, or NULL
365: - destroy - destruction routine, or NULL
367: Notes:
368: LMEMonitorRegister() may be called multiple times to add several user-defined monitors.
370: Example Usage:
371: .vb
372: LMEMonitorRegister("my_monitor",PETSCVIEWERASCII,PETSC_VIEWER_ASCII_INFO_DETAIL,MyMonitor,NULL,NULL);
373: .ve
375: Then, your monitor can be chosen with the procedural interface via
376: $ LMEMonitorSetFromOptions(lme,"-lme_monitor_my_monitor","my_monitor",NULL)
377: or at runtime via the option
378: $ -lme_monitor_my_monitor
380: Level: advanced
382: .seealso: LMEMonitorRegisterAll()
383: @*/
384: PetscErrorCode LMEMonitorRegister(const char name[],PetscViewerType vtype,PetscViewerFormat format,PetscErrorCode (*monitor)(LME,PetscInt,PetscReal,PetscViewerAndFormat*),PetscErrorCode (*create)(PetscViewer,PetscViewerFormat,void*,PetscViewerAndFormat**),PetscErrorCode (*destroy)(PetscViewerAndFormat**))
385: {
386: char key[PETSC_MAX_PATH_LEN];
388: PetscFunctionBegin;
389: PetscCall(LMEInitializePackage());
390: PetscCall(SlepcMonitorMakeKey_Internal(name,vtype,format,key));
391: PetscCall(PetscFunctionListAdd(&LMEMonitorList,key,monitor));
392: if (create) PetscCall(PetscFunctionListAdd(&LMEMonitorCreateList,key,create));
393: if (destroy) PetscCall(PetscFunctionListAdd(&LMEMonitorDestroyList,key,destroy));
394: PetscFunctionReturn(PETSC_SUCCESS);
395: }
397: /*@
398: LMEReset - Resets the LME context to the initial state (prior to setup)
399: and destroys any allocated Vecs and Mats.
401: Collective
403: Input Parameter:
404: . lme - linear matrix equation context obtained from LMECreate()
406: Level: advanced
408: .seealso: LMEDestroy()
409: @*/
410: PetscErrorCode LMEReset(LME lme)
411: {
412: PetscFunctionBegin;
414: if (!lme) PetscFunctionReturn(PETSC_SUCCESS);
415: PetscTryTypeMethod(lme,reset);
416: PetscCall(MatDestroy(&lme->A));
417: PetscCall(MatDestroy(&lme->B));
418: PetscCall(MatDestroy(&lme->D));
419: PetscCall(MatDestroy(&lme->E));
420: PetscCall(MatDestroy(&lme->C));
421: PetscCall(MatDestroy(&lme->X));
422: PetscCall(BVDestroy(&lme->V));
423: PetscCall(VecDestroyVecs(lme->nwork,&lme->work));
424: lme->nwork = 0;
425: lme->setupcalled = 0;
426: PetscFunctionReturn(PETSC_SUCCESS);
427: }
429: /*@
430: LMEDestroy - Destroys the LME context.
432: Collective
434: Input Parameter:
435: . lme - linear matrix equation context obtained from LMECreate()
437: Level: beginner
439: .seealso: LMECreate(), LMESetUp(), LMESolve()
440: @*/
441: PetscErrorCode LMEDestroy(LME *lme)
442: {
443: PetscFunctionBegin;
444: if (!*lme) PetscFunctionReturn(PETSC_SUCCESS);
446: if (--((PetscObject)*lme)->refct > 0) { *lme = NULL; PetscFunctionReturn(PETSC_SUCCESS); }
447: PetscCall(LMEReset(*lme));
448: PetscTryTypeMethod(*lme,destroy);
449: PetscCall(LMEMonitorCancel(*lme));
450: PetscCall(PetscHeaderDestroy(lme));
451: PetscFunctionReturn(PETSC_SUCCESS);
452: }
454: /*@
455: LMESetBV - Associates a basis vectors object to the linear matrix equation solver.
457: Collective
459: Input Parameters:
460: + lme - linear matrix equation context obtained from LMECreate()
461: - bv - the basis vectors object
463: Note:
464: Use LMEGetBV() to retrieve the basis vectors context (for example,
465: to free it at the end of the computations).
467: Level: advanced
469: .seealso: LMEGetBV()
470: @*/
471: PetscErrorCode LMESetBV(LME lme,BV bv)
472: {
473: PetscFunctionBegin;
476: PetscCheckSameComm(lme,1,bv,2);
477: PetscCall(PetscObjectReference((PetscObject)bv));
478: PetscCall(BVDestroy(&lme->V));
479: lme->V = bv;
480: PetscFunctionReturn(PETSC_SUCCESS);
481: }
483: /*@
484: LMEGetBV - Obtain the basis vectors object associated to the matrix
485: function solver.
487: Not Collective
489: Input Parameters:
490: . lme - linear matrix equation context obtained from LMECreate()
492: Output Parameter:
493: . bv - basis vectors context
495: Level: advanced
497: .seealso: LMESetBV()
498: @*/
499: PetscErrorCode LMEGetBV(LME lme,BV *bv)
500: {
501: PetscFunctionBegin;
503: PetscAssertPointer(bv,2);
504: if (!lme->V) {
505: PetscCall(BVCreate(PetscObjectComm((PetscObject)lme),&lme->V));
506: PetscCall(PetscObjectIncrementTabLevel((PetscObject)lme->V,(PetscObject)lme,0));
507: PetscCall(PetscObjectSetOptions((PetscObject)lme->V,((PetscObject)lme)->options));
508: }
509: *bv = lme->V;
510: PetscFunctionReturn(PETSC_SUCCESS);
511: }