Actual source code: test8.c

slepc-3.22.1 2024-10-28
Report Typos and Errors
  1: /*
  2:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  3:    SLEPc - Scalable Library for Eigenvalue Problem Computations
  4:    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain

  6:    This file is part of SLEPc.
  7:    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
  8:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  9: */

 11: static char help[] = "Solves the same eigenproblem as in example ex2, but using a shell matrix. "
 12:   "The problem is a standard symmetric eigenproblem corresponding to the 2-D Laplacian operator.\n\n"
 13:   "The command line options are:\n"
 14:   "  -n <n>, where <n> = number of grid subdivisions in both x and y dimensions.\n\n";

 16: #include <slepceps.h>
 17: #include <petscblaslapack.h>

 19: /*
 20:    User-defined routines
 21: */
 22: PetscErrorCode MatMult_Laplacian2D(Mat A,Vec x,Vec y);
 23: PetscErrorCode MatGetDiagonal_Laplacian2D(Mat A,Vec diag);

 25: int main(int argc,char **argv)
 26: {
 27:   Mat            A;               /* operator matrix */
 28:   EPS            eps;             /* eigenproblem solver context */
 29:   PetscReal      tol=1000*PETSC_MACHINE_EPSILON;
 30:   PetscMPIInt    size;
 31:   PetscInt       N,n=10,nev;

 33:   PetscFunctionBeginUser;
 34:   PetscCall(SlepcInitialize(&argc,&argv,NULL,help));
 35:   PetscCallMPI(MPI_Comm_size(PETSC_COMM_WORLD,&size));
 36:   PetscCheck(size==1,PETSC_COMM_WORLD,PETSC_ERR_WRONG_MPI_SIZE,"This is a uniprocessor example only");

 38:   PetscCall(PetscOptionsGetInt(NULL,NULL,"-n",&n,NULL));
 39:   N = n*n;
 40:   PetscCall(PetscPrintf(PETSC_COMM_WORLD,"\n2-D Laplacian Eigenproblem (matrix-free version), N=%" PetscInt_FMT " (%" PetscInt_FMT "x%" PetscInt_FMT " grid)\n\n",N,n,n));

 42:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 43:      Compute the operator matrix that defines the eigensystem, Ax=kx
 44:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

 46:   PetscCall(MatCreateShell(PETSC_COMM_WORLD,N,N,N,N,&n,&A));
 47:   PetscCall(MatShellSetOperation(A,MATOP_MULT,(void(*)(void))MatMult_Laplacian2D));
 48:   PetscCall(MatShellSetOperation(A,MATOP_MULT_TRANSPOSE,(void(*)(void))MatMult_Laplacian2D));
 49:   PetscCall(MatShellSetOperation(A,MATOP_GET_DIAGONAL,(void(*)(void))MatGetDiagonal_Laplacian2D));

 51:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 52:                 Create the eigensolver and set various options
 53:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

 55:   /*
 56:      Create eigensolver context
 57:   */
 58:   PetscCall(EPSCreate(PETSC_COMM_WORLD,&eps));

 60:   /*
 61:      Set operators. In this case, it is a standard eigenvalue problem
 62:   */
 63:   PetscCall(EPSSetOperators(eps,A,NULL));
 64:   PetscCall(EPSSetProblemType(eps,EPS_HEP));
 65:   PetscCall(EPSSetTolerances(eps,tol,PETSC_CURRENT));

 67:   /*
 68:      Set solver parameters at runtime
 69:   */
 70:   PetscCall(EPSSetFromOptions(eps));

 72:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 73:                       Solve the eigensystem
 74:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

 76:   PetscCall(EPSSolve(eps));
 77:   PetscCall(EPSGetDimensions(eps,&nev,NULL,NULL));
 78:   PetscCall(PetscPrintf(PETSC_COMM_WORLD," Number of requested eigenvalues: %" PetscInt_FMT "\n",nev));

 80:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 81:                     Display solution and clean up
 82:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

 84:   PetscCall(EPSErrorView(eps,EPS_ERROR_RELATIVE,NULL));
 85:   PetscCall(EPSDestroy(&eps));
 86:   PetscCall(MatDestroy(&A));
 87:   PetscCall(SlepcFinalize());
 88:   return 0;
 89: }

 91: /*
 92:     Compute the matrix vector multiplication y<---T*x where T is a nx by nx
 93:     tridiagonal matrix with DD on the diagonal, DL on the subdiagonal, and
 94:     DU on the superdiagonal.
 95:  */
 96: static void tv(int nx,const PetscScalar *x,PetscScalar *y)
 97: {
 98:   PetscScalar dd,dl,du;
 99:   int         j;

101:   dd  = 4.0;
102:   dl  = -1.0;
103:   du  = -1.0;

105:   y[0] =  dd*x[0] + du*x[1];
106:   for (j=1;j<nx-1;j++)
107:     y[j] = dl*x[j-1] + dd*x[j] + du*x[j+1];
108:   y[nx-1] = dl*x[nx-2] + dd*x[nx-1];
109: }

111: /*
112:     Matrix-vector product subroutine for the 2D Laplacian.

114:     The matrix used is the 2 dimensional discrete Laplacian on unit square with
115:     zero Dirichlet boundary condition.

117:     Computes y <-- A*x, where A is the block tridiagonal matrix

119:                  | T -I          |
120:                  |-I  T -I       |
121:              A = |   -I  T       |
122:                  |        ...  -I|
123:                  |           -I T|

125:     The subroutine TV is called to compute y<--T*x.
126:  */
127: PetscErrorCode MatMult_Laplacian2D(Mat A,Vec x,Vec y)
128: {
129:   void              *ctx;
130:   int               nx,lo,i,j;
131:   const PetscScalar *px;
132:   PetscScalar       *py;

134:   PetscFunctionBeginUser;
135:   PetscCall(MatShellGetContext(A,&ctx));
136:   nx = *(int*)ctx;
137:   PetscCall(VecGetArrayRead(x,&px));
138:   PetscCall(VecGetArray(y,&py));

140:   tv(nx,&px[0],&py[0]);
141:   for (i=0;i<nx;i++) py[i] -= px[nx+i];

143:   for (j=2;j<nx;j++) {
144:     lo = (j-1)*nx;
145:     tv(nx,&px[lo],&py[lo]);
146:     for (i=0;i<nx;i++) py[lo+i] -= px[lo-nx+i] + px[lo+nx+i];
147:   }

149:   lo = (nx-1)*nx;
150:   tv(nx,&px[lo],&py[lo]);
151:   for (i=0;i<nx;i++) py[lo+i] -= px[lo-nx+i];

153:   PetscCall(VecRestoreArrayRead(x,&px));
154:   PetscCall(VecRestoreArray(y,&py));
155:   PetscFunctionReturn(PETSC_SUCCESS);
156: }

158: PetscErrorCode MatGetDiagonal_Laplacian2D(Mat A,Vec diag)
159: {
160:   PetscFunctionBeginUser;
161:   PetscCall(VecSet(diag,4.0));
162:   PetscFunctionReturn(PETSC_SUCCESS);
163: }

165: /*TEST

167:    testset:
168:       args: -n 20 -eps_nev 4 -eps_ncv 11 -eps_max_it 40000
169:       requires: !single
170:       output_file: output/test8_1.out
171:       test:
172:          suffix: 1
173:          args: -eps_type {{power subspace arnoldi}}
174:       test:
175:          suffix: 1_lanczos
176:          args: -eps_type lanczos -eps_lanczos_reorthog local
177:       test:
178:          suffix: 1_lapack
179:          args: -eps_type lapack
180:          timeoutfactor: 2
181:       test:
182:          suffix: 1_elemental
183:          args: -eps_type elemental
184:          requires: elemental
185:       test:
186:          suffix: 1_krylovschur_vecs
187:          args: -bv_type vecs -bv_orthog_refine always -eps_ncv 10 -vec_mdot_use_gemv 0
188:       test:
189:          suffix: 1_jd
190:          args: -eps_type jd -eps_jd_blocksize 3
191:       test:
192:          suffix: 1_gd
193:          args: -eps_type gd -eps_gd_blocksize 3 -eps_tol 1e-8
194:       test:
195:          suffix: 1_gd2
196:          args: -eps_type gd -eps_gd_double_expansion
197:       test:
198:          suffix: 1_primme
199:          args: -eps_type primme -eps_conv_abs -eps_largest_magnitude
200:          requires: primme

202:    testset:
203:       args: -eps_nev 4 -eps_smallest_real -eps_max_it 600
204:       output_file: output/test8_2.out
205:       test:
206:          suffix: 2
207:          args: -eps_type {{rqcg lobpcg}}
208:       test:
209:          suffix: 2_lanczos
210:          args: -eps_type lanczos -eps_lanczos_reorthog local
211:       test:
212:          suffix: 2_arpack
213:          args: -eps_type arpack -eps_ncv 6
214:          requires: arpack !single
215:       test:
216:          suffix: 2_primme
217:          args: -eps_type primme -eps_conv_abs -eps_primme_method lobpcg_orthobasisw -eps_ncv 24
218:          requires: primme

220:    testset:
221:       args: -eps_nev 12 -eps_mpd 9 -eps_smallest_real -eps_max_it 1000
222:       output_file: output/test8_3.out
223:       test:
224:          suffix: 3_rqcg
225:          args: -eps_type rqcg
226:       test:
227:          suffix: 3_lanczos
228:          args: -eps_type lanczos -eps_lanczos_reorthog local
229:       test:
230:          suffix: 3_lobpcg
231:          args: -eps_type lobpcg -eps_lobpcg_blocksize 3 -eps_lobpcg_locking 0 -st_ksp_type preonly -st_pc_type jacobi
232:          requires: !__float128
233:       test:
234:          suffix: 3_lobpcg_quad
235:          args: -eps_type lobpcg -eps_lobpcg_blocksize 3 -eps_lobpcg_locking 0 -st_ksp_type preonly -st_pc_type jacobi -eps_tol 1e-25
236:          requires: __float128
237: TEST*/