Actual source code: test44.c

slepc-3.22.1 2024-10-28
Report Typos and Errors
  1: /*
  2:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  3:    SLEPc - Scalable Library for Eigenvalue Problem Computations
  4:    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain

  6:    This file is part of SLEPc.
  7:    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
  8:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  9: */

 11: static char help[] = "Eigenvalue problem with Bethe-Salpeter structure using shell matrices.\n\n"
 12:   "The command line options are:\n"
 13:   "  -n <n>, where <n> = dimension of the blocks.\n\n";

 15: #include <slepceps.h>

 17: /*
 18:    This example computes eigenvalues of a matrix

 20:         H = [  R    C
 21:               -C^H -R^T ],

 23:    where R is Hermitian and C is complex symmetric. In particular, R and C have the
 24:    following Toeplitz structure:

 26:         R = pentadiag{a,b,c,conj(b),conj(a)}
 27:         C = tridiag{b,d,b}

 29:    where a,b,d are complex scalars, and c is real.
 30: */

 32: /*
 33:    User-defined routines
 34: */
 35: PetscErrorCode MatMult_R(Mat R,Vec x,Vec y);
 36: PetscErrorCode MatMultTranspose_R(Mat R,Vec x,Vec y);
 37: PetscErrorCode MatMult_C(Mat C,Vec x,Vec y);
 38: PetscErrorCode MatMultHermitianTranspose_C(Mat C,Vec x,Vec y);

 40: /*
 41:    User context for shell matrices
 42: */
 43: typedef struct {
 44:   PetscScalar a,b,c,d;
 45: } CTX_SHELL;

 47: int main(int argc,char **argv)
 48: {
 49:   Mat            H,R,C;      /* problem matrices */
 50:   EPS            eps;        /* eigenproblem solver context */
 51:   PetscReal      lev;
 52:   PetscInt       n=24,i,nconv;
 53:   PetscMPIInt    size;
 54:   PetscBool      terse,checkorthog;
 55:   Vec            t,*x,*y;
 56:   CTX_SHELL      *ctx;

 58:   PetscFunctionBeginUser;
 59:   PetscCall(SlepcInitialize(&argc,&argv,NULL,help));
 60:   PetscCallMPI(MPI_Comm_size(PETSC_COMM_WORLD,&size));
 61:   PetscCheck(size==1,PETSC_COMM_WORLD,PETSC_ERR_WRONG_MPI_SIZE,"This is a uniprocessor example only");

 63:   PetscCall(PetscOptionsGetInt(NULL,NULL,"-n",&n,NULL));
 64:   PetscCall(PetscPrintf(PETSC_COMM_WORLD,"\nShell Bethe-Salpeter eigenproblem, n=%" PetscInt_FMT "\n\n",n));

 66:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 67:                Generate the shell problem matrices R and C
 68:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

 70:   PetscCall(PetscNew(&ctx));
 71: #if defined(PETSC_USE_COMPLEX)
 72:   ctx->a = PetscCMPLX(-0.1,0.2);
 73:   ctx->b = PetscCMPLX(1.0,0.5);
 74:   ctx->d = PetscCMPLX(2.0,0.2);
 75: #else
 76:   ctx->a = -0.1;
 77:   ctx->b = 1.0;
 78:   ctx->d = 2.0;
 79: #endif
 80:   ctx->c = 4.5;

 82:   PetscCall(MatCreateShell(PETSC_COMM_WORLD,PETSC_DECIDE,PETSC_DECIDE,n,n,(void*)ctx,&R));
 83:   PetscCall(MatShellSetOperation(R,MATOP_MULT,(void(*)(void))MatMult_R));
 84:   PetscCall(MatShellSetOperation(R,MATOP_MULT_TRANSPOSE,(void(*)(void))MatMultTranspose_R));
 85:   PetscCall(MatSetOption(R,MAT_HERMITIAN,PETSC_TRUE));
 86:   PetscCall(MatCreateShell(PETSC_COMM_WORLD,PETSC_DECIDE,PETSC_DECIDE,n,n,(void*)ctx,&C));
 87:   PetscCall(MatShellSetOperation(C,MATOP_MULT,(void(*)(void))MatMult_C));
 88:   PetscCall(MatShellSetOperation(C,MATOP_MULT_HERMITIAN_TRANSPOSE,(void(*)(void))MatMultHermitianTranspose_C));
 89:   PetscCall(MatSetOption(C,MAT_SYMMETRIC,PETSC_TRUE));

 91:   PetscCall(MatCreateBSE(R,C,&H));
 92:   PetscCall(MatDestroy(&R));
 93:   PetscCall(MatDestroy(&C));

 95:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 96:                 Create the eigensolver and set various options
 97:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

 99:   PetscCall(EPSCreate(PETSC_COMM_WORLD,&eps));
100:   PetscCall(EPSSetOperators(eps,H,NULL));
101:   PetscCall(EPSSetProblemType(eps,EPS_BSE));
102:   PetscCall(EPSSetWhichEigenpairs(eps,EPS_SMALLEST_MAGNITUDE));
103:   PetscCall(EPSSetFromOptions(eps));

105:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
106:                  Solve the eigensystem and display solution
107:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

109:   PetscCall(EPSSolve(eps));

111:   /* show detailed info unless -terse option is given by user */
112:   PetscCall(PetscOptionsHasName(NULL,NULL,"-terse",&terse));
113:   if (terse) PetscCall(EPSErrorView(eps,EPS_ERROR_RELATIVE,NULL));
114:   else {
115:     PetscCall(PetscViewerPushFormat(PETSC_VIEWER_STDOUT_WORLD,PETSC_VIEWER_ASCII_INFO_DETAIL));
116:     PetscCall(EPSConvergedReasonView(eps,PETSC_VIEWER_STDOUT_WORLD));
117:     PetscCall(EPSErrorView(eps,EPS_ERROR_RELATIVE,PETSC_VIEWER_STDOUT_WORLD));
118:     PetscCall(PetscViewerPopFormat(PETSC_VIEWER_STDOUT_WORLD));
119:   }

121:   /* check bi-orthogonality */
122:   PetscCall(PetscOptionsHasName(NULL,NULL,"-checkorthog",&checkorthog));
123:   PetscCall(EPSGetConverged(eps,&nconv));
124:   if (checkorthog && nconv>0) {
125:     PetscCall(MatCreateVecs(H,&t,NULL));
126:     PetscCall(VecDuplicateVecs(t,nconv,&x));
127:     PetscCall(VecDuplicateVecs(t,nconv,&y));
128:     for (i=0;i<nconv;i++) {
129:       PetscCall(EPSGetEigenvector(eps,i,x[i],NULL));
130:       PetscCall(EPSGetLeftEigenvector(eps,i,y[i],NULL));
131:     }
132:     PetscCall(VecCheckOrthogonality(x,nconv,y,nconv,NULL,NULL,&lev));
133:     if (lev<100*PETSC_MACHINE_EPSILON) PetscCall(PetscPrintf(PETSC_COMM_WORLD," Level of bi-orthogonality of eigenvectors < 100*eps\n\n"));
134:     else PetscCall(PetscPrintf(PETSC_COMM_WORLD," Level of bi-orthogonality of eigenvectors: %g\n\n",(double)lev));
135:     PetscCall(VecDestroy(&t));
136:     PetscCall(VecDestroyVecs(nconv,&x));
137:     PetscCall(VecDestroyVecs(nconv,&y));
138:   }

140:   PetscCall(EPSDestroy(&eps));
141:   PetscCall(MatDestroy(&H));
142:   PetscCall(PetscFree(ctx));
143:   PetscCall(SlepcFinalize());
144:   return 0;
145: }

147: /*
148:     Matrix-vector y = R*x.

150:     R = pentadiag{a,b,c,conj(b),conj(a)}
151:  */
152: PetscErrorCode MatMult_R(Mat R,Vec x,Vec y)
153: {
154:   CTX_SHELL         *ctx;
155:   PetscInt          n,i;
156:   const PetscScalar *px;
157:   PetscScalar       *py;

159:   PetscFunctionBeginUser;
160:   PetscCall(MatShellGetContext(R,&ctx));
161:   PetscCall(MatGetSize(R,NULL,&n));
162:   PetscCall(VecGetArrayRead(x,&px));
163:   PetscCall(VecGetArray(y,&py));
164:   for (i=0;i<n;i++) {
165:     py[i] = ctx->c*px[i];
166:     if (i>1) py[i] += ctx->a*px[i-2];
167:     if (i>0) py[i] += ctx->b*px[i-1];
168:     if (i<n-1) py[i] += PetscConj(ctx->b)*px[i+1];
169:     if (i<n-2) py[i] += PetscConj(ctx->a)*px[i+2];
170:   }
171:   PetscCall(VecRestoreArrayRead(x,&px));
172:   PetscCall(VecRestoreArray(y,&py));
173:   PetscFunctionReturn(PETSC_SUCCESS);
174: }

176: /*
177:     Matrix-vector y = R^T*x.

179:     Only needed to compute the residuals.
180:  */
181: PetscErrorCode MatMultTranspose_R(Mat R,Vec x,Vec y)
182: {
183:   Vec w;

185:   PetscFunctionBeginUser;
186:   PetscCall(VecDuplicate(x,&w));
187:   PetscCall(VecCopy(x,w));
188:   PetscCall(VecConjugate(w));
189:   PetscCall(MatMult_R(R,w,y));
190:   PetscCall(VecConjugate(y));
191:   PetscCall(VecDestroy(&w));
192:   PetscFunctionReturn(PETSC_SUCCESS);
193: }

195: /*
196:     Matrix-vector y = C*x.

198:     C = tridiag{b,d,b}
199:  */
200: PetscErrorCode MatMult_C(Mat C,Vec x,Vec y)
201: {
202:   CTX_SHELL         *ctx;
203:   PetscInt          n,i;
204:   const PetscScalar *px;
205:   PetscScalar       *py;

207:   PetscFunctionBeginUser;
208:   PetscCall(MatShellGetContext(C,&ctx));
209:   PetscCall(MatGetSize(C,NULL,&n));
210:   PetscCall(VecGetArrayRead(x,&px));
211:   PetscCall(VecGetArray(y,&py));
212:   for (i=0;i<n;i++) {
213:     py[i] = ctx->d*px[i];
214:     if (i>0) py[i] += ctx->b*px[i-1];
215:     if (i<n-1) py[i] += ctx->b*px[i+1];
216:   }
217:   PetscCall(VecRestoreArrayRead(x,&px));
218:   PetscCall(VecRestoreArray(y,&py));
219:   PetscFunctionReturn(PETSC_SUCCESS);
220: }

222: /*
223:     Matrix-vector y = C^H*x.

225:     Only needed to compute the residuals.
226:  */
227: PetscErrorCode MatMultHermitianTranspose_C(Mat C,Vec x,Vec y)
228: {
229:   Vec w;

231:   PetscFunctionBeginUser;
232:   PetscCall(VecDuplicate(x,&w));
233:   PetscCall(VecCopy(x,w));
234:   PetscCall(VecConjugate(w));
235:   PetscCall(MatMult_C(C,w,y));
236:   PetscCall(VecConjugate(y));
237:   PetscCall(VecDestroy(&w));
238:   PetscFunctionReturn(PETSC_SUCCESS);
239: }

241: /*TEST

243:    testset:
244:       args: -eps_nev 4 -eps_ncv 16 -eps_krylovschur_bse_type {{shao gruning}} -terse -checkorthog
245:       filter: sed -e "s/17496/17495/g" | sed -e "s/32172/32173/g" | sed -e "s/38566/38567/g"
246:       test:
247:          suffix: 1
248:          requires: complex
249:       test:
250:          suffix: 1_real
251:          requires: !complex

253: TEST*/