Actual source code: test38.c
slepc-3.22.2 2024-12-02
1: /*
2: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3: SLEPc - Scalable Library for Eigenvalue Problem Computations
4: Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
6: This file is part of SLEPc.
7: SLEPc is distributed under a 2-clause BSD license (see LICENSE).
8: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9: */
11: static char help[] = "Test EPSLYAPII interface functions.\n\n"
12: "Based on ex2.\n"
13: "The command line options are:\n"
14: " -n <n>, where <n> = number of grid subdivisions in x dimension.\n"
15: " -m <m>, where <m> = number of grid subdivisions in y dimension.\n"
16: " -shift <sigma>, where <sigma> = shift of origin.\n\n";
18: #include <slepceps.h>
20: int main(int argc,char **argv)
21: {
22: Mat A;
23: EPS eps;
24: PetscInt N,n=10,m,Istart,Iend,II,i,j,rkl,rkc;
25: PetscBool flag,terse;
26: PetscReal sigma=8.0;
28: PetscFunctionBeginUser;
29: PetscCall(SlepcInitialize(&argc,&argv,NULL,help));
30: PetscCall(PetscOptionsGetReal(NULL,NULL,"-shift",&sigma,NULL));
31: PetscCall(PetscOptionsGetInt(NULL,NULL,"-n",&n,NULL));
32: PetscCall(PetscOptionsGetInt(NULL,NULL,"-m",&m,&flag));
33: if (!flag) m=n;
34: N = n*m;
35: PetscCall(PetscPrintf(PETSC_COMM_WORLD,"\nShifted 2-D Laplacian Eigenproblem, N=%" PetscInt_FMT " (%" PetscInt_FMT "x%" PetscInt_FMT " grid) sigma=%.1f\n\n",N,n,m,(double)sigma));
37: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
38: Create the 2-D Laplacian
39: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
41: PetscCall(MatCreate(PETSC_COMM_WORLD,&A));
42: PetscCall(MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,N,N));
43: PetscCall(MatSetFromOptions(A));
44: PetscCall(MatGetOwnershipRange(A,&Istart,&Iend));
45: for (II=Istart;II<Iend;II++) {
46: i = II/n; j = II-i*n;
47: if (i>0) PetscCall(MatSetValue(A,II,II-n,-1.0,INSERT_VALUES));
48: if (i<m-1) PetscCall(MatSetValue(A,II,II+n,-1.0,INSERT_VALUES));
49: if (j>0) PetscCall(MatSetValue(A,II,II-1,-1.0,INSERT_VALUES));
50: if (j<n-1) PetscCall(MatSetValue(A,II,II+1,-1.0,INSERT_VALUES));
51: PetscCall(MatSetValue(A,II,II,4.0-sigma,INSERT_VALUES));
52: }
53: PetscCall(MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY));
54: PetscCall(MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY));
56: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
57: Create the eigensolver and set various options
58: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
60: PetscCall(EPSCreate(PETSC_COMM_WORLD,&eps));
61: PetscCall(EPSSetOperators(eps,A,NULL));
62: PetscCall(EPSSetProblemType(eps,EPS_HEP));
63: PetscCall(EPSSetWhichEigenpairs(eps,EPS_LARGEST_REAL));
64: PetscCall(EPSSetType(eps,EPSLYAPII));
65: PetscCall(EPSSetFromOptions(eps));
67: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
68: Solve the problem and display the solution
69: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
71: PetscCall(EPSSolve(eps));
73: /* print solver information */
74: PetscCall(PetscObjectTypeCompare((PetscObject)eps,EPSLYAPII,&flag));
75: if (flag) {
76: PetscCall(EPSLyapIIGetRanks(eps,&rkc,&rkl));
77: PetscCall(PetscPrintf(PETSC_COMM_WORLD," EPSLYAPII ranks: for Lyapunov solver=%" PetscInt_FMT ", after compression=%" PetscInt_FMT "\n\n",rkl,rkc));
78: }
80: PetscCall(PetscOptionsHasName(NULL,NULL,"-terse",&terse));
81: if (terse) PetscCall(EPSErrorView(eps,EPS_ERROR_RELATIVE,NULL));
82: else {
83: PetscCall(PetscViewerPushFormat(PETSC_VIEWER_STDOUT_WORLD,PETSC_VIEWER_ASCII_INFO_DETAIL));
84: PetscCall(EPSConvergedReasonView(eps,PETSC_VIEWER_STDOUT_WORLD));
85: PetscCall(EPSErrorView(eps,EPS_ERROR_RELATIVE,PETSC_VIEWER_STDOUT_WORLD));
86: PetscCall(PetscViewerPopFormat(PETSC_VIEWER_STDOUT_WORLD));
87: }
89: PetscCall(EPSDestroy(&eps));
90: PetscCall(MatDestroy(&A));
91: PetscCall(SlepcFinalize());
92: return 0;
93: }
95: /*TEST
97: test:
98: args: -eps_view -terse
99: filter: grep -v tolerance | sed -e "s/symmetric/hermitian/"
101: TEST*/