Actual source code: test24.c
slepc-3.22.1 2024-10-28
1: /*
2: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3: SLEPc - Scalable Library for Eigenvalue Problem Computations
4: Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
6: This file is part of SLEPc.
7: SLEPc is distributed under a 2-clause BSD license (see LICENSE).
8: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9: */
11: static char help[] = "Eigenproblem for the 1-D Laplacian with constraints. "
12: "Based on ex1.\n"
13: "The command line options are:\n"
14: " -n <n>, where <n> = number of grid subdivisions = matrix dimension.\n\n";
16: #include <slepceps.h>
18: int main(int argc,char **argv)
19: {
20: Mat A;
21: EPS eps;
22: EPSType type;
23: Vec *vi=NULL,*vc=NULL,t;
24: PetscInt n=30,nev=4,i,j,Istart,Iend,nini=0,ncon=0,bs;
25: PetscReal alpha,beta,restart;
26: PetscBool flg,lock;
28: PetscFunctionBeginUser;
29: PetscCall(SlepcInitialize(&argc,&argv,NULL,help));
30: PetscCall(PetscOptionsGetInt(NULL,NULL,"-n",&n,NULL));
31: PetscCall(PetscOptionsGetInt(NULL,NULL,"-nini",&nini,NULL));
32: PetscCall(PetscOptionsGetInt(NULL,NULL,"-ncon",&ncon,NULL));
33: PetscCall(PetscPrintf(PETSC_COMM_WORLD,"\n1-D Laplacian Eigenproblem, n=%" PetscInt_FMT " nini=%" PetscInt_FMT " ncon=%" PetscInt_FMT "\n\n",n,nini,ncon));
35: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
36: Compute the operator matrix that defines the eigensystem, Ax=kx
37: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
39: PetscCall(MatCreate(PETSC_COMM_WORLD,&A));
40: PetscCall(MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,n,n));
41: PetscCall(MatSetFromOptions(A));
43: PetscCall(MatGetOwnershipRange(A,&Istart,&Iend));
44: for (i=Istart;i<Iend;i++) {
45: if (i>0) PetscCall(MatSetValue(A,i,i-1,-1.0,INSERT_VALUES));
46: if (i<n-1) PetscCall(MatSetValue(A,i,i+1,-1.0,INSERT_VALUES));
47: PetscCall(MatSetValue(A,i,i,2.0,INSERT_VALUES));
48: }
49: PetscCall(MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY));
50: PetscCall(MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY));
52: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
53: Create the eigensolver and set various options
54: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
55: PetscCall(EPSCreate(PETSC_COMM_WORLD,&eps));
56: PetscCall(EPSSetOperators(eps,A,NULL));
57: PetscCall(EPSSetProblemType(eps,EPS_HEP));
58: PetscCall(EPSSetType(eps,EPSLOBPCG));
59: PetscCall(EPSSetWhichEigenpairs(eps,EPS_SMALLEST_REAL));
60: PetscCall(EPSSetConvergenceTest(eps,EPS_CONV_ABS));
61: PetscCall(EPSSetDimensions(eps,nev,PETSC_DETERMINE,PETSC_DETERMINE));
62: PetscCall(EPSLOBPCGSetBlockSize(eps,nev));
63: PetscCall(EPSLOBPCGSetRestart(eps,0.7));
64: PetscCall(EPSSetTolerances(eps,1e-8,1200));
65: PetscCall(EPSSetFromOptions(eps));
67: PetscCall(MatCreateVecs(A,&t,NULL));
68: if (nini) {
69: PetscCall(VecDuplicateVecs(t,nini,&vi));
70: for (i=0;i<nini;i++) PetscCall(VecSetRandom(vi[i],NULL));
71: PetscCall(EPSSetInitialSpace(eps,nini,vi));
72: }
73: if (ncon) { /* constraints are exact eigenvectors of lowest eigenvalues */
74: alpha = PETSC_PI/(n+1);
75: beta = PetscSqrtReal(2.0/(n+1));
76: PetscCall(VecDuplicateVecs(t,ncon,&vc));
77: for (i=0;i<ncon;i++) {
78: for (j=0;j<n;j++) PetscCall(VecSetValue(vc[i],j,PetscSinReal(alpha*(j+1)*(i+1))*beta,INSERT_VALUES));
79: PetscCall(VecAssemblyBegin(vc[i]));
80: PetscCall(VecAssemblyEnd(vc[i]));
81: }
82: PetscCall(EPSSetDeflationSpace(eps,ncon,vc));
83: }
85: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
86: Solve the eigensystem
87: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
89: PetscCall(EPSSolve(eps));
90: PetscCall(EPSGetType(eps,&type));
91: PetscCall(PetscPrintf(PETSC_COMM_WORLD," Solution method: %s\n",type));
92: PetscCall(PetscObjectTypeCompare((PetscObject)eps,EPSLOBPCG,&flg));
93: if (flg) {
94: PetscCall(EPSLOBPCGGetLocking(eps,&lock));
95: if (lock) PetscCall(PetscPrintf(PETSC_COMM_WORLD," Using soft locking\n"));
96: PetscCall(EPSLOBPCGGetRestart(eps,&restart));
97: PetscCall(PetscPrintf(PETSC_COMM_WORLD," LOBPCG Restart parameter=%.4g\n",(double)restart));
98: PetscCall(EPSLOBPCGGetBlockSize(eps,&bs));
99: PetscCall(PetscPrintf(PETSC_COMM_WORLD," LOBPCG Block size=%" PetscInt_FMT "\n",bs));
100: }
102: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
103: Display solution and clean up
104: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
106: PetscCall(EPSErrorView(eps,EPS_ERROR_RELATIVE,NULL));
107: PetscCall(EPSDestroy(&eps));
108: PetscCall(MatDestroy(&A));
109: PetscCall(VecDestroyVecs(nini,&vi));
110: PetscCall(VecDestroyVecs(ncon,&vc));
111: PetscCall(VecDestroy(&t));
112: PetscCall(SlepcFinalize());
113: return 0;
114: }
116: /*TEST
118: testset:
119: args: -ncon 2
120: output_file: output/test24_1.out
121: test:
122: suffix: 1
123: requires: !single
124: test:
125: suffix: 1_cuda
126: args: -mat_type aijcusparse
127: requires: cuda !single
128: test:
129: suffix: 1_hip
130: args: -mat_type aijhipsparse
131: requires: hip !single
133: TEST*/