Actual source code: test20.c
slepc-3.22.1 2024-10-28
1: /*
2: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3: SLEPc - Scalable Library for Eigenvalue Problem Computations
4: Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
6: This file is part of SLEPc.
7: SLEPc is distributed under a 2-clause BSD license (see LICENSE).
8: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9: */
11: static char help[] = "Tests multiple calls to EPSSolve changing ncv.\n\n";
13: #include <slepceps.h>
15: int main(int argc,char **argv)
16: {
17: Mat A;
18: EPS eps;
19: PetscReal tol=PetscMax(1000*PETSC_MACHINE_EPSILON,1e-9);
20: PetscInt n=30,i,Istart,Iend,nev,ncv;
22: PetscFunctionBeginUser;
23: PetscCall(SlepcInitialize(&argc,&argv,NULL,help));
24: PetscCall(PetscOptionsGetInt(NULL,NULL,"-n",&n,NULL));
25: PetscCall(PetscPrintf(PETSC_COMM_WORLD,"\n1-D Laplacian Eigenproblem, n=%" PetscInt_FMT "\n\n",n));
27: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
28: Compute the operator matrix that defines the eigensystem, Ax=kx
29: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
31: PetscCall(MatCreate(PETSC_COMM_WORLD,&A));
32: PetscCall(MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,n,n));
33: PetscCall(MatSetFromOptions(A));
34: PetscCall(MatGetOwnershipRange(A,&Istart,&Iend));
35: for (i=Istart;i<Iend;i++) {
36: if (i>0) PetscCall(MatSetValue(A,i,i-1,-1.0,INSERT_VALUES));
37: if (i<n-1) PetscCall(MatSetValue(A,i,i+1,-1.0,INSERT_VALUES));
38: PetscCall(MatSetValue(A,i,i,2.0,INSERT_VALUES));
39: }
40: PetscCall(MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY));
41: PetscCall(MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY));
43: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
44: Create the solver, call EPSSolve() twice
45: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
46: PetscCall(EPSCreate(PETSC_COMM_WORLD,&eps));
47: PetscCall(EPSSetOperators(eps,A,NULL));
48: PetscCall(EPSSetProblemType(eps,EPS_HEP));
49: PetscCall(EPSSetTolerances(eps,tol,PETSC_CURRENT));
50: PetscCall(EPSSetWhichEigenpairs(eps,EPS_SMALLEST_REAL));
51: PetscCall(EPSSetFromOptions(eps));
53: /* First solve */
54: PetscCall(EPSSolve(eps));
55: PetscCall(PetscPrintf(PETSC_COMM_WORLD," - - - First solve, default subspace dimension - - -\n"));
56: PetscCall(EPSErrorView(eps,EPS_ERROR_RELATIVE,NULL));
58: /* Second solve */
59: PetscCall(EPSGetDimensions(eps,&nev,&ncv,NULL));
60: PetscCall(EPSSetDimensions(eps,nev,ncv+2,PETSC_DETERMINE));
61: PetscCall(EPSSolve(eps));
62: PetscCall(PetscPrintf(PETSC_COMM_WORLD," - - - Second solve, subspace of increased size - - -\n"));
63: PetscCall(EPSErrorView(eps,EPS_ERROR_RELATIVE,NULL));
65: PetscCall(EPSDestroy(&eps));
66: PetscCall(MatDestroy(&A));
67: PetscCall(SlepcFinalize());
68: return 0;
69: }
71: /*TEST
73: test:
74: suffix: 1
75: args: -n 18 -eps_type {{krylovschur arnoldi gd jd rqcg lobpcg lapack}} -eps_max_it 1500
76: output_file: output/test20_1.out
78: test:
79: suffix: 1_lanczos
80: args: -n 18 -eps_type lanczos -eps_lanczos_reorthog full -eps_max_it 1500
81: output_file: output/test20_1.out
83: TEST*/