Actual source code: arpack.c
slepc-3.22.2 2024-12-02
1: /*
2: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3: SLEPc - Scalable Library for Eigenvalue Problem Computations
4: Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
6: This file is part of SLEPc.
7: SLEPc is distributed under a 2-clause BSD license (see LICENSE).
8: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9: */
10: /*
11: This file implements a wrapper to the ARPACK package
12: */
14: #include <slepc/private/epsimpl.h>
15: #include "arpack.h"
17: static PetscErrorCode EPSSetUp_ARPACK(EPS eps)
18: {
19: PetscInt ncv;
20: EPS_ARPACK *ar = (EPS_ARPACK*)eps->data;
22: PetscFunctionBegin;
23: EPSCheckDefinite(eps);
24: EPSCheckNotStructured(eps);
25: if (eps->ncv!=PETSC_DETERMINE) {
26: PetscCheck(eps->ncv>=eps->nev+2,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"The value of ncv must be at least nev+2");
27: } else eps->ncv = PetscMin(PetscMax(20,2*eps->nev+1),eps->n); /* set default value of ncv */
28: if (eps->mpd!=PETSC_DETERMINE) PetscCall(PetscInfo(eps,"Warning: parameter mpd ignored\n"));
29: if (eps->max_it==PETSC_DETERMINE) eps->max_it = PetscMax(300,(PetscInt)(2*eps->n/eps->ncv));
30: if (!eps->which) PetscCall(EPSSetWhichEigenpairs_Default(eps));
31: PetscCheck(eps->which!=EPS_ALL,PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"This solver does not support computing all eigenvalues");
32: PetscCheck(eps->which!=EPS_WHICH_USER,PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"This solver does not support user-defined ordering of eigenvalues");
33: EPSCheckUnsupported(eps,EPS_FEATURE_BALANCE | EPS_FEATURE_ARBITRARY | EPS_FEATURE_REGION | EPS_FEATURE_CONVERGENCE | EPS_FEATURE_STOPPING | EPS_FEATURE_TWOSIDED);
34: EPSCheckIgnored(eps,EPS_FEATURE_EXTRACTION);
36: ncv = eps->ncv;
37: #if defined(PETSC_USE_COMPLEX)
38: PetscCall(PetscFree(ar->rwork));
39: PetscCall(PetscMalloc1(ncv,&ar->rwork));
40: ar->lworkl = 3*ncv*ncv+5*ncv;
41: PetscCall(PetscFree(ar->workev));
42: PetscCall(PetscMalloc1(3*ncv,&ar->workev));
43: #else
44: if (eps->ishermitian) {
45: ar->lworkl = ncv*(ncv+8);
46: } else {
47: ar->lworkl = 3*ncv*ncv+6*ncv;
48: PetscCall(PetscFree(ar->workev));
49: PetscCall(PetscMalloc1(3*ncv,&ar->workev));
50: }
51: #endif
52: PetscCall(PetscFree(ar->workl));
53: PetscCall(PetscMalloc1(ar->lworkl,&ar->workl));
54: PetscCall(PetscFree(ar->select));
55: PetscCall(PetscMalloc1(ncv,&ar->select));
56: PetscCall(PetscFree(ar->workd));
57: PetscCall(PetscMalloc1(3*eps->nloc,&ar->workd));
59: PetscCall(EPSAllocateSolution(eps,0));
60: PetscCall(EPS_SetInnerProduct(eps));
61: PetscCall(EPSSetWorkVecs(eps,2));
62: PetscFunctionReturn(PETSC_SUCCESS);
63: }
65: static PetscErrorCode EPSSolve_ARPACK(EPS eps)
66: {
67: EPS_ARPACK *ar = (EPS_ARPACK*)eps->data;
68: char bmat[1],howmny[] = "A";
69: const char *which;
70: PetscInt n,ld,iparam[11],ipntr[14],ido,info,nev,ncv,rvec;
71: #if !defined(PETSC_HAVE_MPIUNI) && !defined(PETSC_HAVE_MSMPI)
72: MPI_Fint fcomm;
73: #endif
74: PetscScalar sigmar,*pV,*resid;
75: Vec x,y,w = eps->work[0];
76: Mat A;
77: PetscBool isSinv,isShift;
78: #if !defined(PETSC_USE_COMPLEX)
79: PetscScalar sigmai = 0.0;
80: #endif
82: PetscFunctionBegin;
83: nev = eps->nev;
84: ncv = eps->ncv;
85: #if !defined(PETSC_HAVE_MPIUNI) && !defined(PETSC_HAVE_MSMPI)
86: fcomm = MPI_Comm_c2f(PetscObjectComm((PetscObject)eps));
87: #endif
88: n = eps->nloc;
89: PetscCall(EPSGetStartVector(eps,0,NULL));
90: PetscCall(BVSetActiveColumns(eps->V,0,0)); /* just for deflation space */
91: PetscCall(BVCopyVec(eps->V,0,eps->work[1]));
92: PetscCall(BVGetLeadingDimension(eps->V,&ld));
93: PetscCall(BVGetArray(eps->V,&pV));
94: PetscCall(VecGetArray(eps->work[1],&resid));
96: ido = 0; /* first call to reverse communication interface */
97: info = 1; /* indicates an initial vector is provided */
98: iparam[0] = 1; /* use exact shifts */
99: iparam[2] = eps->max_it; /* max Arnoldi iterations */
100: iparam[3] = 1; /* blocksize */
101: iparam[4] = 0; /* number of converged Ritz values */
103: /*
104: Computational modes ([]=not supported):
105: symmetric non-symmetric complex
106: 1 1 'I' 1 'I' 1 'I'
107: 2 3 'I' 3 'I' 3 'I'
108: 3 2 'G' 2 'G' 2 'G'
109: 4 3 'G' 3 'G' 3 'G'
110: 5 [ 4 'G' ] [ 3 'G' ]
111: 6 [ 5 'G' ] [ 4 'G' ]
112: */
113: PetscCall(PetscObjectTypeCompare((PetscObject)eps->st,STSINVERT,&isSinv));
114: PetscCall(PetscObjectTypeCompare((PetscObject)eps->st,STSHIFT,&isShift));
115: PetscCall(STGetShift(eps->st,&sigmar));
116: PetscCall(STGetMatrix(eps->st,0,&A));
117: PetscCall(MatCreateVecsEmpty(A,&x,&y));
119: if (isSinv) {
120: /* shift-and-invert mode */
121: iparam[6] = 3;
122: if (eps->ispositive) bmat[0] = 'G';
123: else bmat[0] = 'I';
124: } else if (isShift && eps->ispositive) {
125: /* generalized shift mode with B positive definite */
126: iparam[6] = 2;
127: bmat[0] = 'G';
128: } else {
129: /* regular mode */
130: PetscCheck(!eps->ishermitian || !eps->isgeneralized,PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"Spectral transformation not supported by ARPACK hermitian solver");
131: iparam[6] = 1;
132: bmat[0] = 'I';
133: }
135: #if !defined(PETSC_USE_COMPLEX)
136: if (eps->ishermitian) {
137: switch (eps->which) {
138: case EPS_TARGET_MAGNITUDE:
139: case EPS_LARGEST_MAGNITUDE: which = "LM"; break;
140: case EPS_SMALLEST_MAGNITUDE: which = "SM"; break;
141: case EPS_TARGET_REAL:
142: case EPS_LARGEST_REAL: which = "LA"; break;
143: case EPS_SMALLEST_REAL: which = "SA"; break;
144: default: SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_WRONG,"Wrong value of eps->which");
145: }
146: } else {
147: #endif
148: switch (eps->which) {
149: case EPS_TARGET_MAGNITUDE:
150: case EPS_LARGEST_MAGNITUDE: which = "LM"; break;
151: case EPS_SMALLEST_MAGNITUDE: which = "SM"; break;
152: case EPS_TARGET_REAL:
153: case EPS_LARGEST_REAL: which = "LR"; break;
154: case EPS_SMALLEST_REAL: which = "SR"; break;
155: case EPS_TARGET_IMAGINARY:
156: case EPS_LARGEST_IMAGINARY: which = "LI"; break;
157: case EPS_SMALLEST_IMAGINARY: which = "SI"; break;
158: default: SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_WRONG,"Wrong value of eps->which");
159: }
160: #if !defined(PETSC_USE_COMPLEX)
161: }
162: #endif
164: do {
166: #if !defined(PETSC_USE_COMPLEX)
167: if (eps->ishermitian) {
168: PetscStackCallExternalVoid("ARPACKsaupd",ARPACKsaupd_(&fcomm,&ido,bmat,&n,which,&nev,&eps->tol,resid,&ncv,pV,&ld,iparam,ipntr,ar->workd,ar->workl,&ar->lworkl,&info));
169: } else {
170: PetscStackCallExternalVoid("ARPACKnaupd",ARPACKnaupd_(&fcomm,&ido,bmat,&n,which,&nev,&eps->tol,resid,&ncv,pV,&ld,iparam,ipntr,ar->workd,ar->workl,&ar->lworkl,&info));
171: }
172: #else
173: PetscStackCallExternalVoid("ARPACKnaupd",ARPACKnaupd_(&fcomm,&ido,bmat,&n,which,&nev,&eps->tol,resid,&ncv,pV,&ld,iparam,ipntr,ar->workd,ar->workl,&ar->lworkl,ar->rwork,&info));
174: #endif
176: if (ido == -1 || ido == 1 || ido == 2) {
177: if (ido == 1 && iparam[6] == 3 && bmat[0] == 'G') PetscCall(VecPlaceArray(x,&ar->workd[ipntr[2]-1])); /* special case for shift-and-invert with B semi-positive definite*/
178: else PetscCall(VecPlaceArray(x,&ar->workd[ipntr[0]-1]));
179: PetscCall(VecPlaceArray(y,&ar->workd[ipntr[1]-1]));
181: if (ido == -1) {
182: /* Y = OP * X for the initialization phase to
183: force the starting vector into the range of OP */
184: PetscCall(STApply(eps->st,x,y));
185: } else if (ido == 2) {
186: /* Y = B * X */
187: PetscCall(BVApplyMatrix(eps->V,x,y));
188: } else { /* ido == 1 */
189: if (iparam[6] == 3 && bmat[0] == 'G') {
190: /* Y = OP * X for shift-and-invert with B semi-positive definite */
191: PetscCall(STMatSolve(eps->st,x,y));
192: } else if (iparam[6] == 2) {
193: /* X=A*X Y=B^-1*X for shift with B positive definite */
194: PetscCall(MatMult(A,x,y));
195: if (sigmar != 0.0) {
196: PetscCall(BVApplyMatrix(eps->V,x,w));
197: PetscCall(VecAXPY(y,sigmar,w));
198: }
199: PetscCall(VecCopy(y,x));
200: PetscCall(STMatSolve(eps->st,x,y));
201: } else {
202: /* Y = OP * X */
203: PetscCall(STApply(eps->st,x,y));
204: }
205: PetscCall(BVOrthogonalizeVec(eps->V,y,NULL,NULL,NULL));
206: }
208: PetscCall(VecResetArray(x));
209: PetscCall(VecResetArray(y));
210: } else PetscCheck(ido==99,PetscObjectComm((PetscObject)eps),PETSC_ERR_LIB,"Internal error in ARPACK reverse communication interface (ido=%" PetscInt_FMT ")",ido);
212: } while (ido != 99);
214: eps->nconv = iparam[4];
215: eps->its = iparam[2];
217: PetscCheck(info!=3,PetscObjectComm((PetscObject)eps),PETSC_ERR_LIB,"No shift could be applied in xxAUPD. Try increasing the size of NCV relative to NEV");
218: PetscCheck(info==0 || info==1,PetscObjectComm((PetscObject)eps),PETSC_ERR_LIB,"Error reported by ARPACK subroutine xxAUPD (%" PetscInt_FMT ")",info);
220: rvec = PETSC_TRUE;
222: if (eps->nconv > 0) {
223: #if !defined(PETSC_USE_COMPLEX)
224: if (eps->ishermitian) {
225: PetscStackCallExternalVoid("ARPACKseupd",ARPACKseupd_(&fcomm,&rvec,howmny,ar->select,eps->eigr,pV,&ld,&sigmar,bmat,&n,which,&nev,&eps->tol,resid,&ncv,pV,&ld,iparam,ipntr,ar->workd,ar->workl,&ar->lworkl,&info));
226: } else {
227: PetscStackCallExternalVoid("ARPACKneupd",ARPACKneupd_(&fcomm,&rvec,howmny,ar->select,eps->eigr,eps->eigi,pV,&ld,&sigmar,&sigmai,ar->workev,bmat,&n,which,&nev,&eps->tol,resid,&ncv,pV,&ld,iparam,ipntr,ar->workd,ar->workl,&ar->lworkl,&info));
228: }
229: #else
230: PetscStackCallExternalVoid("ARPACKneupd",ARPACKneupd_(&fcomm,&rvec,howmny,ar->select,eps->eigr,pV,&ld,&sigmar,ar->workev,bmat,&n,which,&nev,&eps->tol,resid,&ncv,pV,&ld,iparam,ipntr,ar->workd,ar->workl,&ar->lworkl,ar->rwork,&info));
231: #endif
232: PetscCheck(info==0,PetscObjectComm((PetscObject)eps),PETSC_ERR_LIB,"Error reported by ARPACK subroutine xxEUPD (%" PetscInt_FMT ")",info);
233: }
235: PetscCall(BVRestoreArray(eps->V,&pV));
236: PetscCall(VecRestoreArray(eps->work[1],&resid));
237: if (eps->nconv >= eps->nev) eps->reason = EPS_CONVERGED_TOL;
238: else eps->reason = EPS_DIVERGED_ITS;
240: PetscCall(VecDestroy(&x));
241: PetscCall(VecDestroy(&y));
242: PetscFunctionReturn(PETSC_SUCCESS);
243: }
245: static PetscErrorCode EPSBackTransform_ARPACK(EPS eps)
246: {
247: PetscBool isSinv;
249: PetscFunctionBegin;
250: PetscCall(PetscObjectTypeCompare((PetscObject)eps->st,STSINVERT,&isSinv));
251: if (!isSinv) PetscCall(EPSBackTransform_Default(eps));
252: PetscFunctionReturn(PETSC_SUCCESS);
253: }
255: static PetscErrorCode EPSReset_ARPACK(EPS eps)
256: {
257: EPS_ARPACK *ar = (EPS_ARPACK*)eps->data;
259: PetscFunctionBegin;
260: PetscCall(PetscFree(ar->workev));
261: PetscCall(PetscFree(ar->workl));
262: PetscCall(PetscFree(ar->select));
263: PetscCall(PetscFree(ar->workd));
264: #if defined(PETSC_USE_COMPLEX)
265: PetscCall(PetscFree(ar->rwork));
266: #endif
267: PetscFunctionReturn(PETSC_SUCCESS);
268: }
270: static PetscErrorCode EPSDestroy_ARPACK(EPS eps)
271: {
272: PetscFunctionBegin;
273: PetscCall(PetscFree(eps->data));
274: PetscFunctionReturn(PETSC_SUCCESS);
275: }
277: SLEPC_EXTERN PetscErrorCode EPSCreate_ARPACK(EPS eps)
278: {
279: EPS_ARPACK *ctx;
281: PetscFunctionBegin;
282: PetscCall(PetscNew(&ctx));
283: eps->data = (void*)ctx;
285: eps->ops->solve = EPSSolve_ARPACK;
286: eps->ops->setup = EPSSetUp_ARPACK;
287: eps->ops->setupsort = EPSSetUpSort_Basic;
288: eps->ops->destroy = EPSDestroy_ARPACK;
289: eps->ops->reset = EPSReset_ARPACK;
290: eps->ops->backtransform = EPSBackTransform_ARPACK;
291: PetscFunctionReturn(PETSC_SUCCESS);
292: }