LCOV - code coverage report
Current view: top level - sys - slepccontour.c (source / functions) Hit Total Coverage
Test: SLEPc Lines: 115 118 97.5 %
Date: 2024-11-23 00:34:26 Functions: 7 7 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       3             :    SLEPc - Scalable Library for Eigenvalue Problem Computations
       4             :    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
       5             : 
       6             :    This file is part of SLEPc.
       7             :    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
       8             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       9             : */
      10             : 
      11             : #include <slepc/private/slepccontour.h>
      12             : #include <slepcblaslapack.h>
      13             : 
      14             : /*
      15             :    SlepcContourDataCreate - Create a contour data structure.
      16             : 
      17             :    Input Parameters:
      18             :    n - the number of integration points
      19             :    npart - number of partitions for the subcommunicator
      20             :    parent - parent object
      21             : */
      22          26 : PetscErrorCode SlepcContourDataCreate(PetscInt n,PetscInt npart,PetscObject parent,SlepcContourData *contour)
      23             : {
      24          26 :   PetscFunctionBegin;
      25          26 :   PetscCall(PetscNew(contour));
      26          26 :   (*contour)->parent = parent;
      27          26 :   PetscCall(PetscSubcommCreate(PetscObjectComm(parent),&(*contour)->subcomm));
      28          26 :   PetscCall(PetscSubcommSetNumber((*contour)->subcomm,npart));
      29          26 :   PetscCall(PetscSubcommSetType((*contour)->subcomm,PETSC_SUBCOMM_INTERLACED));
      30          26 :   (*contour)->npoints = n / npart;
      31          26 :   if (n%npart > (*contour)->subcomm->color) (*contour)->npoints++;
      32          26 :   PetscFunctionReturn(PETSC_SUCCESS);
      33             : }
      34             : 
      35             : /*
      36             :    SlepcContourDataReset - Resets the KSP objects in a contour data structure,
      37             :    and destroys any objects whose size depends on the problem size.
      38             : */
      39          17 : PetscErrorCode SlepcContourDataReset(SlepcContourData contour)
      40             : {
      41          17 :   PetscInt       i;
      42             : 
      43          17 :   PetscFunctionBegin;
      44          17 :   if (contour->ksp) {
      45         389 :     for (i=0;i<contour->npoints;i++) PetscCall(KSPReset(contour->ksp[i]));
      46             :   }
      47          17 :   if (contour->pA) {
      48           8 :     PetscCall(MatDestroyMatrices(contour->nmat,&contour->pA));
      49           8 :     PetscCall(MatDestroyMatrices(contour->nmat,&contour->pP));
      50           8 :     contour->nmat = 0;
      51             :   }
      52          17 :   PetscCall(VecScatterDestroy(&contour->scatterin));
      53          17 :   PetscCall(VecDestroy(&contour->xsub));
      54          17 :   PetscCall(VecDestroy(&contour->xdup));
      55          17 :   PetscFunctionReturn(PETSC_SUCCESS);
      56             : }
      57             : 
      58             : /*
      59             :    SlepcContourDataDestroy - Destroys the contour data structure.
      60             : */
      61          38 : PetscErrorCode SlepcContourDataDestroy(SlepcContourData *contour)
      62             : {
      63          38 :   PetscInt       i;
      64             : 
      65          38 :   PetscFunctionBegin;
      66          38 :   if (!(*contour)) PetscFunctionReturn(PETSC_SUCCESS);
      67          26 :   if ((*contour)->ksp) {
      68         678 :     for (i=0;i<(*contour)->npoints;i++) PetscCall(KSPDestroy(&(*contour)->ksp[i]));
      69          26 :     PetscCall(PetscFree((*contour)->ksp));
      70             :   }
      71          26 :   PetscCall(PetscSubcommDestroy(&(*contour)->subcomm));
      72          26 :   PetscCall(PetscFree((*contour)));
      73          26 :   *contour = NULL;
      74          26 :   PetscFunctionReturn(PETSC_SUCCESS);
      75             : }
      76             : 
      77             : /*
      78             :    SlepcContourRedundantMat - Creates redundant copies of the passed matrices in the subcomm.
      79             : 
      80             :    Input Parameters:
      81             :    nmat - the number of matrices
      82             :    A    - array of matrices
      83             :    P    - array of matrices (preconditioner)
      84             : */
      85          26 : PetscErrorCode SlepcContourRedundantMat(SlepcContourData contour,PetscInt nmat,Mat *A,Mat *P)
      86             : {
      87          26 :   PetscInt       i;
      88          26 :   MPI_Comm       child;
      89             : 
      90          26 :   PetscFunctionBegin;
      91          26 :   if (contour->pA) {
      92           0 :     PetscCall(MatDestroyMatrices(contour->nmat,&contour->pA));
      93           0 :     PetscCall(MatDestroyMatrices(contour->nmat,&contour->pP));
      94           0 :     contour->nmat = 0;
      95             :   }
      96          26 :   if (contour->subcomm && contour->subcomm->n != 1) {
      97           8 :     PetscCall(PetscSubcommGetChild(contour->subcomm,&child));
      98           8 :     PetscCall(PetscCalloc1(nmat,&contour->pA));
      99          20 :     for (i=0;i<nmat;i++) PetscCall(MatCreateRedundantMatrix(A[i],contour->subcomm->n,child,MAT_INITIAL_MATRIX,&contour->pA[i]));
     100           8 :     if (P) {
     101           2 :       PetscCall(PetscCalloc1(nmat,&contour->pP));
     102           6 :       for (i=0;i<nmat;i++) PetscCall(MatCreateRedundantMatrix(P[i],contour->subcomm->n,child,MAT_INITIAL_MATRIX,&contour->pP[i]));
     103             :     }
     104           8 :     contour->nmat = nmat;
     105             :   }
     106          26 :   PetscFunctionReturn(PETSC_SUCCESS);
     107             : }
     108             : 
     109             : /*
     110             :    SlepcContourScatterCreate - Creates a scatter context to communicate between a
     111             :    regular vector and a vector xdup that can hold one duplicate per each subcommunicator
     112             :    on the contiguous parent communicator. Also creates auxiliary vectors xdup and xsub
     113             :    (the latter with the same layout as the redundant matrices in the subcommunicator).
     114             : 
     115             :    Input Parameters:
     116             :    v - the regular vector from which dimensions are taken
     117             : */
     118           8 : PetscErrorCode SlepcContourScatterCreate(SlepcContourData contour,Vec v)
     119             : {
     120           8 :   IS             is1,is2;
     121           8 :   PetscInt       i,j,k,m,mstart,mend,mlocal;
     122           8 :   PetscInt       *idx1,*idx2,mloc_sub;
     123           8 :   MPI_Comm       contpar,parent;
     124             : 
     125           8 :   PetscFunctionBegin;
     126           8 :   PetscCall(VecDestroy(&contour->xsub));
     127           8 :   PetscCall(MatCreateVecsEmpty(contour->pA[0],&contour->xsub,NULL));
     128             : 
     129           8 :   PetscCall(VecDestroy(&contour->xdup));
     130           8 :   PetscCall(MatGetLocalSize(contour->pA[0],&mloc_sub,NULL));
     131           8 :   PetscCall(PetscSubcommGetContiguousParent(contour->subcomm,&contpar));
     132           8 :   PetscCall(VecCreate(contpar,&contour->xdup));
     133           8 :   PetscCall(VecSetSizes(contour->xdup,mloc_sub,PETSC_DECIDE));
     134           8 :   PetscCall(VecSetType(contour->xdup,((PetscObject)v)->type_name));
     135             : 
     136           8 :   PetscCall(VecScatterDestroy(&contour->scatterin));
     137           8 :   PetscCall(VecGetSize(v,&m));
     138           8 :   PetscCall(VecGetOwnershipRange(v,&mstart,&mend));
     139           8 :   mlocal = mend - mstart;
     140           8 :   PetscCall(PetscMalloc2(contour->subcomm->n*mlocal,&idx1,contour->subcomm->n*mlocal,&idx2));
     141             :   j = 0;
     142          24 :   for (k=0;k<contour->subcomm->n;k++) {
     143        4968 :     for (i=mstart;i<mend;i++) {
     144        4952 :       idx1[j]   = i;
     145        4952 :       idx2[j++] = i + m*k;
     146             :     }
     147             :   }
     148           8 :   PetscCall(PetscSubcommGetParent(contour->subcomm,&parent));
     149           8 :   PetscCall(ISCreateGeneral(parent,contour->subcomm->n*mlocal,idx1,PETSC_COPY_VALUES,&is1));
     150           8 :   PetscCall(ISCreateGeneral(parent,contour->subcomm->n*mlocal,idx2,PETSC_COPY_VALUES,&is2));
     151           8 :   PetscCall(VecScatterCreate(v,is1,contour->xdup,is2,&contour->scatterin));
     152           8 :   PetscCall(ISDestroy(&is1));
     153           8 :   PetscCall(ISDestroy(&is2));
     154           8 :   PetscCall(PetscFree2(idx1,idx2));
     155           8 :   PetscFunctionReturn(PETSC_SUCCESS);
     156             : }
     157             : 
     158             : /*
     159             :    SlepcCISS_isGhost - Determine if any of the computed eigenpairs are spurious.
     160             : 
     161             :    Input Parameters:
     162             :    X - the matrix of eigenvectors (MATSEQDENSE)
     163             :    n - the number of columns to consider
     164             :    sigma - the singular values
     165             :    thresh - threshold to decide whether a value is spurious
     166             : 
     167             :    Output Parameter:
     168             :    fl - array of n booleans
     169             : */
     170          26 : PetscErrorCode SlepcCISS_isGhost(Mat X,PetscInt n,PetscReal *sigma,PetscReal thresh,PetscBool *fl)
     171             : {
     172          26 :   const PetscScalar *pX;
     173          26 :   PetscInt          i,j,m,ld;
     174          26 :   PetscReal         *tau,s1,s2,tau_max=0.0;
     175             : 
     176          26 :   PetscFunctionBegin;
     177          26 :   PetscCall(MatGetSize(X,&m,NULL));
     178          26 :   PetscCall(MatDenseGetLDA(X,&ld));
     179          26 :   PetscCall(PetscMalloc1(n,&tau));
     180          26 :   PetscCall(MatDenseGetArrayRead(X,&pX));
     181         549 :   for (j=0;j<n;j++) {
     182             :     s1 = 0.0;
     183             :     s2 = 0.0;
     184       26636 :     for (i=0;i<m;i++) {
     185       26113 :       s1 += PetscAbsScalar(PetscPowScalarInt(pX[i+j*ld],2));
     186       52226 :       s2 += PetscPowRealInt(PetscAbsScalar(pX[i+j*ld]),2)/sigma[i];
     187             :     }
     188         523 :     tau[j] = s1/s2;
     189         637 :     tau_max = PetscMax(tau_max,tau[j]);
     190             :   }
     191          26 :   PetscCall(MatDenseRestoreArrayRead(X,&pX));
     192         549 :   for (j=0;j<n;j++) fl[j] = (tau[j]>=thresh*tau_max)? PETSC_TRUE: PETSC_FALSE;
     193          26 :   PetscCall(PetscFree(tau));
     194          26 :   PetscFunctionReturn(PETSC_SUCCESS);
     195             : }
     196             : 
     197             : /*
     198             :    SlepcCISS_BH_SVD - Compute SVD of block Hankel matrix and its rank.
     199             : 
     200             :    Input Parameters:
     201             :    H  - block Hankel matrix obtained via CISS_BlockHankel()
     202             :    ml - dimension of rows and columns, equal to M*L
     203             :    delta - the tolerance used to determine the rank
     204             : 
     205             :    Output Parameters:
     206             :    sigma - computed singular values
     207             :    rank  - the rank of H
     208             : */
     209           6 : PetscErrorCode SlepcCISS_BH_SVD(PetscScalar *H,PetscInt ml,PetscReal delta,PetscReal *sigma,PetscInt *rank)
     210             : {
     211           6 :   PetscInt       i;
     212           6 :   PetscBLASInt   m,n,lda,ldu,ldvt,lwork,info;
     213           6 :   PetscScalar    *work;
     214             : #if defined(PETSC_USE_COMPLEX)
     215             :   PetscReal      *rwork;
     216             : #endif
     217             : 
     218           6 :   PetscFunctionBegin;
     219           6 :   PetscCall(PetscMalloc1(5*ml,&work));
     220             : #if defined(PETSC_USE_COMPLEX)
     221             :   PetscCall(PetscMalloc1(5*ml,&rwork));
     222             : #endif
     223           6 :   PetscCall(PetscBLASIntCast(ml,&m));
     224           6 :   n = m; lda = m; ldu = m; ldvt = m; lwork = 5*m;
     225           6 :   PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
     226             : #if defined(PETSC_USE_COMPLEX)
     227             :   PetscCallBLAS("LAPACKgesvd",LAPACKgesvd_("N","N",&m,&n,H,&lda,sigma,NULL,&ldu,NULL,&ldvt,work,&lwork,rwork,&info));
     228             : #else
     229           6 :   PetscCallBLAS("LAPACKgesvd",LAPACKgesvd_("N","N",&m,&n,H,&lda,sigma,NULL,&ldu,NULL,&ldvt,work,&lwork,&info));
     230             : #endif
     231           6 :   SlepcCheckLapackInfo("gesvd",info);
     232           6 :   PetscCall(PetscFPTrapPop());
     233           6 :   (*rank) = 0;
     234         466 :   for (i=0;i<ml;i++) {
     235         864 :     if (sigma[i]/PetscMax(sigma[0],1.0)>delta) (*rank)++;
     236             :   }
     237           6 :   PetscCall(PetscFree(work));
     238             : #if defined(PETSC_USE_COMPLEX)
     239             :   PetscCall(PetscFree(rwork));
     240             : #endif
     241           6 :   PetscFunctionReturn(PETSC_SUCCESS);
     242             : }

Generated by: LCOV version 1.14