LCOV - code coverage report
Current view: top level - sys/classes/fn/impls/rational - fnrational.c (source / functions) Hit Total Coverage
Test: SLEPc Lines: 272 272 100.0 %
Date: 2024-11-23 00:34:26 Functions: 18 18 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       3             :    SLEPc - Scalable Library for Eigenvalue Problem Computations
       4             :    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
       5             : 
       6             :    This file is part of SLEPc.
       7             :    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
       8             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       9             : */
      10             : /*
      11             :    Rational function  r(x) = p(x)/q(x), where p(x) and q(x) are polynomials
      12             : */
      13             : 
      14             : #include <slepc/private/fnimpl.h>      /*I "slepcfn.h" I*/
      15             : 
      16             : typedef struct {
      17             :   PetscScalar *pcoeff;    /* numerator coefficients */
      18             :   PetscInt    np;         /* length of array pcoeff, p(x) has degree np-1 */
      19             :   PetscScalar *qcoeff;    /* denominator coefficients */
      20             :   PetscInt    nq;         /* length of array qcoeff, q(x) has degree nq-1 */
      21             : } FN_RATIONAL;
      22             : 
      23        7032 : static PetscErrorCode FNEvaluateFunction_Rational(FN fn,PetscScalar x,PetscScalar *y)
      24             : {
      25        7032 :   FN_RATIONAL *ctx = (FN_RATIONAL*)fn->data;
      26        7032 :   PetscInt    i;
      27        7032 :   PetscScalar p,q;
      28             : 
      29        7032 :   PetscFunctionBegin;
      30        7032 :   if (!ctx->np) p = 1.0;
      31             :   else {
      32        7031 :     p = ctx->pcoeff[0];
      33       11238 :     for (i=1;i<ctx->np;i++)
      34        4207 :       p = ctx->pcoeff[i]+x*p;
      35             :   }
      36        7032 :   if (!ctx->nq) *y = p;
      37             :   else {
      38        1121 :     q = ctx->qcoeff[0];
      39        2330 :     for (i=1;i<ctx->nq;i++)
      40        1209 :       q = ctx->qcoeff[i]+x*q;
      41        1121 :     PetscCheck(q!=0.0,PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Function not defined in the requested value");
      42        1121 :     *y = p/q;
      43             :   }
      44        7032 :   PetscFunctionReturn(PETSC_SUCCESS);
      45             : }
      46             : 
      47             : /*
      48             :    Horner evaluation of P=p(A)
      49             :    d = degree of polynomial;   coeff = coefficients of polynomial;    W = workspace
      50             : */
      51        1504 : static PetscErrorCode EvaluatePoly(Mat A,Mat P,Mat W,PetscInt d,PetscScalar *coeff)
      52             : {
      53        1504 :   PetscInt j;
      54             : 
      55        1504 :   PetscFunctionBegin;
      56        1504 :   PetscCall(MatZeroEntries(P));
      57        1504 :   if (!d) PetscCall(MatShift(P,1.0));
      58             :   else {
      59        1504 :     PetscCall(MatShift(P,coeff[0]));
      60        2541 :     for (j=1;j<d;j++) {
      61        1037 :       PetscCall(MatMatMult(P,A,MAT_REUSE_MATRIX,PETSC_DEFAULT,&W));
      62        1037 :       PetscCall(MatCopy(W,P,SAME_NONZERO_PATTERN));
      63        1037 :       PetscCall(MatShift(P,coeff[j]));
      64             :     }
      65             :   }
      66        1504 :   PetscFunctionReturn(PETSC_SUCCESS);
      67             : }
      68             : 
      69        1219 : static PetscErrorCode FNEvaluateFunctionMat_Rational(FN fn,Mat A,Mat B)
      70             : {
      71        1219 :   FN_RATIONAL *ctx = (FN_RATIONAL*)fn->data;
      72        1219 :   Mat         P,Q,W,F;
      73        1219 :   PetscBool   iscuda;
      74             : 
      75        1219 :   PetscFunctionBegin;
      76        1219 :   if (A==B) PetscCall(MatDuplicate(A,MAT_DO_NOT_COPY_VALUES,&P));
      77        1217 :   else P = B;
      78        1219 :   PetscCall(MatDuplicate(A,MAT_DO_NOT_COPY_VALUES,&W));
      79             : 
      80        1219 :   PetscCall(EvaluatePoly(A,P,W,ctx->np,ctx->pcoeff));
      81        1219 :   if (ctx->nq) {
      82         259 :     PetscCall(MatDuplicate(A,MAT_DO_NOT_COPY_VALUES,&Q));
      83         259 :     PetscCall(EvaluatePoly(A,Q,W,ctx->nq,ctx->qcoeff));
      84         259 :     PetscCall(PetscObjectTypeCompare((PetscObject)A,MATSEQDENSECUDA,&iscuda));
      85         518 :     PetscCall(MatGetFactor(Q,iscuda?MATSOLVERCUDA:MATSOLVERPETSC,MAT_FACTOR_LU,&F));
      86         259 :     PetscCall(MatLUFactorSymbolic(F,Q,NULL,NULL,NULL));
      87         259 :     PetscCall(MatLUFactorNumeric(F,Q,NULL));
      88         259 :     PetscCall(MatMatSolve(F,P,P));
      89         259 :     PetscCall(MatDestroy(&F));
      90         259 :     PetscCall(MatDestroy(&Q));
      91             :   }
      92             : 
      93        1219 :   if (A==B) {
      94           2 :     PetscCall(MatCopy(P,B,SAME_NONZERO_PATTERN));
      95           2 :     PetscCall(MatDestroy(&P));
      96             :   }
      97        1219 :   PetscCall(MatDestroy(&W));
      98        1219 :   PetscFunctionReturn(PETSC_SUCCESS);
      99             : }
     100             : 
     101          24 : static PetscErrorCode FNEvaluateFunctionMatVec_Rational(FN fn,Mat A,Vec v)
     102             : {
     103          24 :   FN_RATIONAL *ctx = (FN_RATIONAL*)fn->data;
     104          24 :   Mat         P,Q,W,F;
     105          24 :   Vec         b;
     106          24 :   PetscBool   iscuda;
     107             : 
     108          24 :   PetscFunctionBegin;
     109          24 :   PetscCall(MatDuplicate(A,MAT_DO_NOT_COPY_VALUES,&P));
     110          24 :   PetscCall(MatDuplicate(A,MAT_DO_NOT_COPY_VALUES,&W));
     111             : 
     112          24 :   PetscCall(EvaluatePoly(A,P,W,ctx->np,ctx->pcoeff));
     113          24 :   if (ctx->nq) {
     114           2 :     PetscCall(MatDuplicate(A,MAT_DO_NOT_COPY_VALUES,&Q));
     115           2 :     PetscCall(EvaluatePoly(A,Q,W,ctx->nq,ctx->qcoeff));
     116           2 :     PetscCall(PetscObjectTypeCompare((PetscObject)A,MATSEQDENSECUDA,&iscuda));
     117           4 :     PetscCall(MatGetFactor(Q,iscuda?MATSOLVERCUDA:MATSOLVERPETSC,MAT_FACTOR_LU,&F));
     118           2 :     PetscCall(MatLUFactorSymbolic(F,Q,NULL,NULL,NULL));
     119           2 :     PetscCall(MatLUFactorNumeric(F,Q,NULL));
     120           2 :     PetscCall(MatCreateVecs(P,&b,NULL));
     121           2 :     PetscCall(MatGetColumnVector(P,b,0));
     122           2 :     PetscCall(MatSolve(F,b,v));
     123           2 :     PetscCall(VecDestroy(&b));
     124           2 :     PetscCall(MatDestroy(&F));
     125           2 :     PetscCall(MatDestroy(&Q));
     126          22 :   } else PetscCall(MatGetColumnVector(P,v,0));
     127             : 
     128          24 :   PetscCall(MatDestroy(&P));
     129          24 :   PetscCall(MatDestroy(&W));
     130          24 :   PetscFunctionReturn(PETSC_SUCCESS);
     131             : }
     132             : 
     133        2708 : static PetscErrorCode FNEvaluateDerivative_Rational(FN fn,PetscScalar x,PetscScalar *yp)
     134             : {
     135        2708 :   FN_RATIONAL *ctx = (FN_RATIONAL*)fn->data;
     136        2708 :   PetscInt    i;
     137        2708 :   PetscScalar p,q,pp,qp;
     138             : 
     139        2708 :   PetscFunctionBegin;
     140        2708 :   if (!ctx->np) {
     141             :     p = 1.0;
     142             :     pp = 0.0;
     143             :   } else {
     144        2707 :     p = ctx->pcoeff[0];
     145        2707 :     pp = 0.0;
     146        4325 :     for (i=1;i<ctx->np;i++) {
     147        1618 :       pp = p+x*pp;
     148        1618 :       p = ctx->pcoeff[i]+x*p;
     149             :     }
     150             :   }
     151        2708 :   if (!ctx->nq) *yp = pp;
     152             :   else {
     153         405 :     q = ctx->qcoeff[0];
     154         405 :     qp = 0.0;
     155         814 :     for (i=1;i<ctx->nq;i++) {
     156         409 :       qp = q+x*qp;
     157         409 :       q = ctx->qcoeff[i]+x*q;
     158             :     }
     159         405 :     PetscCheck(q!=0.0,PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Derivative not defined in the requested value");
     160         405 :     *yp = (pp*q-p*qp)/(q*q);
     161             :   }
     162        2708 :   PetscFunctionReturn(PETSC_SUCCESS);
     163             : }
     164             : 
     165          18 : static PetscErrorCode FNView_Rational(FN fn,PetscViewer viewer)
     166             : {
     167          18 :   FN_RATIONAL    *ctx = (FN_RATIONAL*)fn->data;
     168          18 :   PetscBool      isascii;
     169          18 :   PetscInt       i;
     170          18 :   char           str[50];
     171             : 
     172          18 :   PetscFunctionBegin;
     173          18 :   PetscCall(PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&isascii));
     174          18 :   if (isascii) {
     175          18 :     if (fn->alpha!=(PetscScalar)1.0 || fn->beta!=(PetscScalar)1.0) {
     176           2 :       PetscCall(SlepcSNPrintfScalar(str,sizeof(str),fn->alpha,PETSC_FALSE));
     177           2 :       PetscCall(PetscViewerASCIIPrintf(viewer,"  scale factors: alpha=%s,",str));
     178           2 :       PetscCall(PetscViewerASCIIUseTabs(viewer,PETSC_FALSE));
     179           2 :       PetscCall(SlepcSNPrintfScalar(str,sizeof(str),fn->beta,PETSC_FALSE));
     180           2 :       PetscCall(PetscViewerASCIIPrintf(viewer," beta=%s\n",str));
     181           2 :       PetscCall(PetscViewerASCIIUseTabs(viewer,PETSC_TRUE));
     182             :     }
     183          18 :     if (!ctx->nq) {
     184          11 :       if (!ctx->np) PetscCall(PetscViewerASCIIPrintf(viewer,"  constant: 1.0\n"));
     185          11 :       else if (ctx->np==1) {
     186           4 :         PetscCall(SlepcSNPrintfScalar(str,sizeof(str),ctx->pcoeff[0],PETSC_FALSE));
     187           4 :         PetscCall(PetscViewerASCIIPrintf(viewer,"  constant: %s\n",str));
     188             :       } else {
     189           7 :         PetscCall(PetscViewerASCIIPrintf(viewer,"  polynomial: "));
     190           7 :         PetscCall(PetscViewerASCIIUseTabs(viewer,PETSC_FALSE));
     191          19 :         for (i=0;i<ctx->np-1;i++) {
     192          12 :           PetscCall(SlepcSNPrintfScalar(str,sizeof(str),ctx->pcoeff[i],PETSC_TRUE));
     193          12 :           PetscCall(PetscViewerASCIIPrintf(viewer,"%s*x^%1" PetscInt_FMT,str,ctx->np-i-1));
     194             :         }
     195           7 :         PetscCall(SlepcSNPrintfScalar(str,sizeof(str),ctx->pcoeff[ctx->np-1],PETSC_TRUE));
     196           7 :         PetscCall(PetscViewerASCIIPrintf(viewer,"%s\n",str));
     197           7 :         PetscCall(PetscViewerASCIIUseTabs(viewer,PETSC_TRUE));
     198             :       }
     199           7 :     } else if (!ctx->np) {
     200           1 :       PetscCall(PetscViewerASCIIPrintf(viewer,"  inverse polynomial: 1 / ("));
     201           1 :       PetscCall(PetscViewerASCIIUseTabs(viewer,PETSC_FALSE));
     202           3 :       for (i=0;i<ctx->nq-1;i++) {
     203           2 :         PetscCall(SlepcSNPrintfScalar(str,sizeof(str),ctx->qcoeff[i],PETSC_TRUE));
     204           2 :         PetscCall(PetscViewerASCIIPrintf(viewer,"%s*x^%1" PetscInt_FMT,str,ctx->nq-i-1));
     205             :       }
     206           1 :       PetscCall(SlepcSNPrintfScalar(str,sizeof(str),ctx->qcoeff[ctx->nq-1],PETSC_TRUE));
     207           1 :       PetscCall(PetscViewerASCIIPrintf(viewer,"%s)\n",str));
     208           1 :       PetscCall(PetscViewerASCIIUseTabs(viewer,PETSC_TRUE));
     209             :     } else {
     210           6 :       PetscCall(PetscViewerASCIIPrintf(viewer,"  rational function: ("));
     211           6 :       PetscCall(PetscViewerASCIIUseTabs(viewer,PETSC_FALSE));
     212          12 :       for (i=0;i<ctx->np-1;i++) {
     213           6 :         PetscCall(SlepcSNPrintfScalar(str,sizeof(str),ctx->pcoeff[i],PETSC_TRUE));
     214           6 :         PetscCall(PetscViewerASCIIPrintf(viewer,"%s*x^%1" PetscInt_FMT,str,ctx->np-i-1));
     215             :       }
     216           6 :       PetscCall(SlepcSNPrintfScalar(str,sizeof(str),ctx->pcoeff[ctx->np-1],PETSC_TRUE));
     217           6 :       PetscCall(PetscViewerASCIIPrintf(viewer,"%s) / (",str));
     218          18 :       for (i=0;i<ctx->nq-1;i++) {
     219          12 :         PetscCall(SlepcSNPrintfScalar(str,sizeof(str),ctx->qcoeff[i],PETSC_TRUE));
     220          12 :         PetscCall(PetscViewerASCIIPrintf(viewer,"%s*x^%1" PetscInt_FMT,str,ctx->nq-i-1));
     221             :       }
     222           6 :       PetscCall(SlepcSNPrintfScalar(str,sizeof(str),ctx->qcoeff[ctx->nq-1],PETSC_TRUE));
     223           6 :       PetscCall(PetscViewerASCIIPrintf(viewer,"%s)\n",str));
     224           6 :       PetscCall(PetscViewerASCIIUseTabs(viewer,PETSC_TRUE));
     225             :     }
     226             :   }
     227          18 :   PetscFunctionReturn(PETSC_SUCCESS);
     228             : }
     229             : 
     230         182 : static PetscErrorCode FNRationalSetNumerator_Rational(FN fn,PetscInt np,PetscScalar *pcoeff)
     231             : {
     232         182 :   FN_RATIONAL    *ctx = (FN_RATIONAL*)fn->data;
     233         182 :   PetscInt       i;
     234             : 
     235         182 :   PetscFunctionBegin;
     236         182 :   PetscCheck(np>=0,PetscObjectComm((PetscObject)fn),PETSC_ERR_ARG_OUTOFRANGE,"Argument np cannot be negative");
     237         182 :   ctx->np = np;
     238         182 :   PetscCall(PetscFree(ctx->pcoeff));
     239         182 :   if (np) {
     240         181 :     PetscCall(PetscMalloc1(np,&ctx->pcoeff));
     241         473 :     for (i=0;i<np;i++) ctx->pcoeff[i] = pcoeff[i];
     242             :   }
     243         182 :   PetscFunctionReturn(PETSC_SUCCESS);
     244             : }
     245             : 
     246             : /*@
     247             :    FNRationalSetNumerator - Sets the parameters defining the numerator of the
     248             :    rational function.
     249             : 
     250             :    Logically Collective
     251             : 
     252             :    Input Parameters:
     253             : +  fn     - the math function context
     254             : .  np     - number of coefficients
     255             : -  pcoeff - coefficients (array of scalar values)
     256             : 
     257             :    Notes:
     258             :    Let the rational function r(x) = p(x)/q(x), where p(x) and q(x) are polynomials.
     259             :    This function provides the coefficients of the numerator p(x).
     260             :    Hence, p(x) is of degree np-1.
     261             :    If np is zero, then the numerator is assumed to be p(x)=1.
     262             : 
     263             :    In polynomials, high order coefficients are stored in the first positions
     264             :    of the array, e.g. to represent x^2-3 use {1,0,-3}.
     265             : 
     266             :    Level: intermediate
     267             : 
     268             : .seealso: FNRationalSetDenominator(), FNRationalGetNumerator()
     269             : @*/
     270         182 : PetscErrorCode FNRationalSetNumerator(FN fn,PetscInt np,PetscScalar pcoeff[])
     271             : {
     272         182 :   PetscFunctionBegin;
     273         182 :   PetscValidHeaderSpecific(fn,FN_CLASSID,1);
     274         546 :   PetscValidLogicalCollectiveInt(fn,np,2);
     275         182 :   if (np) PetscAssertPointer(pcoeff,3);
     276         182 :   PetscTryMethod(fn,"FNRationalSetNumerator_C",(FN,PetscInt,PetscScalar*),(fn,np,pcoeff));
     277         182 :   PetscFunctionReturn(PETSC_SUCCESS);
     278             : }
     279             : 
     280           1 : static PetscErrorCode FNRationalGetNumerator_Rational(FN fn,PetscInt *np,PetscScalar *pcoeff[])
     281             : {
     282           1 :   FN_RATIONAL    *ctx = (FN_RATIONAL*)fn->data;
     283           1 :   PetscInt       i;
     284             : 
     285           1 :   PetscFunctionBegin;
     286           1 :   if (np) *np = ctx->np;
     287           1 :   if (pcoeff) {
     288           1 :     if (!ctx->np) *pcoeff = NULL;
     289             :     else {
     290           1 :       PetscCall(PetscMalloc1(ctx->np,pcoeff));
     291           3 :       for (i=0;i<ctx->np;i++) (*pcoeff)[i] = ctx->pcoeff[i];
     292             :     }
     293             :   }
     294           1 :   PetscFunctionReturn(PETSC_SUCCESS);
     295             : }
     296             : 
     297             : /*@C
     298             :    FNRationalGetNumerator - Gets the parameters that define the numerator of the
     299             :    rational function.
     300             : 
     301             :    Not Collective
     302             : 
     303             :    Input Parameter:
     304             : .  fn     - the math function context
     305             : 
     306             :    Output Parameters:
     307             : +  np     - number of coefficients
     308             : -  pcoeff - coefficients (array of scalar values, length nq)
     309             : 
     310             :    Notes:
     311             :    The values passed by user with FNRationalSetNumerator() are returned (or null
     312             :    pointers otherwise).
     313             :    The pcoeff array should be freed by the user when no longer needed.
     314             : 
     315             :    Level: intermediate
     316             : 
     317             : .seealso: FNRationalSetNumerator()
     318             : @*/
     319           1 : PetscErrorCode FNRationalGetNumerator(FN fn,PetscInt *np,PetscScalar *pcoeff[])
     320             : {
     321           1 :   PetscFunctionBegin;
     322           1 :   PetscValidHeaderSpecific(fn,FN_CLASSID,1);
     323           1 :   PetscUseMethod(fn,"FNRationalGetNumerator_C",(FN,PetscInt*,PetscScalar**),(fn,np,pcoeff));
     324           1 :   PetscFunctionReturn(PETSC_SUCCESS);
     325             : }
     326             : 
     327          32 : static PetscErrorCode FNRationalSetDenominator_Rational(FN fn,PetscInt nq,PetscScalar *qcoeff)
     328             : {
     329          32 :   FN_RATIONAL    *ctx = (FN_RATIONAL*)fn->data;
     330          32 :   PetscInt       i;
     331             : 
     332          32 :   PetscFunctionBegin;
     333          32 :   PetscCheck(nq>=0,PetscObjectComm((PetscObject)fn),PETSC_ERR_ARG_OUTOFRANGE,"Argument nq cannot be negative");
     334          32 :   ctx->nq = nq;
     335          32 :   PetscCall(PetscFree(ctx->qcoeff));
     336          32 :   if (nq) {
     337          31 :     PetscCall(PetscMalloc1(nq,&ctx->qcoeff));
     338         100 :     for (i=0;i<nq;i++) ctx->qcoeff[i] = qcoeff[i];
     339             :   }
     340          32 :   PetscFunctionReturn(PETSC_SUCCESS);
     341             : }
     342             : 
     343             : /*@
     344             :    FNRationalSetDenominator - Sets the parameters defining the denominator of the
     345             :    rational function.
     346             : 
     347             :    Logically Collective
     348             : 
     349             :    Input Parameters:
     350             : +  fn     - the math function context
     351             : .  nq     - number of coefficients
     352             : -  qcoeff - coefficients (array of scalar values)
     353             : 
     354             :    Notes:
     355             :    Let the rational function r(x) = p(x)/q(x), where p(x) and q(x) are polynomials.
     356             :    This function provides the coefficients of the denominator q(x).
     357             :    Hence, q(x) is of degree nq-1.
     358             :    If nq is zero, then the function is assumed to be polynomial, r(x) = p(x).
     359             : 
     360             :    In polynomials, high order coefficients are stored in the first positions
     361             :    of the array, e.g. to represent x^2-3 use {1,0,-3}.
     362             : 
     363             :    Level: intermediate
     364             : 
     365             : .seealso: FNRationalSetNumerator(), FNRationalGetDenominator()
     366             : @*/
     367          32 : PetscErrorCode FNRationalSetDenominator(FN fn,PetscInt nq,PetscScalar qcoeff[])
     368             : {
     369          32 :   PetscFunctionBegin;
     370          32 :   PetscValidHeaderSpecific(fn,FN_CLASSID,1);
     371          96 :   PetscValidLogicalCollectiveInt(fn,nq,2);
     372          32 :   if (nq) PetscAssertPointer(qcoeff,3);
     373          32 :   PetscTryMethod(fn,"FNRationalSetDenominator_C",(FN,PetscInt,PetscScalar*),(fn,nq,qcoeff));
     374          32 :   PetscFunctionReturn(PETSC_SUCCESS);
     375             : }
     376             : 
     377          11 : static PetscErrorCode FNRationalGetDenominator_Rational(FN fn,PetscInt *nq,PetscScalar *qcoeff[])
     378             : {
     379          11 :   FN_RATIONAL    *ctx = (FN_RATIONAL*)fn->data;
     380          11 :   PetscInt       i;
     381             : 
     382          11 :   PetscFunctionBegin;
     383          11 :   if (nq) *nq = ctx->nq;
     384          11 :   if (qcoeff) {
     385          11 :     if (!ctx->nq) *qcoeff = NULL;
     386             :     else {
     387           4 :       PetscCall(PetscMalloc1(ctx->nq,qcoeff));
     388          13 :       for (i=0;i<ctx->nq;i++) (*qcoeff)[i] = ctx->qcoeff[i];
     389             :     }
     390             :   }
     391          11 :   PetscFunctionReturn(PETSC_SUCCESS);
     392             : }
     393             : 
     394             : /*@C
     395             :    FNRationalGetDenominator - Gets the parameters that define the denominator of the
     396             :    rational function.
     397             : 
     398             :    Not Collective
     399             : 
     400             :    Input Parameter:
     401             : .  fn     - the math function context
     402             : 
     403             :    Output Parameters:
     404             : +  nq     - number of coefficients
     405             : -  qcoeff - coefficients (array of scalar values, length nq)
     406             : 
     407             :    Notes:
     408             :    The values passed by user with FNRationalSetDenominator() are returned (or a null
     409             :    pointer otherwise).
     410             :    The qcoeff array should be freed by the user when no longer needed.
     411             : 
     412             :    Level: intermediate
     413             : 
     414             : .seealso: FNRationalSetDenominator()
     415             : @*/
     416          11 : PetscErrorCode FNRationalGetDenominator(FN fn,PetscInt *nq,PetscScalar *qcoeff[])
     417             : {
     418          11 :   PetscFunctionBegin;
     419          11 :   PetscValidHeaderSpecific(fn,FN_CLASSID,1);
     420          11 :   PetscUseMethod(fn,"FNRationalGetDenominator_C",(FN,PetscInt*,PetscScalar**),(fn,nq,qcoeff));
     421          11 :   PetscFunctionReturn(PETSC_SUCCESS);
     422             : }
     423             : 
     424         172 : static PetscErrorCode FNSetFromOptions_Rational(FN fn,PetscOptionItems *PetscOptionsObject)
     425             : {
     426             : #define PARMAX 10
     427         172 :   PetscScalar    array[PARMAX];
     428         172 :   PetscInt       i,k;
     429         172 :   PetscBool      flg;
     430             : 
     431         172 :   PetscFunctionBegin;
     432         172 :   PetscOptionsHeadBegin(PetscOptionsObject,"FN Rational Options");
     433             : 
     434         172 :     k = PARMAX;
     435        1892 :     for (i=0;i<k;i++) array[i] = 0;
     436         172 :     PetscCall(PetscOptionsScalarArray("-fn_rational_numerator","Numerator coefficients (one or more scalar values separated with a comma without spaces)","FNRationalSetNumerator",array,&k,&flg));
     437         172 :     if (flg) PetscCall(FNRationalSetNumerator(fn,k,array));
     438             : 
     439         172 :     k = PARMAX;
     440        1892 :     for (i=0;i<k;i++) array[i] = 0;
     441         172 :     PetscCall(PetscOptionsScalarArray("-fn_rational_denominator","Denominator coefficients (one or more scalar values separated with a comma without spaces)","FNRationalSetDenominator",array,&k,&flg));
     442         172 :     if (flg) PetscCall(FNRationalSetDenominator(fn,k,array));
     443             : 
     444         172 :   PetscOptionsHeadEnd();
     445         172 :   PetscFunctionReturn(PETSC_SUCCESS);
     446             : }
     447             : 
     448          28 : static PetscErrorCode FNDuplicate_Rational(FN fn,MPI_Comm comm,FN *newfn)
     449             : {
     450          28 :   FN_RATIONAL    *ctx = (FN_RATIONAL*)fn->data,*ctx2 = (FN_RATIONAL*)(*newfn)->data;
     451          28 :   PetscInt       i;
     452             : 
     453          28 :   PetscFunctionBegin;
     454          28 :   ctx2->np = ctx->np;
     455          28 :   if (ctx->np) {
     456          28 :     PetscCall(PetscMalloc1(ctx->np,&ctx2->pcoeff));
     457          78 :     for (i=0;i<ctx->np;i++) ctx2->pcoeff[i] = ctx->pcoeff[i];
     458             :   }
     459          28 :   ctx2->nq = ctx->nq;
     460          28 :   if (ctx->nq) {
     461          10 :     PetscCall(PetscMalloc1(ctx->nq,&ctx2->qcoeff));
     462          32 :     for (i=0;i<ctx->nq;i++) ctx2->qcoeff[i] = ctx->qcoeff[i];
     463             :   }
     464          28 :   PetscFunctionReturn(PETSC_SUCCESS);
     465             : }
     466             : 
     467         208 : static PetscErrorCode FNDestroy_Rational(FN fn)
     468             : {
     469         208 :   FN_RATIONAL    *ctx = (FN_RATIONAL*)fn->data;
     470             : 
     471         208 :   PetscFunctionBegin;
     472         208 :   PetscCall(PetscFree(ctx->pcoeff));
     473         208 :   PetscCall(PetscFree(ctx->qcoeff));
     474         208 :   PetscCall(PetscFree(fn->data));
     475         208 :   PetscCall(PetscObjectComposeFunction((PetscObject)fn,"FNRationalSetNumerator_C",NULL));
     476         208 :   PetscCall(PetscObjectComposeFunction((PetscObject)fn,"FNRationalGetNumerator_C",NULL));
     477         208 :   PetscCall(PetscObjectComposeFunction((PetscObject)fn,"FNRationalSetDenominator_C",NULL));
     478         208 :   PetscCall(PetscObjectComposeFunction((PetscObject)fn,"FNRationalGetDenominator_C",NULL));
     479         208 :   PetscFunctionReturn(PETSC_SUCCESS);
     480             : }
     481             : 
     482         208 : SLEPC_EXTERN PetscErrorCode FNCreate_Rational(FN fn)
     483             : {
     484         208 :   FN_RATIONAL    *ctx;
     485             : 
     486         208 :   PetscFunctionBegin;
     487         208 :   PetscCall(PetscNew(&ctx));
     488         208 :   fn->data = (void*)ctx;
     489             : 
     490         208 :   fn->ops->evaluatefunction          = FNEvaluateFunction_Rational;
     491         208 :   fn->ops->evaluatederivative        = FNEvaluateDerivative_Rational;
     492         208 :   fn->ops->evaluatefunctionmat[0]    = FNEvaluateFunctionMat_Rational;
     493         208 :   fn->ops->evaluatefunctionmatvec[0] = FNEvaluateFunctionMatVec_Rational;
     494             : #if defined(PETSC_HAVE_CUDA)
     495             :   fn->ops->evaluatefunctionmatcuda[0]    = FNEvaluateFunctionMat_Rational;
     496             :   fn->ops->evaluatefunctionmatveccuda[0] = FNEvaluateFunctionMatVec_Rational;
     497             : #endif
     498         208 :   fn->ops->setfromoptions            = FNSetFromOptions_Rational;
     499         208 :   fn->ops->view                      = FNView_Rational;
     500         208 :   fn->ops->duplicate                 = FNDuplicate_Rational;
     501         208 :   fn->ops->destroy                   = FNDestroy_Rational;
     502         208 :   PetscCall(PetscObjectComposeFunction((PetscObject)fn,"FNRationalSetNumerator_C",FNRationalSetNumerator_Rational));
     503         208 :   PetscCall(PetscObjectComposeFunction((PetscObject)fn,"FNRationalGetNumerator_C",FNRationalGetNumerator_Rational));
     504         208 :   PetscCall(PetscObjectComposeFunction((PetscObject)fn,"FNRationalSetDenominator_C",FNRationalSetDenominator_Rational));
     505         208 :   PetscCall(PetscObjectComposeFunction((PetscObject)fn,"FNRationalGetDenominator_C",FNRationalGetDenominator_Rational));
     506         208 :   PetscFunctionReturn(PETSC_SUCCESS);
     507             : }

Generated by: LCOV version 1.14