LCOV - code coverage report
Current view: top level - sys/classes/ds/tests - test25.c (source / functions) Hit Total Coverage
Test: SLEPc Lines: 144 168 85.7 %
Date: 2024-11-21 00:34:55 Functions: 1 1 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       3             :    SLEPc - Scalable Library for Eigenvalue Problem Computations
       4             :    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
       5             : 
       6             :    This file is part of SLEPc.
       7             :    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
       8             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       9             : */
      10             : 
      11             : static char help[] = "Test for DSPEP and DSNEP.\n\n";
      12             : 
      13             : #include <slepcds.h>
      14             : 
      15             : #define NMAT 5
      16             : 
      17           1 : int main(int argc,char **argv)
      18             : {
      19           1 :   DS             ds;
      20           1 :   FN             f[NMAT],qfun;
      21           1 :   SlepcSC        sc;
      22           1 :   PetscScalar    *A,*wr,*wi,*X,*y,*r,numer[NMAT],alpha;
      23           1 :   PetscReal      c[10] = { 0.6, 1.3, 1.3, 0.1, 0.1, 1.2, 1.0, 1.0, 1.2, 1.0 };
      24           1 :   PetscReal      tol,radius=1.5,re,im,nrm;
      25           1 :   PetscInt       i,j,ii,jj,II,k,m=3,n,ld,nev,nfun,d,*inside;
      26           1 :   PetscViewer    viewer;
      27           1 :   PetscBool      verbose,isnep=PETSC_FALSE;
      28           1 :   RG             rg;
      29           1 :   DSMatType      mat[5]={DS_MAT_E0,DS_MAT_E1,DS_MAT_E2,DS_MAT_E3,DS_MAT_E4};
      30             : #if !defined(PETSC_USE_COMPLEX)
      31           1 :   PetscScalar    *yi,*ri,alphai=0.0,t;
      32             : #endif
      33             : 
      34           1 :   PetscFunctionBeginUser;
      35           1 :   PetscCall(SlepcInitialize(&argc,&argv,NULL,help));
      36           1 :   PetscCall(PetscOptionsGetInt(NULL,NULL,"-m",&m,NULL));
      37           1 :   PetscCall(PetscOptionsGetBool(NULL,NULL,"-isnep",&isnep,NULL));
      38           1 :   n = m*m;
      39           1 :   k = 10;
      40           1 :   PetscCall(PetscPrintf(PETSC_COMM_WORLD,"\nButterfly problem, n=%" PetscInt_FMT " (m=%" PetscInt_FMT ")\n\n",n,m));
      41           1 :   PetscCall(PetscOptionsHasName(NULL,NULL,"-verbose",&verbose));
      42           1 :   PetscCall(PetscOptionsGetReal(NULL,NULL,"-radius",&radius,NULL));
      43             : 
      44             :   /* Create DS object */
      45           1 :   PetscCall(DSCreate(PETSC_COMM_WORLD,&ds));
      46           1 :   tol  = 1000*n*PETSC_MACHINE_EPSILON;
      47           1 :   if (isnep) {
      48           0 :     PetscCall(DSSetType(ds,DSNEP));
      49           0 :     PetscCall(DSSetMethod(ds,1));
      50           0 :     PetscCall(DSNEPSetRefine(ds,tol,PETSC_DECIDE));
      51           1 :   } else PetscCall(DSSetType(ds,DSPEP));
      52           1 :   PetscCall(DSSetFromOptions(ds));
      53             : 
      54             :   /* Set functions (prior to DSAllocate) f_i=x^i */
      55           1 :   if (isnep) {
      56           0 :     numer[0] = 1.0;
      57           0 :     for (j=1;j<NMAT;j++) numer[j] = 0.0;
      58           0 :     for (i=0;i<NMAT;i++) {
      59           0 :       PetscCall(FNCreate(PETSC_COMM_WORLD,&f[i]));
      60           0 :       PetscCall(FNSetType(f[i],FNRATIONAL));
      61           0 :       PetscCall(FNRationalSetNumerator(f[i],i+1,numer));
      62             :     }
      63           0 :     PetscCall(DSNEPSetFN(ds,NMAT,f));
      64           1 :   } else PetscCall(DSPEPSetDegree(ds,NMAT-1));
      65             : 
      66             :   /* Set dimensions */
      67           1 :   ld = n+2;  /* test leading dimension larger than n */
      68           1 :   PetscCall(DSAllocate(ds,ld));
      69           1 :   PetscCall(DSSetDimensions(ds,n,0,0));
      70             : 
      71             :   /* Set region (used only in method=1) */
      72           1 :   PetscCall(RGCreate(PETSC_COMM_WORLD,&rg));
      73           1 :   PetscCall(RGSetType(rg,RGELLIPSE));
      74           1 :   PetscCall(RGEllipseSetParameters(rg,1.5,radius,.5));
      75           1 :   PetscCall(RGSetFromOptions(rg));
      76           1 :   if (isnep) PetscCall(DSNEPSetRG(ds,rg));
      77             : 
      78             :   /* Set up viewer */
      79           1 :   PetscCall(PetscViewerASCIIGetStdout(PETSC_COMM_WORLD,&viewer));
      80           1 :   PetscCall(DSViewFromOptions(ds,NULL,"-ds_view"));
      81           1 :   if (verbose) {
      82           0 :     PetscCall(PetscViewerPushFormat(viewer,PETSC_VIEWER_ASCII_MATLAB));
      83             :     /* Show info about functions */
      84           0 :     if (isnep) {
      85           0 :       PetscCall(DSNEPGetNumFN(ds,&nfun));
      86           0 :       for (i=0;i<nfun;i++) {
      87           0 :         PetscCall(PetscPrintf(PETSC_COMM_WORLD,"Function %" PetscInt_FMT ":\n",i));
      88           0 :         PetscCall(DSNEPGetFN(ds,i,&qfun));
      89           0 :         PetscCall(FNView(qfun,NULL));
      90             :       }
      91             :     }
      92             :   }
      93             : 
      94             :   /* Fill matrices */
      95             :   /* A0 */
      96           1 :   PetscCall(DSGetArray(ds,DS_MAT_E0,&A));
      97          10 :   for (II=0;II<n;II++) {
      98           9 :     i = II/m; j = II-i*m;
      99           9 :     A[II+II*ld] = 4.0*c[0]/6.0+4.0*c[1]/6.0;
     100           9 :     if (j>0) A[II+(II-1)*ld] = c[0]/6.0;
     101           9 :     if (j<m-1) A[II+ld*(II+1)] = c[0]/6.0;
     102           9 :     if (i>0) A[II+ld*(II-m)] = c[1]/6.0;
     103           9 :     if (i<m-1) A[II+ld*(II+m)] = c[1]/6.0;
     104             :   }
     105           1 :   PetscCall(DSRestoreArray(ds,DS_MAT_E0,&A));
     106             : 
     107             :   /* A1 */
     108           1 :   PetscCall(DSGetArray(ds,DS_MAT_E1,&A));
     109          10 :   for (II=0;II<n;II++) {
     110           9 :     i = II/m; j = II-i*m;
     111           9 :     if (j>0) A[II+ld*(II-1)] = c[2];
     112           9 :     if (j<m-1) A[II+ld*(II+1)] = -c[2];
     113           9 :     if (i>0) A[II+ld*(II-m)] = c[3];
     114           9 :     if (i<m-1) A[II+ld*(II+m)] = -c[3];
     115             :   }
     116           1 :   PetscCall(DSRestoreArray(ds,DS_MAT_E1,&A));
     117             : 
     118             :   /* A2 */
     119           1 :   PetscCall(DSGetArray(ds,DS_MAT_E2,&A));
     120          10 :   for (II=0;II<n;II++) {
     121           9 :     i = II/m; j = II-i*m;
     122           9 :     A[II+ld*II] = -2.0*c[4]-2.0*c[5];
     123           9 :     if (j>0) A[II+ld*(II-1)] = c[4];
     124           9 :     if (j<m-1) A[II+ld*(II+1)] = c[4];
     125           9 :     if (i>0) A[II+ld*(II-m)] = c[5];
     126           9 :     if (i<m-1) A[II+ld*(II+m)] = c[5];
     127             :   }
     128           1 :   PetscCall(DSRestoreArray(ds,DS_MAT_E2,&A));
     129             : 
     130             :   /* A3 */
     131           1 :   PetscCall(DSGetArray(ds,DS_MAT_E3,&A));
     132          10 :   for (II=0;II<n;II++) {
     133           9 :     i = II/m; j = II-i*m;
     134           9 :     if (j>0) A[II+ld*(II-1)] = c[6];
     135           9 :     if (j<m-1) A[II+ld*(II+1)] = -c[6];
     136           9 :     if (i>0) A[II+ld*(II-m)] = c[7];
     137           9 :     if (i<m-1) A[II+ld*(II+m)] = -c[7];
     138             :   }
     139           1 :   PetscCall(DSRestoreArray(ds,DS_MAT_E3,&A));
     140             : 
     141             :   /* A4 */
     142           1 :   PetscCall(DSGetArray(ds,DS_MAT_E4,&A));
     143          10 :   for (II=0;II<n;II++) {
     144           9 :     i = II/m; j = II-i*m;
     145           9 :     A[II+ld*II] = 2.0*c[8]+2.0*c[9];
     146           9 :     if (j>0) A[II+ld*(II-1)] = -c[8];
     147           9 :     if (j<m-1) A[II+ld*(II+1)] = -c[8];
     148           9 :     if (i>0) A[II+ld*(II-m)] = -c[9];
     149           9 :     if (i<m-1) A[II+ld*(II+m)] = -c[9];
     150             :   }
     151           1 :   PetscCall(DSRestoreArray(ds,DS_MAT_E4,&A));
     152             : 
     153           1 :   if (verbose) {
     154           0 :     PetscCall(PetscPrintf(PETSC_COMM_WORLD,"Initial - - - - - - - - -\n"));
     155           0 :     PetscCall(DSView(ds,viewer));
     156             :   }
     157             : 
     158             :   /* Solve */
     159           1 :   if (isnep) PetscCall(DSNEPGetMinimality(ds,&d));
     160           1 :   else PetscCall(DSPEPGetDegree(ds,&d));
     161           1 :   PetscCall(PetscCalloc3(n*d,&wr,n*d,&wi,n*d,&inside));
     162           1 :   PetscCall(DSGetSlepcSC(ds,&sc));
     163           1 :   sc->comparison    = SlepcCompareLargestMagnitude;
     164           1 :   sc->comparisonctx = NULL;
     165           1 :   sc->map           = NULL;
     166           1 :   sc->mapobj        = NULL;
     167           1 :   PetscCall(DSSolve(ds,wr,wi));
     168           1 :   PetscCall(DSSort(ds,wr,wi,NULL,NULL,NULL));
     169             : 
     170           1 :   if (verbose) {
     171           0 :     PetscCall(PetscPrintf(PETSC_COMM_WORLD,"After solve - - - - - - - - -\n"));
     172           0 :     PetscCall(DSView(ds,viewer));
     173             :   }
     174           1 :   if (isnep) {
     175           0 :     PetscCall(DSGetDimensions(ds,NULL,NULL,NULL,&nev));
     176           0 :     for (i=0;i<nev;i++) inside[i] = i;
     177             :   } else {
     178           1 :     PetscCall(RGCheckInside(rg,d*n,wr,wi,inside));
     179           1 :     nev = 0;
     180          37 :     for (i=0;i<d*n;i++) if (inside[i]>0) inside[nev++] = i;
     181             :   }
     182             : 
     183             :   /* Print computed eigenvalues */
     184           1 :   PetscCall(PetscMalloc2(ld,&y,ld,&r));
     185             : #if !defined(PETSC_USE_COMPLEX)
     186           1 :   PetscCall(PetscMalloc2(ld,&yi,ld,&ri));
     187             : #endif
     188           1 :   PetscCall(DSVectors(ds,DS_MAT_X,NULL,NULL));
     189           1 :   PetscCall(DSGetArray(ds,DS_MAT_X,&X));
     190           1 :   PetscCall(PetscPrintf(PETSC_COMM_WORLD,"Computed eigenvalues in the region: %" PetscInt_FMT "\n",nev));
     191           9 :   for (i=0;i<nev;i++) {
     192             : #if defined(PETSC_USE_COMPLEX)
     193             :     re = PetscRealPart(wr[inside[i]]);
     194             :     im = PetscImaginaryPart(wr[inside[i]]);
     195             : #else
     196           8 :     re = wr[inside[i]];
     197           8 :     im = wi[inside[i]];
     198             : #endif
     199           8 :     PetscCall(PetscArrayzero(r,n));
     200             : #if !defined(PETSC_USE_COMPLEX)
     201           8 :     PetscCall(PetscArrayzero(ri,n));
     202             : #endif
     203             :     /* Residual */
     204           8 :     alpha = 1.0;
     205          48 :     for (k=0;k<NMAT;k++) {
     206          40 :       PetscCall(DSGetArray(ds,mat[k],&A));
     207         400 :       for (ii=0;ii<n;ii++) {
     208         360 :         y[ii] = 0.0;
     209        3600 :         for (jj=0;jj<n;jj++) y[ii] += A[jj*ld+ii]*X[inside[i]*ld+jj];
     210             :       }
     211             : #if !defined(PETSC_USE_COMPLEX)
     212         400 :       for (ii=0;ii<n;ii++) {
     213         360 :         yi[ii] = 0.0;
     214        3600 :         for (jj=0;jj<n;jj++) yi[ii] += A[jj*ld+ii]*X[inside[i+1]*ld+jj];
     215             :       }
     216             : #endif
     217          40 :       PetscCall(DSRestoreArray(ds,mat[k],&A));
     218          40 :       if (isnep) PetscCall(FNEvaluateFunction(f[k],wr[inside[i]],&alpha));
     219         400 :       for (ii=0;ii<n;ii++) r[ii] += alpha*y[ii];
     220             : #if !defined(PETSC_USE_COMPLEX)
     221         400 :       for (ii=0;ii<n;ii++) r[ii]  -= alphai*yi[ii];
     222         400 :       for (ii=0;ii<n;ii++) ri[ii] += alpha*yi[ii]+alphai*y[ii];
     223             : #endif
     224          40 :       if (!isnep) {
     225             : #if defined(PETSC_USE_COMPLEX)
     226             :         alpha *= wr[inside[i]];
     227             : #else
     228          40 :         t      = alpha;
     229          40 :         alpha  = alpha*re-alphai*im;
     230          40 :         alphai = alphai*re+t*im;
     231             : #endif
     232             :       }
     233             :     }
     234             :     nrm = 0.0;
     235          80 :     for (k=0;k<n;k++) {
     236             : #if !defined(PETSC_USE_COMPLEX)
     237          72 :       nrm += r[k]*r[k]+ri[k]*ri[k];
     238             : #else
     239             :       nrm += PetscRealPart(r[k]*PetscConj(r[k]));
     240             : #endif
     241             :     }
     242           8 :     nrm = PetscSqrtReal(nrm);
     243           8 :     if (nrm/SlepcAbsEigenvalue(wr[inside[i]],wi[inside[i]])>tol) PetscCall(PetscPrintf(PETSC_COMM_WORLD,"Warning: the residual norm of the %" PetscInt_FMT "-th computed eigenpair %g\n",i,(double)nrm));
     244           8 :     if (PetscAbs(im)<1e-10) PetscCall(PetscViewerASCIIPrintf(viewer,"  %.5f\n",(double)re));
     245           8 :     else PetscCall(PetscViewerASCIIPrintf(viewer,"  %.5f%+.5fi\n",(double)re,(double)im));
     246             : #if !defined(PETSC_USE_COMPLEX)
     247           8 :     if (im!=0.0) i++;
     248           8 :     if (PetscAbs(im)<1e-10) PetscCall(PetscViewerASCIIPrintf(viewer,"  %.5f\n",(double)re));
     249           8 :     else PetscCall(PetscViewerASCIIPrintf(viewer,"  %.5f%+.5fi\n",(double)re,(double)-im));
     250             : #endif
     251             :   }
     252           1 :   PetscCall(DSRestoreArray(ds,DS_MAT_X,&X));
     253           1 :   PetscCall(PetscFree3(wr,wi,inside));
     254           1 :   PetscCall(PetscFree2(y,r));
     255             : #if !defined(PETSC_USE_COMPLEX)
     256           1 :   PetscCall(PetscFree2(yi,ri));
     257             : #endif
     258           1 :   if (isnep) {
     259           0 :     for (i=0;i<NMAT;i++) PetscCall(FNDestroy(&f[i]));
     260             :   }
     261           1 :   PetscCall(DSDestroy(&ds));
     262           1 :   PetscCall(RGDestroy(&rg));
     263           1 :   PetscCall(SlepcFinalize());
     264             :   return 0;
     265             : }
     266             : 
     267             : /*TEST
     268             : 
     269             :    testset:
     270             :       filter: sed -e "s/[+-]\([0-9]\.[0-9]*i\)/+-\\1/" | sed -e "s/56808/56807/" | sed -e "s/34719/34720/"
     271             :       output_file: output/test25_1.out
     272             :       test:
     273             :          suffix: 1
     274             :       test:
     275             :          suffix: 2
     276             :          args: -isnep
     277             :          requires: complex !single
     278             : 
     279             : TEST*/

Generated by: LCOV version 1.14