LCOV - code coverage report
Current view: top level - sys/classes/ds/impls/nep - dsnep.c (source / functions) Hit Total Coverage
Test: SLEPc Lines: 426 465 91.6 %
Date: 2024-12-18 00:42:09 Functions: 39 41 95.1 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       3             :    SLEPc - Scalable Library for Eigenvalue Problem Computations
       4             :    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
       5             : 
       6             :    This file is part of SLEPc.
       7             :    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
       8             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       9             : */
      10             : 
      11             : #include <slepc/private/dsimpl.h>       /*I "slepcds.h" I*/
      12             : #include <slepcblaslapack.h>
      13             : 
      14             : typedef struct {
      15             :   PetscInt       nf;                 /* number of functions in f[] */
      16             :   FN             f[DS_NUM_EXTRA];    /* functions defining the nonlinear operator */
      17             :   PetscInt       max_mid;            /* maximum minimality index */
      18             :   PetscInt       nnod;               /* number of nodes for quadrature rules */
      19             :   PetscInt       spls;               /* number of sampling columns for quadrature rules */
      20             :   PetscInt       Nit;                /* number of refinement iterations */
      21             :   PetscReal      rtol;               /* tolerance of Newton refinement */
      22             :   RG             rg;                 /* region for contour integral */
      23             :   PetscLayout    map;                /* used to distribute work among MPI processes */
      24             :   void           *computematrixctx;
      25             :   DSNEPMatrixFunctionFn *computematrix;
      26             : } DS_NEP;
      27             : 
      28             : /*
      29             :    DSNEPComputeMatrix - Build the matrix associated with a nonlinear operator
      30             :    T(lambda) or its derivative T'(lambda), given the parameter lambda, where
      31             :    T(lambda) = sum_i E_i*f_i(lambda). The result is written in mat.
      32             : */
      33         969 : static PetscErrorCode DSNEPComputeMatrix(DS ds,PetscScalar lambda,PetscBool deriv,DSMatType mat)
      34             : {
      35         969 :   DS_NEP            *ctx = (DS_NEP*)ds->data;
      36         969 :   PetscScalar       *T,alpha;
      37         969 :   const PetscScalar *E;
      38         969 :   PetscInt          i,ld,n;
      39         969 :   PetscBLASInt      k,inc=1;
      40             : 
      41         969 :   PetscFunctionBegin;
      42         969 :   PetscCall(PetscLogEventBegin(DS_Other,ds,0,0,0));
      43         969 :   if (ctx->computematrix) PetscCall((*ctx->computematrix)(ds,lambda,deriv,mat,ctx->computematrixctx));
      44             :   else {
      45          10 :     PetscCall(DSGetDimensions(ds,&n,NULL,NULL,NULL));
      46          10 :     PetscCall(DSGetLeadingDimension(ds,&ld));
      47          10 :     PetscCall(PetscBLASIntCast(ld*n,&k));
      48          10 :     PetscCall(MatDenseGetArray(ds->omat[mat],&T));
      49          10 :     PetscCall(PetscArrayzero(T,k));
      50          40 :     for (i=0;i<ctx->nf;i++) {
      51          30 :       if (deriv) PetscCall(FNEvaluateDerivative(ctx->f[i],lambda,&alpha));
      52          18 :       else PetscCall(FNEvaluateFunction(ctx->f[i],lambda,&alpha));
      53          30 :       PetscCall(MatDenseGetArrayRead(ds->omat[DSMatExtra[i]],&E));
      54          30 :       PetscCallBLAS("BLASaxpy",BLASaxpy_(&k,&alpha,E,&inc,T,&inc));
      55          30 :       PetscCall(MatDenseRestoreArrayRead(ds->omat[DSMatExtra[i]],&E));
      56             :     }
      57          10 :     PetscCall(MatDenseRestoreArray(ds->omat[mat],&T));
      58             :   }
      59         969 :   PetscCall(PetscLogEventEnd(DS_Other,ds,0,0,0));
      60         969 :   PetscFunctionReturn(PETSC_SUCCESS);
      61             : }
      62             : 
      63          20 : static PetscErrorCode DSAllocate_NEP(DS ds,PetscInt ld)
      64             : {
      65          20 :   DS_NEP         *ctx = (DS_NEP*)ds->data;
      66          20 :   PetscInt       i;
      67             : 
      68          20 :   PetscFunctionBegin;
      69          20 :   PetscCall(DSAllocateMat_Private(ds,DS_MAT_X));
      70          80 :   for (i=0;i<ctx->nf;i++) PetscCall(DSAllocateMat_Private(ds,DSMatExtra[i]));
      71          20 :   PetscCall(PetscFree(ds->perm));
      72          20 :   PetscCall(PetscMalloc1(ld*ctx->max_mid,&ds->perm));
      73          20 :   PetscFunctionReturn(PETSC_SUCCESS);
      74             : }
      75             : 
      76           1 : static PetscErrorCode DSView_NEP(DS ds,PetscViewer viewer)
      77             : {
      78           1 :   DS_NEP            *ctx = (DS_NEP*)ds->data;
      79           1 :   PetscViewerFormat format;
      80           1 :   PetscInt          i;
      81           1 :   const char        *methodname[] = {
      82             :                      "Successive Linear Problems",
      83             :                      "Contour Integral"
      84             :   };
      85           1 :   const int         nmeth=PETSC_STATIC_ARRAY_LENGTH(methodname);
      86             : 
      87           1 :   PetscFunctionBegin;
      88           1 :   PetscCall(PetscViewerGetFormat(viewer,&format));
      89           1 :   if (format == PETSC_VIEWER_ASCII_INFO || format == PETSC_VIEWER_ASCII_INFO_DETAIL) {
      90           1 :     if (ds->method<nmeth) PetscCall(PetscViewerASCIIPrintf(viewer,"solving the problem with: %s\n",methodname[ds->method]));
      91             : #if defined(PETSC_USE_COMPLEX)
      92             :     if (ds->method==1) {  /* contour integral method */
      93             :       PetscCall(PetscViewerASCIIPrintf(viewer,"number of integration points: %" PetscInt_FMT "\n",ctx->nnod));
      94             :       PetscCall(PetscViewerASCIIPrintf(viewer,"maximum minimality index: %" PetscInt_FMT "\n",ctx->max_mid));
      95             :       if (ctx->spls) PetscCall(PetscViewerASCIIPrintf(viewer,"number of sampling columns for quadrature: %" PetscInt_FMT "\n",ctx->spls));
      96             :       if (ctx->Nit) PetscCall(PetscViewerASCIIPrintf(viewer,"doing iterative refinement (%" PetscInt_FMT " its, tolerance %g)\n",ctx->Nit,(double)ctx->rtol));
      97             :       PetscCall(RGView(ctx->rg,viewer));
      98             :     }
      99             : #endif
     100           1 :     if (format == PETSC_VIEWER_ASCII_INFO_DETAIL) PetscCall(PetscViewerASCIIPrintf(viewer,"number of functions: %" PetscInt_FMT "\n",ctx->nf));
     101           1 :     PetscFunctionReturn(PETSC_SUCCESS);
     102             :   }
     103           0 :   for (i=0;i<ctx->nf;i++) {
     104           0 :     PetscCall(FNView(ctx->f[i],viewer));
     105           0 :     PetscCall(DSViewMat(ds,viewer,DSMatExtra[i]));
     106             :   }
     107           0 :   if (ds->state>DS_STATE_INTERMEDIATE) PetscCall(DSViewMat(ds,viewer,DS_MAT_X));
     108           0 :   PetscFunctionReturn(PETSC_SUCCESS);
     109             : }
     110             : 
     111           2 : static PetscErrorCode DSVectors_NEP(DS ds,DSMatType mat,PetscInt *j,PetscReal *rnorm)
     112             : {
     113           2 :   PetscFunctionBegin;
     114           2 :   PetscCheck(!rnorm,PetscObjectComm((PetscObject)ds),PETSC_ERR_SUP,"Not implemented yet");
     115           2 :   switch (mat) {
     116             :     case DS_MAT_X:
     117           2 :       break;
     118           0 :     case DS_MAT_Y:
     119           0 :       SETERRQ(PetscObjectComm((PetscObject)ds),PETSC_ERR_SUP,"Not implemented yet");
     120           0 :     default:
     121           0 :       SETERRQ(PetscObjectComm((PetscObject)ds),PETSC_ERR_ARG_OUTOFRANGE,"Invalid mat parameter");
     122             :   }
     123           2 :   PetscFunctionReturn(PETSC_SUCCESS);
     124             : }
     125             : 
     126           2 : static PetscErrorCode DSSort_NEP(DS ds,PetscScalar *wr,PetscScalar *wi,PetscScalar *rr,PetscScalar *ri,PetscInt *dummy)
     127             : {
     128           2 :   DS_NEP         *ctx = (DS_NEP*)ds->data;
     129           2 :   PetscInt       n,l,i,*perm,lds;
     130           2 :   PetscScalar    *Q;
     131             : 
     132           2 :   PetscFunctionBegin;
     133           2 :   if (!ds->sc) PetscFunctionReturn(PETSC_SUCCESS);
     134           2 :   if (!ds->method) PetscFunctionReturn(PETSC_SUCCESS);  /* SLP computes just one eigenvalue */
     135           0 :   n = ds->n*ctx->max_mid;
     136           0 :   lds = ds->ld*ctx->max_mid;
     137           0 :   l = ds->l;
     138           0 :   perm = ds->perm;
     139           0 :   for (i=0;i<n;i++) perm[i] = i;
     140           0 :   if (rr) PetscCall(DSSortEigenvalues_Private(ds,rr,ri,perm,PETSC_FALSE));
     141           0 :   else PetscCall(DSSortEigenvalues_Private(ds,wr,NULL,perm,PETSC_FALSE));
     142           0 :   PetscCall(MatDenseGetArray(ds->omat[DS_MAT_Q],&Q));
     143           0 :   for (i=l;i<ds->t;i++) Q[i+i*lds] = wr[perm[i]];
     144           0 :   for (i=l;i<ds->t;i++) wr[i] = Q[i+i*lds];
     145           0 :   PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_Q],&Q));
     146             :   /* n != ds->n */
     147           0 :   PetscCall(DSPermuteColumns_Private(ds,0,ds->t,ds->n,DS_MAT_X,perm));
     148           0 :   PetscFunctionReturn(PETSC_SUCCESS);
     149             : }
     150             : 
     151             : #if defined(SLEPC_MISSING_LAPACK_GGEV3)
     152             : #define LAPGEEV "ggev"
     153             : #else
     154             : #define LAPGEEV "ggev3"
     155             : #endif
     156             : 
     157         185 : static PetscErrorCode DSSolve_NEP_SLP(DS ds,PetscScalar *wr,PetscScalar *wi)
     158             : {
     159         185 :   PetscScalar    *A,*B,*W,*X,*work,*alpha,*beta,a;
     160         185 :   PetscScalar    sigma,lambda,mu,re,re2,sone=1.0,szero=0.0;
     161         185 :   PetscBLASInt   info,n,ld,lwork,one=1,zero=0;
     162         185 :   PetscInt       it,pos,j,maxit=100,result;
     163         185 :   PetscReal      norm,tol,done=1.0;
     164             : #if !defined(PETSC_USE_COMPLEX)
     165         185 :   PetscReal      *alphai,im,im2;
     166             : #endif
     167             : 
     168         185 :   PetscFunctionBegin;
     169         185 :   PetscCall(PetscBLASIntCast(ds->n,&n));
     170         185 :   PetscCall(PetscBLASIntCast(ds->ld,&ld));
     171         185 :   PetscCall(DSAllocateMat_Private(ds,DS_MAT_A));
     172         185 :   PetscCall(DSAllocateMat_Private(ds,DS_MAT_B));
     173         185 :   PetscCall(DSAllocateMat_Private(ds,DS_MAT_W));
     174         185 :   PetscCall(MatDenseGetArray(ds->omat[DS_MAT_A],&A));
     175         185 :   PetscCall(MatDenseGetArray(ds->omat[DS_MAT_B],&B));
     176         185 :   PetscCall(MatDenseGetArray(ds->omat[DS_MAT_W],&W));
     177         185 :   PetscCall(MatDenseGetArray(ds->omat[DS_MAT_X],&X));
     178             : 
     179             :   /* workspace query and memory allocation */
     180         185 :   lwork = -1;
     181             : #if defined(PETSC_USE_COMPLEX)
     182             :   PetscCallBLAS("LAPACK" LAPGEEV,LAPACKggevalt_("N","V",&n,A,&ld,B,&ld,NULL,NULL,NULL,&ld,W,&ld,&a,&lwork,NULL,&info));
     183             :   PetscCall(PetscBLASIntCast((PetscInt)PetscRealPart(a),&lwork));
     184             :   PetscCall(DSAllocateWork_Private(ds,lwork+2*ds->n,8*ds->n,0));
     185             :   alpha = ds->work;
     186             :   beta  = ds->work + ds->n;
     187             :   work  = ds->work + 2*ds->n;
     188             : #else
     189         185 :   PetscCallBLAS("LAPACK" LAPGEEV,LAPACKggevalt_("N","V",&n,A,&ld,B,&ld,NULL,NULL,NULL,NULL,&ld,W,&ld,&a,&lwork,&info));
     190         185 :   PetscCall(PetscBLASIntCast((PetscInt)a,&lwork));
     191         185 :   PetscCall(DSAllocateWork_Private(ds,lwork+3*ds->n,0,0));
     192         185 :   alpha  = ds->work;
     193         185 :   beta   = ds->work + ds->n;
     194         185 :   alphai = ds->work + 2*ds->n;
     195         185 :   work   = ds->work + 3*ds->n;
     196             : #endif
     197             : 
     198         185 :   sigma = 0.0;
     199         185 :   if (ds->sc->comparison==SlepcCompareTargetMagnitude || ds->sc->comparison==SlepcCompareTargetReal) sigma = *(PetscScalar*)ds->sc->comparisonctx;
     200         185 :   lambda = sigma;
     201         185 :   tol = n*PETSC_MACHINE_EPSILON/PetscSqrtReal(PETSC_SQRT_MACHINE_EPSILON);
     202             : 
     203         577 :   for (it=0;it<maxit;it++) {
     204             : 
     205             :     /* evaluate T and T' */
     206         577 :     PetscCall(DSNEPComputeMatrix(ds,lambda,PETSC_FALSE,DS_MAT_A));
     207         577 :     if (it) {
     208         392 :       PetscCallBLAS("BLASgemv",BLASgemv_("N",&n,&n,&sone,A,&ld,X,&one,&szero,X+ld,&one));
     209         392 :       norm = BLASnrm2_(&n,X+ld,&one);
     210         392 :       if (norm/PetscAbsScalar(lambda)<=tol) break;
     211             :     }
     212         392 :     PetscCall(DSNEPComputeMatrix(ds,lambda,PETSC_TRUE,DS_MAT_B));
     213             : 
     214             :     /* compute eigenvalue correction mu and eigenvector u */
     215             : #if defined(PETSC_USE_COMPLEX)
     216             :     PetscCallBLAS("LAPACK" LAPGEEV,LAPACKggevalt_("N","V",&n,A,&ld,B,&ld,alpha,beta,NULL,&ld,W,&ld,work,&lwork,ds->rwork,&info));
     217             : #else
     218         392 :     PetscCallBLAS("LAPACK" LAPGEEV,LAPACKggevalt_("N","V",&n,A,&ld,B,&ld,alpha,alphai,beta,NULL,&ld,W,&ld,work,&lwork,&info));
     219             : #endif
     220         392 :     SlepcCheckLapackInfo(LAPGEEV,info);
     221             : 
     222             :     /* find smallest eigenvalue */
     223         392 :     j = 0;
     224         392 :     if (beta[j]==0.0) re = (PetscRealPart(alpha[j])>0.0)? PETSC_MAX_REAL: PETSC_MIN_REAL;
     225         392 :     else re = alpha[j]/beta[j];
     226             : #if !defined(PETSC_USE_COMPLEX)
     227         392 :     if (beta[j]==0.0) im = (alphai[j]>0.0)? PETSC_MAX_REAL: PETSC_MIN_REAL;
     228         392 :     else im = alphai[j]/beta[j];
     229             : #endif
     230             :     pos = 0;
     231        1861 :     for (j=1;j<n;j++) {
     232        1469 :       if (beta[j]==0.0) re2 = (PetscRealPart(alpha[j])>0.0)? PETSC_MAX_REAL: PETSC_MIN_REAL;
     233        1469 :       else re2 = alpha[j]/beta[j];
     234             : #if !defined(PETSC_USE_COMPLEX)
     235        1469 :       if (beta[j]==0.0) im2 = (alphai[j]>0.0)? PETSC_MAX_REAL: PETSC_MIN_REAL;
     236        1469 :       else im2 = alphai[j]/beta[j];
     237        1469 :       PetscCall(SlepcCompareSmallestMagnitude(re,im,re2,im2,&result,NULL));
     238             : #else
     239             :       PetscCall(SlepcCompareSmallestMagnitude(re,0.0,re2,0.0,&result,NULL));
     240             : #endif
     241        1469 :       if (result > 0) {
     242         938 :         re = re2;
     243             : #if !defined(PETSC_USE_COMPLEX)
     244         938 :         im = im2;
     245             : #endif
     246         938 :         pos = j;
     247             :       }
     248             :     }
     249             : 
     250             : #if !defined(PETSC_USE_COMPLEX)
     251         392 :     PetscCheck(im==0.0,PETSC_COMM_SELF,PETSC_ERR_SUP,"DSNEP found a complex eigenvalue; try rerunning with complex scalars");
     252             : #endif
     253         392 :     mu = alpha[pos]/beta[pos];
     254         392 :     PetscCall(PetscArraycpy(X,W+pos*ld,n));
     255         392 :     norm = BLASnrm2_(&n,X,&one);
     256         392 :     PetscCallBLAS("LAPACKlascl",LAPACKlascl_("G",&zero,&zero,&norm,&done,&n,&one,X,&n,&info));
     257         392 :     SlepcCheckLapackInfo("lascl",info);
     258             : 
     259             :     /* correct eigenvalue approximation */
     260         392 :     lambda = lambda - mu;
     261             :   }
     262         185 :   PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_A],&A));
     263         185 :   PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_B],&B));
     264         185 :   PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_W],&W));
     265         185 :   PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_X],&X));
     266             : 
     267         185 :   PetscCheck(it<maxit,PETSC_COMM_SELF,PETSC_ERR_CONV_FAILED,"DSNEP did not converge");
     268         185 :   ds->t = 1;
     269         185 :   wr[0] = lambda;
     270         185 :   if (wi) wi[0] = 0.0;
     271         185 :   PetscFunctionReturn(PETSC_SUCCESS);
     272             : }
     273             : 
     274             : #if defined(PETSC_USE_COMPLEX)
     275             : /*
     276             :   Newton refinement for eigenpairs computed with contour integral.
     277             :   k  - number of eigenpairs to refine
     278             :   wr - eigenvalues (eigenvectors are stored in DS_MAT_X)
     279             : */
     280             : static PetscErrorCode DSNEPNewtonRefine(DS ds,PetscInt k,PetscScalar *wr)
     281             : {
     282             :   DS_NEP         *ctx = (DS_NEP*)ds->data;
     283             :   PetscScalar    *X,*W,*U,*R,sone=1.0,szero=0.0;
     284             :   PetscReal      norm;
     285             :   PetscInt       i,j,ii,nwu=0,*p,jstart=0,jend=k;
     286             :   const PetscInt *range;
     287             :   PetscBLASInt   n,*perm,info,ld,one=1,n1;
     288             :   PetscMPIInt    len,size,root;
     289             :   PetscLayout    map;
     290             : 
     291             :   PetscFunctionBegin;
     292             :   PetscCall(MatDenseGetArray(ds->omat[DS_MAT_X],&X));
     293             :   PetscCall(PetscBLASIntCast(ds->n,&n));
     294             :   PetscCall(PetscBLASIntCast(ds->ld,&ld));
     295             :   n1 = n+1;
     296             :   p  = ds->perm;
     297             :   PetscCall(PetscArrayzero(p,k));
     298             :   PetscCall(DSAllocateWork_Private(ds,(n+2)*(n+1),0,n+1));
     299             :   U    = ds->work+nwu;    nwu += (n+1)*(n+1);
     300             :   R    = ds->work+nwu;    /*nwu += n+1;*/
     301             :   perm = ds->iwork;
     302             :   if (ds->pmode==DS_PARALLEL_DISTRIBUTED) {
     303             :     PetscCall(PetscLayoutCreateFromSizes(PetscObjectComm((PetscObject)ds),PETSC_DECIDE,k,1,&map));
     304             :     PetscCall(PetscLayoutGetRange(map,&jstart,&jend));
     305             :   }
     306             :   for (ii=0;ii<ctx->Nit;ii++) {
     307             :     for (j=jstart;j<jend;j++) {
     308             :       if (p[j]<2) {
     309             :         PetscCall(DSNEPComputeMatrix(ds,wr[j],PETSC_FALSE,DS_MAT_W));
     310             :         PetscCall(MatDenseGetArray(ds->omat[DS_MAT_W],&W));
     311             :         PetscCallBLAS("BLASgemv",BLASgemv_("N",&n,&n,&sone,W,&ld,X+ld*j,&one,&szero,R,&one));
     312             :         PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_W],&W));
     313             :         norm = BLASnrm2_(&n,R,&one);
     314             :         if (norm/PetscAbsScalar(wr[j]) > ctx->rtol) {
     315             :           PetscCall(PetscInfo(NULL,"Refining eigenpair %" PetscInt_FMT ", residual=%g\n",j,(double)(norm/PetscAbsScalar(wr[j]))));
     316             :           p[j] = 1;
     317             :           R[n] = 0.0;
     318             :           PetscCall(MatDenseGetArray(ds->omat[DS_MAT_W],&W));
     319             :           for (i=0;i<n;i++) {
     320             :             PetscCall(PetscArraycpy(U+i*n1,W+i*ld,n));
     321             :             U[n+i*n1] = PetscConj(X[j*ld+i]);
     322             :           }
     323             :           PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_W],&W));
     324             :           U[n+n*n1] = 0.0;
     325             :           PetscCall(DSNEPComputeMatrix(ds,wr[j],PETSC_TRUE,DS_MAT_W));
     326             :           PetscCall(MatDenseGetArray(ds->omat[DS_MAT_W],&W));
     327             :           PetscCallBLAS("BLASgemv",BLASgemv_("N",&n,&n,&sone,W,&ld,X+ld*j,&one,&szero,U+n*(n+1),&one));
     328             :           PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_W],&W));
     329             :           /* solve system  */
     330             :           PetscCallBLAS("LAPACKgetrf",LAPACKgetrf_(&n1,&n1,U,&n1,perm,&info));
     331             :           SlepcCheckLapackInfo("getrf",info);
     332             :           PetscCallBLAS("LAPACKgetrs",LAPACKgetrs_("N",&n1,&one,U,&n1,perm,R,&n1,&info));
     333             :           SlepcCheckLapackInfo("getrs",info);
     334             :           wr[j] -= R[n];
     335             :           for (i=0;i<n;i++) X[j*ld+i] -= R[i];
     336             :           /* normalization */
     337             :           norm = BLASnrm2_(&n,X+ld*j,&one);
     338             :           for (i=0;i<n;i++) X[ld*j+i] /= norm;
     339             :         } else p[j] = 2;
     340             :       }
     341             :     }
     342             :   }
     343             :   if (ds->pmode==DS_PARALLEL_DISTRIBUTED) {  /* communicate results */
     344             :     PetscCall(PetscMPIIntCast(k,&len));
     345             :     PetscCallMPI(MPIU_Allreduce(MPI_IN_PLACE,p,len,MPIU_INT,MPI_SUM,PetscObjectComm((PetscObject)ds)));
     346             :     PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)ds),&size));
     347             :     PetscCall(PetscLayoutGetRanges(map,&range));
     348             :     for (j=0;j<k;j++) {
     349             :       if (p[j]) {  /* j-th eigenpair has been refined */
     350             :         for (root=0;root<size;root++) if (range[root+1]>j) break;
     351             :         PetscCall(PetscMPIIntCast(1,&len));
     352             :         PetscCallMPI(MPI_Bcast(wr+j,len,MPIU_SCALAR,root,PetscObjectComm((PetscObject)ds)));
     353             :         PetscCall(PetscMPIIntCast(n,&len));
     354             :         PetscCallMPI(MPI_Bcast(X+ld*j,len,MPIU_SCALAR,root,PetscObjectComm((PetscObject)ds)));
     355             :       }
     356             :     }
     357             :     PetscCall(PetscLayoutDestroy(&map));
     358             :   }
     359             :   PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_X],&X));
     360             :   PetscFunctionReturn(PETSC_SUCCESS);
     361             : }
     362             : 
     363             : PetscErrorCode DSSolve_NEP_Contour(DS ds,PetscScalar *wr,PetscScalar *wi)
     364             : {
     365             :   DS_NEP         *ctx = (DS_NEP*)ds->data;
     366             :   PetscScalar    *alpha,*beta,*Q,*Z,*X,*U,*V,*W,*work,*Rc,*R,*w,*z,*zn,*S;
     367             :   PetscScalar    sone=1.0,szero=0.0,center,a;
     368             :   PetscReal      *rwork,norm,radius,vscale,rgscale,*sigma;
     369             :   PetscBLASInt   info,n,*perm,p,pp,ld,lwork,k_,rk_,colA,rowA,one=1;
     370             :   PetscInt       mid,lds,nnod=ctx->nnod,k,i,ii,jj,j,s,off,rk,nwu=0,nw,lrwork,*inside,kstart=0,kend=nnod;
     371             :   PetscMPIInt    len;
     372             :   PetscBool      isellipse;
     373             :   PetscRandom    rand;
     374             : 
     375             :   PetscFunctionBegin;
     376             :   PetscCheck(ctx->rg,PetscObjectComm((PetscObject)ds),PETSC_ERR_ORDER,"The contour solver requires a region passed with DSNEPSetRG()");
     377             :   /* Contour parameters */
     378             :   PetscCall(PetscObjectTypeCompare((PetscObject)ctx->rg,RGELLIPSE,&isellipse));
     379             :   PetscCheck(isellipse,PetscObjectComm((PetscObject)ds),PETSC_ERR_SUP,"Region must be Ellipse");
     380             :   PetscCall(RGEllipseGetParameters(ctx->rg,&center,&radius,&vscale));
     381             :   PetscCall(RGGetScale(ctx->rg,&rgscale));
     382             :   if (ds->pmode==DS_PARALLEL_DISTRIBUTED) {
     383             :     if (!ctx->map) PetscCall(PetscLayoutCreateFromSizes(PetscObjectComm((PetscObject)ds),PETSC_DECIDE,ctx->nnod,1,&ctx->map));
     384             :     PetscCall(PetscLayoutGetRange(ctx->map,&kstart,&kend));
     385             :   }
     386             : 
     387             :   PetscCall(DSAllocateMat_Private(ds,DS_MAT_W)); /* size n */
     388             :   PetscCall(DSAllocateMat_Private(ds,DS_MAT_Q)); /* size mid*n */
     389             :   PetscCall(DSAllocateMat_Private(ds,DS_MAT_Z)); /* size mid*n */
     390             :   PetscCall(DSAllocateMat_Private(ds,DS_MAT_U)); /* size mid*n */
     391             :   PetscCall(DSAllocateMat_Private(ds,DS_MAT_V)); /* size mid*n */
     392             :   PetscCall(MatDenseGetArray(ds->omat[DS_MAT_Q],&Q));
     393             :   PetscCall(MatDenseGetArray(ds->omat[DS_MAT_Z],&Z));
     394             :   PetscCall(MatDenseGetArray(ds->omat[DS_MAT_U],&U));
     395             :   PetscCall(MatDenseGetArray(ds->omat[DS_MAT_V],&V));
     396             :   mid  = ctx->max_mid;
     397             :   PetscCall(PetscBLASIntCast(ds->n,&n));
     398             :   p    = n;   /* maximum number of columns for the probing matrix */
     399             :   PetscCall(PetscBLASIntCast(ds->ld,&ld));
     400             :   PetscCall(PetscBLASIntCast(mid*n,&rowA));
     401             :   nw     = 2*n*(p+mid)+3*nnod+2*mid*n*p;
     402             :   lrwork = 9*mid*n;
     403             : 
     404             :   /* workspace query and memory allocation */
     405             :   lwork = -1;
     406             :   PetscCallBLAS("LAPACK" LAPGEEV,LAPACKggevalt_("N","V",&rowA,Q,&rowA,Z,&rowA,NULL,NULL,NULL,&ld,V,&rowA,&a,&lwork,NULL,&info));
     407             :   PetscCall(PetscBLASIntCast((PetscInt)PetscRealPart(a),&lwork));
     408             :   PetscCall(DSAllocateWork_Private(ds,lwork+nw,lrwork,n+1));
     409             : 
     410             :   sigma = ds->rwork;
     411             :   rwork = ds->rwork+mid*n;
     412             :   perm  = ds->iwork;
     413             :   z     = ds->work+nwu;    nwu += nnod;         /* quadrature points */
     414             :   zn    = ds->work+nwu;    nwu += nnod;         /* normalized quadrature points */
     415             :   w     = ds->work+nwu;    nwu += nnod;         /* quadrature weights */
     416             :   Rc    = ds->work+nwu;    nwu += n*p;
     417             :   R     = ds->work+nwu;    nwu += n*p;
     418             :   alpha = ds->work+nwu;    nwu += mid*n;
     419             :   beta  = ds->work+nwu;    nwu += mid*n;
     420             :   S     = ds->work+nwu;    nwu += 2*mid*n*p;
     421             :   work  = ds->work+nwu;
     422             : 
     423             :   /* Compute quadrature parameters */
     424             :   PetscCall(RGComputeQuadrature(ctx->rg,RG_QUADRULE_TRAPEZOIDAL,nnod,z,zn,w));
     425             : 
     426             :   /* Set random matrix */
     427             :   PetscCall(PetscRandomCreate(PetscObjectComm((PetscObject)ds),&rand));
     428             :   PetscCall(PetscRandomSetSeed(rand,0x12345678));
     429             :   PetscCall(PetscRandomSeed(rand));
     430             :   for (j=0;j<p;j++)
     431             :     for (i=0;i<n;i++) PetscCall(PetscRandomGetValue(rand,Rc+i+j*n));
     432             :   PetscCall(PetscArrayzero(S,2*mid*n*p));
     433             :   /* Loop of integration points */
     434             :   for (k=kstart;k<kend;k++) {
     435             :     PetscCall(PetscInfo(NULL,"Solving integration point %" PetscInt_FMT "\n",k));
     436             :     PetscCall(PetscArraycpy(R,Rc,p*n));
     437             :     PetscCall(DSNEPComputeMatrix(ds,z[k],PETSC_FALSE,DS_MAT_W));
     438             : 
     439             :     /* LU factorization */
     440             :     PetscCall(MatDenseGetArray(ds->omat[DS_MAT_W],&W));
     441             :     PetscCallBLAS("LAPACKgetrf",LAPACKgetrf_(&n,&n,W,&ld,perm,&info));
     442             :     SlepcCheckLapackInfo("getrf",info);
     443             :     PetscCallBLAS("LAPACKgetrs",LAPACKgetrs_("N",&n,&p,W,&ld,perm,R,&n,&info));
     444             :     SlepcCheckLapackInfo("getrs",info);
     445             :     PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_W],&W));
     446             : 
     447             :     /* Moments computation */
     448             :     for (s=0;s<2*ctx->max_mid;s++) {
     449             :       off = s*n*p;
     450             :       for (j=0;j<p;j++)
     451             :         for (i=0;i<n;i++) S[off+i+j*n] += w[k]*R[j*n+i];
     452             :       w[k] *= zn[k];
     453             :     }
     454             :   }
     455             : 
     456             :   if (ds->pmode==DS_PARALLEL_DISTRIBUTED) {  /* compute final S via reduction */
     457             :     PetscCall(PetscMPIIntCast(2*mid*n*p,&len));
     458             :     PetscCallMPI(MPIU_Allreduce(MPI_IN_PLACE,S,len,MPIU_SCALAR,MPIU_SUM,PetscObjectComm((PetscObject)ds)));
     459             :   }
     460             :   PetscCall(PetscBLASIntCast(ctx->spls?PetscMin(ctx->spls,n):n,&p));
     461             :   pp = p;
     462             :   do {
     463             :     p = pp;
     464             :     PetscCall(PetscBLASIntCast(mid*p,&colA));
     465             : 
     466             :     PetscCall(PetscInfo(ds,"Computing SVD of size %" PetscBLASInt_FMT "x%" PetscBLASInt_FMT "\n",rowA,colA));
     467             :     for (jj=0;jj<mid;jj++) {
     468             :       for (ii=0;ii<mid;ii++) {
     469             :         off = jj*p*rowA+ii*n;
     470             :         for (j=0;j<p;j++)
     471             :           for (i=0;i<n;i++) Q[off+j*rowA+i] = S[((jj+ii)*n+j)*n+i];
     472             :       }
     473             :     }
     474             :     PetscCallBLAS("LAPACKgesvd",LAPACKgesvd_("S","S",&rowA,&colA,Q,&rowA,sigma,U,&rowA,V,&colA,work,&lwork,rwork,&info));
     475             :     SlepcCheckLapackInfo("gesvd",info);
     476             : 
     477             :     rk = colA;
     478             :     for (i=1;i<colA;i++) if (sigma[i]/sigma[0]<PETSC_MACHINE_EPSILON*1e4) {rk = i; break;}
     479             :     if (rk<colA || p==n) break;
     480             :     pp *= 2;
     481             :   } while (pp<=n);
     482             :   PetscCall(PetscInfo(ds,"Solving generalized eigenproblem of size %" PetscInt_FMT "\n",rk));
     483             :   for (jj=0;jj<mid;jj++) {
     484             :     for (ii=0;ii<mid;ii++) {
     485             :       off = jj*p*rowA+ii*n;
     486             :       for (j=0;j<p;j++)
     487             :         for (i=0;i<n;i++) Q[off+j*rowA+i] = S[((jj+ii+1)*n+j)*n+i];
     488             :     }
     489             :   }
     490             :   PetscCall(PetscBLASIntCast(rk,&rk_));
     491             :   PetscCallBLAS("BLASgemm",BLASgemm_("N","C",&rowA,&rk_,&colA,&sone,Q,&rowA,V,&colA,&szero,Z,&rowA));
     492             :   PetscCallBLAS("BLASgemm",BLASgemm_("C","N",&rk_,&rk_,&rowA,&sone,U,&rowA,Z,&rowA,&szero,Q,&rk_));
     493             :   PetscCall(PetscArrayzero(Z,n*mid*n*mid));
     494             :   for (j=0;j<rk;j++) Z[j+j*rk_] = sigma[j];
     495             :   PetscCallBLAS("LAPACK" LAPGEEV,LAPACKggevalt_("N","V",&rk_,Q,&rk_,Z,&rk_,alpha,beta,NULL,&ld,V,&rk_,work,&lwork,rwork,&info));
     496             :   SlepcCheckLapackInfo(LAPGEEV,info);
     497             :   for (i=0;i<rk;i++) wr[i] = (center+radius*alpha[i]/beta[i])*rgscale;
     498             :   PetscCall(PetscMalloc1(rk,&inside));
     499             :   PetscCall(RGCheckInside(ctx->rg,rk,wr,wi,inside));
     500             :   k=0;
     501             :   for (i=0;i<rk;i++)
     502             :     if (inside[i]==1) inside[k++] = i;
     503             :   /* Discard values outside region */
     504             :   lds = ld*mid;
     505             :   PetscCall(PetscArrayzero(Q,lds*lds));
     506             :   PetscCall(PetscArrayzero(Z,lds*lds));
     507             :   for (i=0;i<k;i++) Q[i+i*lds] = (center*beta[inside[i]]+radius*alpha[inside[i]])*rgscale;
     508             :   for (i=0;i<k;i++) Z[i+i*lds] = beta[inside[i]];
     509             :   for (i=0;i<k;i++) wr[i] = Q[i+i*lds]/Z[i+i*lds];
     510             :   for (j=0;j<k;j++) for (i=0;i<rk;i++) V[j*rk+i] = sigma[i]*V[inside[j]*rk+i];
     511             :   PetscCall(PetscBLASIntCast(k,&k_));
     512             :   PetscCall(MatDenseGetArray(ds->omat[DS_MAT_X],&X));
     513             :   PetscCallBLAS("BLASgemm",BLASgemm_("N","N",&n,&k_,&rk_,&sone,U,&rowA,V,&rk_,&szero,X,&ld));
     514             :   /* Normalize */
     515             :   for (j=0;j<k;j++) {
     516             :     norm = BLASnrm2_(&n,X+ld*j,&one);
     517             :     for (i=0;i<n;i++) X[ld*j+i] /= norm;
     518             :   }
     519             :   PetscCall(PetscFree(inside));
     520             :   PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_X],&X));
     521             :   PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_Q],&Q));
     522             :   PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_Z],&Z));
     523             :   PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_U],&U));
     524             :   PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_V],&V));
     525             : 
     526             :   /* Newton refinement */
     527             :   if (ctx->Nit) PetscCall(DSNEPNewtonRefine(ds,k,wr));
     528             :   ds->t = k;
     529             :   PetscCall(PetscRandomDestroy(&rand));
     530             :   PetscFunctionReturn(PETSC_SUCCESS);
     531             : }
     532             : #endif
     533             : 
     534             : #if !defined(PETSC_HAVE_MPIUNI)
     535          44 : static PetscErrorCode DSSynchronize_NEP(DS ds,PetscScalar eigr[],PetscScalar eigi[])
     536             : {
     537          44 :   DS_NEP         *ctx = (DS_NEP*)ds->data;
     538          44 :   PetscInt       ld=ds->ld,k=0;
     539          44 :   PetscMPIInt    n,n2,rank,size,off=0;
     540          44 :   PetscScalar    *X;
     541             : 
     542          44 :   PetscFunctionBegin;
     543          44 :   if (!ds->method) { /* SLP */
     544          44 :     if (ds->state>=DS_STATE_CONDENSED) k += ds->n;
     545          44 :     if (eigr) k += 1;
     546          44 :     if (eigi) k += 1;
     547          44 :     PetscCall(PetscMPIIntCast(1,&n));
     548          44 :     PetscCall(PetscMPIIntCast(ds->n,&n2));
     549             :   } else { /* Contour */
     550           0 :     if (ds->state>=DS_STATE_CONDENSED) k += ctx->max_mid*ds->n*ld;
     551           0 :     if (eigr) k += ctx->max_mid*ds->n;
     552           0 :     if (eigi) k += ctx->max_mid*ds->n;
     553           0 :     PetscCall(PetscMPIIntCast(ctx->max_mid*ds->n,&n));
     554           0 :     PetscCall(PetscMPIIntCast(ctx->max_mid*ds->n*ld,&n2));
     555             :   }
     556          44 :   PetscCall(DSAllocateWork_Private(ds,k,0,0));
     557          44 :   PetscCall(PetscMPIIntCast(k*sizeof(PetscScalar),&size));
     558          44 :   if (ds->state>=DS_STATE_CONDENSED) PetscCall(MatDenseGetArray(ds->omat[DS_MAT_X],&X));
     559          44 :   PetscCallMPI(MPI_Comm_rank(PetscObjectComm((PetscObject)ds),&rank));
     560          44 :   if (!rank) {
     561          22 :     if (ds->state>=DS_STATE_CONDENSED) PetscCallMPI(MPI_Pack(X,n2,MPIU_SCALAR,ds->work,size,&off,PetscObjectComm((PetscObject)ds)));
     562          22 :     if (eigr) PetscCallMPI(MPI_Pack(eigr,n,MPIU_SCALAR,ds->work,size,&off,PetscObjectComm((PetscObject)ds)));
     563             : #if !defined(PETSC_USE_COMPLEX)
     564          22 :     if (eigi) PetscCallMPI(MPI_Pack(eigi,n,MPIU_SCALAR,ds->work,size,&off,PetscObjectComm((PetscObject)ds)));
     565             : #endif
     566             :   }
     567          88 :   PetscCallMPI(MPI_Bcast(ds->work,size,MPI_BYTE,0,PetscObjectComm((PetscObject)ds)));
     568          44 :   if (rank) {
     569          22 :     if (ds->state>=DS_STATE_CONDENSED) PetscCallMPI(MPI_Unpack(ds->work,size,&off,X,n2,MPIU_SCALAR,PetscObjectComm((PetscObject)ds)));
     570          22 :     if (eigr) PetscCallMPI(MPI_Unpack(ds->work,size,&off,eigr,n,MPIU_SCALAR,PetscObjectComm((PetscObject)ds)));
     571             : #if !defined(PETSC_USE_COMPLEX)
     572          22 :     if (eigi) PetscCallMPI(MPI_Unpack(ds->work,size,&off,eigi,n,MPIU_SCALAR,PetscObjectComm((PetscObject)ds)));
     573             : #endif
     574             :   }
     575          44 :   if (ds->state>=DS_STATE_CONDENSED) PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_X],&X));
     576          44 :   PetscFunctionReturn(PETSC_SUCCESS);
     577             : }
     578             : #endif
     579             : 
     580          20 : static PetscErrorCode DSNEPSetFN_NEP(DS ds,PetscInt n,FN fn[])
     581             : {
     582          20 :   DS_NEP         *ctx = (DS_NEP*)ds->data;
     583          20 :   PetscInt       i;
     584             : 
     585          20 :   PetscFunctionBegin;
     586          20 :   PetscCheck(n>0,PetscObjectComm((PetscObject)ds),PETSC_ERR_ARG_OUTOFRANGE,"Must have one or more functions, you have %" PetscInt_FMT,n);
     587          20 :   PetscCheck(n<=DS_NUM_EXTRA,PetscObjectComm((PetscObject)ds),PETSC_ERR_ARG_OUTOFRANGE,"Too many functions, you specified %" PetscInt_FMT " but the limit is %d",n,DS_NUM_EXTRA);
     588          20 :   if (ds->ld) PetscCall(PetscInfo(ds,"DSNEPSetFN() called after DSAllocate()\n"));
     589          80 :   for (i=0;i<n;i++) PetscCall(PetscObjectReference((PetscObject)fn[i]));
     590          20 :   for (i=0;i<ctx->nf;i++) PetscCall(FNDestroy(&ctx->f[i]));
     591          80 :   for (i=0;i<n;i++) ctx->f[i] = fn[i];
     592          20 :   ctx->nf = n;
     593          20 :   PetscFunctionReturn(PETSC_SUCCESS);
     594             : }
     595             : 
     596             : /*@
     597             :    DSNEPSetFN - Sets a number of functions that define the nonlinear
     598             :    eigenproblem.
     599             : 
     600             :    Collective
     601             : 
     602             :    Input Parameters:
     603             : +  ds - the direct solver context
     604             : .  n  - number of functions
     605             : -  fn - array of functions
     606             : 
     607             :    Notes:
     608             :    The nonlinear eigenproblem is defined in terms of the split nonlinear
     609             :    operator T(lambda) = sum_i A_i*f_i(lambda).
     610             : 
     611             :    This function must be called before DSAllocate(). Then DSAllocate()
     612             :    will allocate an extra matrix A_i per each function, that can be
     613             :    filled in the usual way.
     614             : 
     615             :    Level: advanced
     616             : 
     617             : .seealso: DSNEPGetFN(), DSAllocate()
     618             : @*/
     619          20 : PetscErrorCode DSNEPSetFN(DS ds,PetscInt n,FN fn[])
     620             : {
     621          20 :   PetscInt       i;
     622             : 
     623          20 :   PetscFunctionBegin;
     624          20 :   PetscValidHeaderSpecific(ds,DS_CLASSID,1);
     625          60 :   PetscValidLogicalCollectiveInt(ds,n,2);
     626          20 :   PetscAssertPointer(fn,3);
     627          80 :   for (i=0;i<n;i++) {
     628          60 :     PetscValidHeaderSpecific(fn[i],FN_CLASSID,3);
     629          60 :     PetscCheckSameComm(ds,1,fn[i],3);
     630             :   }
     631          20 :   PetscTryMethod(ds,"DSNEPSetFN_C",(DS,PetscInt,FN[]),(ds,n,fn));
     632          20 :   PetscFunctionReturn(PETSC_SUCCESS);
     633             : }
     634             : 
     635           3 : static PetscErrorCode DSNEPGetFN_NEP(DS ds,PetscInt k,FN *fn)
     636             : {
     637           3 :   DS_NEP *ctx = (DS_NEP*)ds->data;
     638             : 
     639           3 :   PetscFunctionBegin;
     640           3 :   PetscCheck(k>=0 && k<ctx->nf,PetscObjectComm((PetscObject)ds),PETSC_ERR_ARG_OUTOFRANGE,"k must be between 0 and %" PetscInt_FMT,ctx->nf-1);
     641           3 :   *fn = ctx->f[k];
     642           3 :   PetscFunctionReturn(PETSC_SUCCESS);
     643             : }
     644             : 
     645             : /*@
     646             :    DSNEPGetFN - Gets the functions associated with the nonlinear DS.
     647             : 
     648             :    Not Collective
     649             : 
     650             :    Input Parameters:
     651             : +  ds - the direct solver context
     652             : -  k  - the index of the requested function (starting in 0)
     653             : 
     654             :    Output Parameter:
     655             : .  fn - the function
     656             : 
     657             :    Level: advanced
     658             : 
     659             : .seealso: DSNEPSetFN()
     660             : @*/
     661           3 : PetscErrorCode DSNEPGetFN(DS ds,PetscInt k,FN *fn)
     662             : {
     663           3 :   PetscFunctionBegin;
     664           3 :   PetscValidHeaderSpecific(ds,DS_CLASSID,1);
     665           3 :   PetscAssertPointer(fn,3);
     666           3 :   PetscUseMethod(ds,"DSNEPGetFN_C",(DS,PetscInt,FN*),(ds,k,fn));
     667           3 :   PetscFunctionReturn(PETSC_SUCCESS);
     668             : }
     669             : 
     670           2 : static PetscErrorCode DSNEPGetNumFN_NEP(DS ds,PetscInt *n)
     671             : {
     672           2 :   DS_NEP *ctx = (DS_NEP*)ds->data;
     673             : 
     674           2 :   PetscFunctionBegin;
     675           2 :   *n = ctx->nf;
     676           2 :   PetscFunctionReturn(PETSC_SUCCESS);
     677             : }
     678             : 
     679             : /*@
     680             :    DSNEPGetNumFN - Returns the number of functions stored internally by
     681             :    the DS.
     682             : 
     683             :    Not Collective
     684             : 
     685             :    Input Parameter:
     686             : .  ds - the direct solver context
     687             : 
     688             :    Output Parameters:
     689             : .  n - the number of functions passed in DSNEPSetFN()
     690             : 
     691             :    Level: advanced
     692             : 
     693             : .seealso: DSNEPSetFN()
     694             : @*/
     695           2 : PetscErrorCode DSNEPGetNumFN(DS ds,PetscInt *n)
     696             : {
     697           2 :   PetscFunctionBegin;
     698           2 :   PetscValidHeaderSpecific(ds,DS_CLASSID,1);
     699           2 :   PetscAssertPointer(n,2);
     700           2 :   PetscUseMethod(ds,"DSNEPGetNumFN_C",(DS,PetscInt*),(ds,n));
     701           2 :   PetscFunctionReturn(PETSC_SUCCESS);
     702             : }
     703             : 
     704           1 : static PetscErrorCode DSNEPSetMinimality_NEP(DS ds,PetscInt n)
     705             : {
     706           1 :   DS_NEP *ctx = (DS_NEP*)ds->data;
     707             : 
     708           1 :   PetscFunctionBegin;
     709           1 :   if (n == PETSC_DECIDE || n == PETSC_DEFAULT) ctx->max_mid = 4;
     710             :   else {
     711           1 :     PetscCheck(n>0,PetscObjectComm((PetscObject)ds),PETSC_ERR_ARG_OUTOFRANGE,"The minimality value must be > 0");
     712           1 :     ctx->max_mid = n;
     713             :   }
     714           1 :   PetscFunctionReturn(PETSC_SUCCESS);
     715             : }
     716             : 
     717             : /*@
     718             :    DSNEPSetMinimality - Sets the maximum minimality index used internally by
     719             :    the DSNEP.
     720             : 
     721             :    Logically Collective
     722             : 
     723             :    Input Parameters:
     724             : +  ds - the direct solver context
     725             : -  n  - the maximum minimality index
     726             : 
     727             :    Options Database Key:
     728             : .  -ds_nep_minimality <n> - sets the maximum minimality index
     729             : 
     730             :    Notes:
     731             :    The maximum minimality index is used only in the contour integral method,
     732             :    and is related to the highest momemts used in the method. The default
     733             :    value is 1, an larger value might give better accuracy in some cases, but
     734             :    at a higher cost.
     735             : 
     736             :    Level: advanced
     737             : 
     738             : .seealso: DSNEPGetMinimality()
     739             : @*/
     740           1 : PetscErrorCode DSNEPSetMinimality(DS ds,PetscInt n)
     741             : {
     742           1 :   PetscFunctionBegin;
     743           1 :   PetscValidHeaderSpecific(ds,DS_CLASSID,1);
     744           3 :   PetscValidLogicalCollectiveInt(ds,n,2);
     745           1 :   PetscTryMethod(ds,"DSNEPSetMinimality_C",(DS,PetscInt),(ds,n));
     746           1 :   PetscFunctionReturn(PETSC_SUCCESS);
     747             : }
     748             : 
     749          21 : static PetscErrorCode DSNEPGetMinimality_NEP(DS ds,PetscInt *n)
     750             : {
     751          21 :   DS_NEP *ctx = (DS_NEP*)ds->data;
     752             : 
     753          21 :   PetscFunctionBegin;
     754          21 :   *n = ctx->max_mid;
     755          21 :   PetscFunctionReturn(PETSC_SUCCESS);
     756             : }
     757             : 
     758             : /*@
     759             :    DSNEPGetMinimality - Returns the maximum minimality index used internally by
     760             :    the DSNEP.
     761             : 
     762             :    Not Collective
     763             : 
     764             :    Input Parameter:
     765             : .  ds - the direct solver context
     766             : 
     767             :    Output Parameters:
     768             : .  n - the maximum minimality index passed in DSNEPSetMinimality()
     769             : 
     770             :    Level: advanced
     771             : 
     772             : .seealso: DSNEPSetMinimality()
     773             : @*/
     774          21 : PetscErrorCode DSNEPGetMinimality(DS ds,PetscInt *n)
     775             : {
     776          21 :   PetscFunctionBegin;
     777          21 :   PetscValidHeaderSpecific(ds,DS_CLASSID,1);
     778          21 :   PetscAssertPointer(n,2);
     779          21 :   PetscUseMethod(ds,"DSNEPGetMinimality_C",(DS,PetscInt*),(ds,n));
     780          21 :   PetscFunctionReturn(PETSC_SUCCESS);
     781             : }
     782             : 
     783           2 : static PetscErrorCode DSNEPSetRefine_NEP(DS ds,PetscReal tol,PetscInt its)
     784             : {
     785           2 :   DS_NEP *ctx = (DS_NEP*)ds->data;
     786             : 
     787           2 :   PetscFunctionBegin;
     788           2 :   if (tol == (PetscReal)PETSC_DETERMINE) {
     789           0 :     ctx->rtol = PETSC_MACHINE_EPSILON/PetscSqrtReal(PETSC_SQRT_MACHINE_EPSILON);
     790           2 :   } else if (tol != (PetscReal)PETSC_CURRENT) {
     791           1 :     PetscCheck(tol>0.0,PetscObjectComm((PetscObject)ds),PETSC_ERR_ARG_OUTOFRANGE,"The tolerance must be > 0");
     792           1 :     ctx->rtol = tol;
     793             :   }
     794           2 :   if (its == PETSC_DETERMINE) {
     795           1 :     ctx->Nit = 3;
     796           1 :   } else if (its != PETSC_CURRENT) {
     797           1 :     PetscCheck(its>=0,PetscObjectComm((PetscObject)ds),PETSC_ERR_ARG_OUTOFRANGE,"The number of iterations must be >= 0");
     798           1 :     ctx->Nit = its;
     799             :   }
     800           2 :   PetscFunctionReturn(PETSC_SUCCESS);
     801             : }
     802             : 
     803             : /*@
     804             :    DSNEPSetRefine - Sets the tolerance and the number of iterations of Newton iterative
     805             :    refinement for eigenpairs.
     806             : 
     807             :    Logically Collective
     808             : 
     809             :    Input Parameters:
     810             : +  ds  - the direct solver context
     811             : .  tol - the tolerance
     812             : -  its - the number of iterations
     813             : 
     814             :    Options Database Key:
     815             : +  -ds_nep_refine_tol <tol> - sets the tolerance
     816             : -  -ds_nep_refine_its <its> - sets the number of Newton iterations
     817             : 
     818             :    Notes:
     819             :    Iterative refinement of eigenpairs is currently used only in the contour
     820             :    integral method.
     821             : 
     822             :    Use PETSC_CURRENT to retain the current value of any of the parameters.
     823             :    Use PETSC_DETERMINE for either argument to assign a default value computed
     824             :    internally.
     825             : 
     826             :    Level: advanced
     827             : 
     828             : .seealso: DSNEPGetRefine()
     829             : @*/
     830           2 : PetscErrorCode DSNEPSetRefine(DS ds,PetscReal tol,PetscInt its)
     831             : {
     832           2 :   PetscFunctionBegin;
     833           2 :   PetscValidHeaderSpecific(ds,DS_CLASSID,1);
     834           6 :   PetscValidLogicalCollectiveReal(ds,tol,2);
     835           6 :   PetscValidLogicalCollectiveInt(ds,its,3);
     836           2 :   PetscTryMethod(ds,"DSNEPSetRefine_C",(DS,PetscReal,PetscInt),(ds,tol,its));
     837           2 :   PetscFunctionReturn(PETSC_SUCCESS);
     838             : }
     839             : 
     840           1 : static PetscErrorCode DSNEPGetRefine_NEP(DS ds,PetscReal *tol,PetscInt *its)
     841             : {
     842           1 :   DS_NEP *ctx = (DS_NEP*)ds->data;
     843             : 
     844           1 :   PetscFunctionBegin;
     845           1 :   if (tol) *tol = ctx->rtol;
     846           1 :   if (its) *its = ctx->Nit;
     847           1 :   PetscFunctionReturn(PETSC_SUCCESS);
     848             : }
     849             : 
     850             : /*@
     851             :    DSNEPGetRefine - Returns the tolerance and the number of iterations of Newton iterative
     852             :    refinement for eigenpairs.
     853             : 
     854             :    Not Collective
     855             : 
     856             :    Input Parameter:
     857             : .  ds - the direct solver context
     858             : 
     859             :    Output Parameters:
     860             : +  tol - the tolerance
     861             : -  its - the number of iterations
     862             : 
     863             :    Level: advanced
     864             : 
     865             : .seealso: DSNEPSetRefine()
     866             : @*/
     867           1 : PetscErrorCode DSNEPGetRefine(DS ds,PetscReal *tol,PetscInt *its)
     868             : {
     869           1 :   PetscFunctionBegin;
     870           1 :   PetscValidHeaderSpecific(ds,DS_CLASSID,1);
     871           1 :   PetscUseMethod(ds,"DSNEPGetRefine_C",(DS,PetscReal*,PetscInt*),(ds,tol,its));
     872           1 :   PetscFunctionReturn(PETSC_SUCCESS);
     873             : }
     874             : 
     875           1 : static PetscErrorCode DSNEPSetIntegrationPoints_NEP(DS ds,PetscInt ip)
     876             : {
     877           1 :   DS_NEP         *ctx = (DS_NEP*)ds->data;
     878             : 
     879           1 :   PetscFunctionBegin;
     880           1 :   if (ip == PETSC_DECIDE || ip == PETSC_DEFAULT) ctx->nnod = 64;
     881             :   else {
     882           1 :     PetscCheck(ip>0,PetscObjectComm((PetscObject)ds),PETSC_ERR_ARG_OUTOFRANGE,"The number of integration points must be > 0");
     883           1 :     ctx->nnod = ip;
     884             :   }
     885           1 :   PetscCall(PetscLayoutDestroy(&ctx->map));  /* need to redistribute at next solve */
     886           1 :   PetscFunctionReturn(PETSC_SUCCESS);
     887             : }
     888             : 
     889             : /*@
     890             :    DSNEPSetIntegrationPoints - Sets the number of integration points to be
     891             :    used in the contour integral method.
     892             : 
     893             :    Logically Collective
     894             : 
     895             :    Input Parameters:
     896             : +  ds - the direct solver context
     897             : -  ip - the number of integration points
     898             : 
     899             :    Options Database Key:
     900             : .  -ds_nep_integration_points <ip> - sets the number of integration points
     901             : 
     902             :    Notes:
     903             :    This parameter is relevant only in the contour integral method.
     904             : 
     905             :    Level: advanced
     906             : 
     907             : .seealso: DSNEPGetIntegrationPoints()
     908             : @*/
     909           1 : PetscErrorCode DSNEPSetIntegrationPoints(DS ds,PetscInt ip)
     910             : {
     911           1 :   PetscFunctionBegin;
     912           1 :   PetscValidHeaderSpecific(ds,DS_CLASSID,1);
     913           3 :   PetscValidLogicalCollectiveInt(ds,ip,2);
     914           1 :   PetscTryMethod(ds,"DSNEPSetIntegrationPoints_C",(DS,PetscInt),(ds,ip));
     915           1 :   PetscFunctionReturn(PETSC_SUCCESS);
     916             : }
     917             : 
     918           1 : static PetscErrorCode DSNEPGetIntegrationPoints_NEP(DS ds,PetscInt *ip)
     919             : {
     920           1 :   DS_NEP *ctx = (DS_NEP*)ds->data;
     921             : 
     922           1 :   PetscFunctionBegin;
     923           1 :   *ip = ctx->nnod;
     924           1 :   PetscFunctionReturn(PETSC_SUCCESS);
     925             : }
     926             : 
     927             : /*@
     928             :    DSNEPGetIntegrationPoints - Returns the number of integration points used
     929             :    in the contour integral method.
     930             : 
     931             :    Not Collective
     932             : 
     933             :    Input Parameter:
     934             : .  ds - the direct solver context
     935             : 
     936             :    Output Parameters:
     937             : .  ip - the number of integration points
     938             : 
     939             :    Level: advanced
     940             : 
     941             : .seealso: DSNEPSetIntegrationPoints()
     942             : @*/
     943           1 : PetscErrorCode DSNEPGetIntegrationPoints(DS ds,PetscInt *ip)
     944             : {
     945           1 :   PetscFunctionBegin;
     946           1 :   PetscValidHeaderSpecific(ds,DS_CLASSID,1);
     947           1 :   PetscAssertPointer(ip,2);
     948           1 :   PetscUseMethod(ds,"DSNEPGetIntegrationPoints_C",(DS,PetscInt*),(ds,ip));
     949           1 :   PetscFunctionReturn(PETSC_SUCCESS);
     950             : }
     951             : 
     952           1 : static PetscErrorCode DSNEPSetSamplingSize_NEP(DS ds,PetscInt p)
     953             : {
     954           1 :   DS_NEP *ctx = (DS_NEP*)ds->data;
     955             : 
     956           1 :   PetscFunctionBegin;
     957           1 :   if (p == PETSC_DECIDE || p == PETSC_DEFAULT) ctx->spls = 0;
     958             :   else {
     959           1 :     PetscCheck(p>0,PetscObjectComm((PetscObject)ds),PETSC_ERR_ARG_OUTOFRANGE,"The sample size must be > 0");
     960           1 :     PetscCheck(p>=20,PetscObjectComm((PetscObject)ds),PETSC_ERR_ARG_OUTOFRANGE,"The sample size cannot be smaller than 20");
     961           1 :     ctx->spls = p;
     962             :   }
     963           1 :   PetscFunctionReturn(PETSC_SUCCESS);
     964             : }
     965             : 
     966             : /*@
     967             :    DSNEPSetSamplingSize - Sets the number of sampling columns to be
     968             :    used in the contour integral method.
     969             : 
     970             :    Logically Collective
     971             : 
     972             :    Input Parameters:
     973             : +  ds - the direct solver context
     974             : -  p - the number of columns for the sampling matrix
     975             : 
     976             :    Options Database Key:
     977             : .  -ds_nep_sampling_size <p> - sets the number of sampling columns
     978             : 
     979             :    Notes:
     980             :    This parameter is relevant only in the contour integral method.
     981             : 
     982             :    Level: advanced
     983             : 
     984             : .seealso: DSNEPGetSamplingSize()
     985             : @*/
     986           1 : PetscErrorCode DSNEPSetSamplingSize(DS ds,PetscInt p)
     987             : {
     988           1 :   PetscFunctionBegin;
     989           1 :   PetscValidHeaderSpecific(ds,DS_CLASSID,1);
     990           3 :   PetscValidLogicalCollectiveInt(ds,p,2);
     991           1 :   PetscTryMethod(ds,"DSNEPSetSamplingSize_C",(DS,PetscInt),(ds,p));
     992           1 :   PetscFunctionReturn(PETSC_SUCCESS);
     993             : }
     994             : 
     995           1 : static PetscErrorCode DSNEPGetSamplingSize_NEP(DS ds,PetscInt *p)
     996             : {
     997           1 :   DS_NEP *ctx = (DS_NEP*)ds->data;
     998             : 
     999           1 :   PetscFunctionBegin;
    1000           1 :   *p = ctx->spls;
    1001           1 :   PetscFunctionReturn(PETSC_SUCCESS);
    1002             : }
    1003             : 
    1004             : /*@
    1005             :    DSNEPGetSamplingSize - Returns the number of sampling columns used
    1006             :    in the contour integral method.
    1007             : 
    1008             :    Not Collective
    1009             : 
    1010             :    Input Parameter:
    1011             : .  ds - the direct solver context
    1012             : 
    1013             :    Output Parameters:
    1014             : .  p -  the number of columns for the sampling matrix
    1015             : 
    1016             :    Level: advanced
    1017             : 
    1018             : .seealso: DSNEPSetSamplingSize()
    1019             : @*/
    1020           1 : PetscErrorCode DSNEPGetSamplingSize(DS ds,PetscInt *p)
    1021             : {
    1022           1 :   PetscFunctionBegin;
    1023           1 :   PetscValidHeaderSpecific(ds,DS_CLASSID,1);
    1024           1 :   PetscAssertPointer(p,2);
    1025           1 :   PetscUseMethod(ds,"DSNEPGetSamplingSize_C",(DS,PetscInt*),(ds,p));
    1026           1 :   PetscFunctionReturn(PETSC_SUCCESS);
    1027             : }
    1028             : 
    1029          17 : static PetscErrorCode DSNEPSetComputeMatrixFunction_NEP(DS ds,DSNEPMatrixFunctionFn *fun,void *ctx)
    1030             : {
    1031          17 :   DS_NEP *dsctx = (DS_NEP*)ds->data;
    1032             : 
    1033          17 :   PetscFunctionBegin;
    1034          17 :   dsctx->computematrix    = fun;
    1035          17 :   dsctx->computematrixctx = ctx;
    1036          17 :   PetscFunctionReturn(PETSC_SUCCESS);
    1037             : }
    1038             : 
    1039             : /*@C
    1040             :    DSNEPSetComputeMatrixFunction - Sets a user-provided subroutine to compute
    1041             :    the matrices T(lambda) or T'(lambda).
    1042             : 
    1043             :    Logically Collective
    1044             : 
    1045             :    Input Parameters:
    1046             : +  ds  - the direct solver context
    1047             : .  fun - matrix function evaluation routine, see DSNEPMatrixFunctionFn for the calling sequence
    1048             : -  ctx - a context pointer (the last parameter to the user function)
    1049             : 
    1050             :    Note:
    1051             :    The result is computed as T(lambda) = sum_i E_i*f_i(lambda), and similarly
    1052             :    for the derivative.
    1053             : 
    1054             :    Level: developer
    1055             : 
    1056             : .seealso: DSNEPGetComputeMatrixFunction()
    1057             : @*/
    1058          17 : PetscErrorCode DSNEPSetComputeMatrixFunction(DS ds,DSNEPMatrixFunctionFn *fun,void *ctx)
    1059             : {
    1060          17 :   PetscFunctionBegin;
    1061          17 :   PetscValidHeaderSpecific(ds,DS_CLASSID,1);
    1062          17 :   PetscTryMethod(ds,"DSNEPSetComputeMatrixFunction_C",(DS,DSNEPMatrixFunctionFn*,void*),(ds,fun,ctx));
    1063          17 :   PetscFunctionReturn(PETSC_SUCCESS);
    1064             : }
    1065             : 
    1066           0 : static PetscErrorCode DSNEPGetComputeMatrixFunction_NEP(DS ds,DSNEPMatrixFunctionFn **fun,void **ctx)
    1067             : {
    1068           0 :   DS_NEP *dsctx = (DS_NEP*)ds->data;
    1069             : 
    1070           0 :   PetscFunctionBegin;
    1071           0 :   if (fun) *fun = dsctx->computematrix;
    1072           0 :   if (ctx) *ctx = dsctx->computematrixctx;
    1073           0 :   PetscFunctionReturn(PETSC_SUCCESS);
    1074             : }
    1075             : 
    1076             : /*@C
    1077             :    DSNEPGetComputeMatrixFunction - Returns the user-provided callback function
    1078             :    set in DSNEPSetComputeMatrixFunction().
    1079             : 
    1080             :    Not Collective
    1081             : 
    1082             :    Input Parameter:
    1083             : .  ds  - the direct solver context
    1084             : 
    1085             :    Output Parameters:
    1086             : +  fun - the pointer to the user function
    1087             : -  ctx - the context pointer
    1088             : 
    1089             :    Level: developer
    1090             : 
    1091             : .seealso: DSNEPSetComputeMatrixFunction()
    1092             : @*/
    1093           0 : PetscErrorCode DSNEPGetComputeMatrixFunction(DS ds,DSNEPMatrixFunctionFn **fun,void **ctx)
    1094             : {
    1095           0 :   PetscFunctionBegin;
    1096           0 :   PetscValidHeaderSpecific(ds,DS_CLASSID,1);
    1097           0 :   PetscUseMethod(ds,"DSNEPGetComputeMatrixFunction_C",(DS,DSNEPMatrixFunctionFn**,void**),(ds,fun,ctx));
    1098           0 :   PetscFunctionReturn(PETSC_SUCCESS);
    1099             : }
    1100             : 
    1101           1 : static PetscErrorCode DSNEPSetRG_NEP(DS ds,RG rg)
    1102             : {
    1103           1 :   DS_NEP         *dsctx = (DS_NEP*)ds->data;
    1104             : 
    1105           1 :   PetscFunctionBegin;
    1106           1 :   PetscCall(PetscObjectReference((PetscObject)rg));
    1107           1 :   PetscCall(RGDestroy(&dsctx->rg));
    1108           1 :   dsctx->rg = rg;
    1109           1 :   PetscFunctionReturn(PETSC_SUCCESS);
    1110             : }
    1111             : 
    1112             : /*@
    1113             :    DSNEPSetRG - Associates a region object to the DSNEP solver.
    1114             : 
    1115             :    Collective
    1116             : 
    1117             :    Input Parameters:
    1118             : +  ds  - the direct solver context
    1119             : -  rg  - the region context
    1120             : 
    1121             :    Notes:
    1122             :    The region is used only in the contour integral method, and
    1123             :    should enclose the wanted eigenvalues.
    1124             : 
    1125             :    Level: developer
    1126             : 
    1127             : .seealso: DSNEPGetRG()
    1128             : @*/
    1129           1 : PetscErrorCode DSNEPSetRG(DS ds,RG rg)
    1130             : {
    1131           1 :   PetscFunctionBegin;
    1132           1 :   PetscValidHeaderSpecific(ds,DS_CLASSID,1);
    1133           1 :   if (rg) {
    1134           1 :     PetscValidHeaderSpecific(rg,RG_CLASSID,2);
    1135           1 :     PetscCheckSameComm(ds,1,rg,2);
    1136             :   }
    1137           1 :   PetscTryMethod(ds,"DSNEPSetRG_C",(DS,RG),(ds,rg));
    1138           1 :   PetscFunctionReturn(PETSC_SUCCESS);
    1139             : }
    1140             : 
    1141           1 : static PetscErrorCode DSNEPGetRG_NEP(DS ds,RG *rg)
    1142             : {
    1143           1 :   DS_NEP         *ctx = (DS_NEP*)ds->data;
    1144             : 
    1145           1 :   PetscFunctionBegin;
    1146           1 :   if (!ctx->rg) {
    1147           1 :     PetscCall(RGCreate(PetscObjectComm((PetscObject)ds),&ctx->rg));
    1148           1 :     PetscCall(PetscObjectIncrementTabLevel((PetscObject)ctx->rg,(PetscObject)ds,1));
    1149           1 :     PetscCall(RGSetOptionsPrefix(ctx->rg,((PetscObject)ds)->prefix));
    1150           1 :     PetscCall(RGAppendOptionsPrefix(ctx->rg,"ds_nep_"));
    1151           1 :     PetscCall(PetscObjectSetOptions((PetscObject)ctx->rg,((PetscObject)ds)->options));
    1152             :   }
    1153           1 :   *rg = ctx->rg;
    1154           1 :   PetscFunctionReturn(PETSC_SUCCESS);
    1155             : }
    1156             : 
    1157             : /*@
    1158             :    DSNEPGetRG - Obtain the region object associated to the DSNEP solver.
    1159             : 
    1160             :    Collective
    1161             : 
    1162             :    Input Parameter:
    1163             : .  ds  - the direct solver context
    1164             : 
    1165             :    Output Parameter:
    1166             : .  rg  - the region context
    1167             : 
    1168             :    Level: developer
    1169             : 
    1170             : .seealso: DSNEPSetRG()
    1171             : @*/
    1172           1 : PetscErrorCode DSNEPGetRG(DS ds,RG *rg)
    1173             : {
    1174           1 :   PetscFunctionBegin;
    1175           1 :   PetscValidHeaderSpecific(ds,DS_CLASSID,1);
    1176           1 :   PetscAssertPointer(rg,2);
    1177           1 :   PetscUseMethod(ds,"DSNEPGetRG_C",(DS,RG*),(ds,rg));
    1178           1 :   PetscFunctionReturn(PETSC_SUCCESS);
    1179             : }
    1180             : 
    1181          19 : static PetscErrorCode DSSetFromOptions_NEP(DS ds,PetscOptionItems *PetscOptionsObject)
    1182             : {
    1183          19 :   PetscInt       k;
    1184          19 :   PetscBool      flg;
    1185             : #if defined(PETSC_USE_COMPLEX)
    1186             :   PetscReal      r;
    1187             :   PetscBool      flg1;
    1188             :   DS_NEP         *ctx = (DS_NEP*)ds->data;
    1189             : #endif
    1190             : 
    1191          19 :   PetscFunctionBegin;
    1192          19 :   PetscOptionsHeadBegin(PetscOptionsObject,"DS NEP Options");
    1193             : 
    1194          19 :     PetscCall(PetscOptionsInt("-ds_nep_minimality","Maximum minimality index","DSNEPSetMinimality",4,&k,&flg));
    1195          19 :     if (flg) PetscCall(DSNEPSetMinimality(ds,k));
    1196             : 
    1197          19 :     PetscCall(PetscOptionsInt("-ds_nep_integration_points","Number of integration points","DSNEPSetIntegrationPoints",64,&k,&flg));
    1198          19 :     if (flg) PetscCall(DSNEPSetIntegrationPoints(ds,k));
    1199             : 
    1200          19 :     PetscCall(PetscOptionsInt("-ds_nep_sampling_size","Number of sampling columns","DSNEPSetSamplingSize",0,&k,&flg));
    1201          19 :     if (flg) PetscCall(DSNEPSetSamplingSize(ds,k));
    1202             : 
    1203             : #if defined(PETSC_USE_COMPLEX)
    1204             :     r = ctx->rtol;
    1205             :     PetscCall(PetscOptionsReal("-ds_nep_refine_tol","Refinement tolerance","DSNEPSetRefine",ctx->rtol,&r,&flg1));
    1206             :     k = ctx->Nit;
    1207             :     PetscCall(PetscOptionsInt("-ds_nep_refine_its","Number of iterative refinement iterations","DSNEPSetRefine",ctx->Nit,&k,&flg));
    1208             :     if (flg1||flg) PetscCall(DSNEPSetRefine(ds,r,k));
    1209             : 
    1210             :     if (ds->method==1) {
    1211             :       if (!ctx->rg) PetscCall(DSNEPGetRG(ds,&ctx->rg));
    1212             :       PetscCall(RGSetFromOptions(ctx->rg));
    1213             :     }
    1214             : #endif
    1215             : 
    1216          19 :   PetscOptionsHeadEnd();
    1217          19 :   PetscFunctionReturn(PETSC_SUCCESS);
    1218             : }
    1219             : 
    1220          20 : static PetscErrorCode DSDestroy_NEP(DS ds)
    1221             : {
    1222          20 :   DS_NEP         *ctx = (DS_NEP*)ds->data;
    1223          20 :   PetscInt       i;
    1224             : 
    1225          20 :   PetscFunctionBegin;
    1226          80 :   for (i=0;i<ctx->nf;i++) PetscCall(FNDestroy(&ctx->f[i]));
    1227          20 :   PetscCall(RGDestroy(&ctx->rg));
    1228          20 :   PetscCall(PetscLayoutDestroy(&ctx->map));
    1229          20 :   PetscCall(PetscFree(ds->data));
    1230          20 :   PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSNEPSetFN_C",NULL));
    1231          20 :   PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSNEPGetFN_C",NULL));
    1232          20 :   PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSNEPGetNumFN_C",NULL));
    1233          20 :   PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSNEPGetMinimality_C",NULL));
    1234          20 :   PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSNEPSetMinimality_C",NULL));
    1235          20 :   PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSNEPGetRefine_C",NULL));
    1236          20 :   PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSNEPSetRefine_C",NULL));
    1237          20 :   PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSNEPGetIntegrationPoints_C",NULL));
    1238          20 :   PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSNEPSetIntegrationPoints_C",NULL));
    1239          20 :   PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSNEPGetSamplingSize_C",NULL));
    1240          20 :   PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSNEPSetSamplingSize_C",NULL));
    1241          20 :   PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSNEPSetRG_C",NULL));
    1242          20 :   PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSNEPGetRG_C",NULL));
    1243          20 :   PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSNEPSetComputeMatrixFunction_C",NULL));
    1244          20 :   PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSNEPGetComputeMatrixFunction_C",NULL));
    1245          20 :   PetscFunctionReturn(PETSC_SUCCESS);
    1246             : }
    1247             : 
    1248        4388 : static PetscErrorCode DSMatGetSize_NEP(DS ds,DSMatType t,PetscInt *rows,PetscInt *cols)
    1249             : {
    1250        4388 :   DS_NEP *ctx = (DS_NEP*)ds->data;
    1251             : 
    1252        4388 :   PetscFunctionBegin;
    1253        4388 :   *rows = ds->n;
    1254        4388 :   if (t==DS_MAT_Q || t==DS_MAT_Z || t==DS_MAT_U || t==DS_MAT_V) *rows *= ctx->max_mid;
    1255        4388 :   *cols = ds->n;
    1256        4388 :   if (t==DS_MAT_Q || t==DS_MAT_Z || t==DS_MAT_U || t==DS_MAT_V || t==DS_MAT_X || t==DS_MAT_Y) *cols *= ctx->max_mid;
    1257        4388 :   PetscFunctionReturn(PETSC_SUCCESS);
    1258             : }
    1259             : 
    1260             : /*MC
    1261             :    DSNEP - Dense Nonlinear Eigenvalue Problem.
    1262             : 
    1263             :    Level: beginner
    1264             : 
    1265             :    Notes:
    1266             :    The problem is expressed as T(lambda)*x = 0, where T(lambda) is a
    1267             :    parameter-dependent matrix written as T(lambda) = sum_i E_i*f_i(lambda).
    1268             :    The eigenvalues lambda are the arguments returned by DSSolve()..
    1269             : 
    1270             :    The coefficient matrices E_i are the extra matrices of the DS, and
    1271             :    the scalar functions f_i are passed via DSNEPSetFN(). Optionally, a
    1272             :    callback function to fill the E_i matrices can be set with
    1273             :    DSNEPSetComputeMatrixFunction().
    1274             : 
    1275             :    Used DS matrices:
    1276             : +  DS_MAT_Ex - coefficient matrices of the split form of T(lambda)
    1277             : .  DS_MAT_X  - eigenvectors
    1278             : .  DS_MAT_A  - (workspace) T(lambda) evaluated at a given lambda (SLP only)
    1279             : .  DS_MAT_B  - (workspace) T'(lambda) evaluated at a given lambda (SLP only)
    1280             : .  DS_MAT_Q  - (workspace) left Hankel matrix (contour only)
    1281             : .  DS_MAT_Z  - (workspace) right Hankel matrix (contour only)
    1282             : .  DS_MAT_U  - (workspace) left singular vectors (contour only)
    1283             : .  DS_MAT_V  - (workspace) right singular vectors (contour only)
    1284             : -  DS_MAT_W  - (workspace) auxiliary matrix of size nxn
    1285             : 
    1286             :    Implemented methods:
    1287             : +  0 - Successive Linear Problems (SLP), computes just one eigenpair
    1288             : -  1 - Contour integral, computes all eigenvalues inside a region
    1289             : 
    1290             : .seealso: DSCreate(), DSSetType(), DSType, DSNEPSetFN(), DSNEPSetComputeMatrixFunction()
    1291             : M*/
    1292          20 : SLEPC_EXTERN PetscErrorCode DSCreate_NEP(DS ds)
    1293             : {
    1294          20 :   DS_NEP         *ctx;
    1295             : 
    1296          20 :   PetscFunctionBegin;
    1297          20 :   PetscCall(PetscNew(&ctx));
    1298          20 :   ds->data = (void*)ctx;
    1299          20 :   ctx->max_mid = 4;
    1300          20 :   ctx->nnod    = 64;
    1301          20 :   ctx->Nit     = 3;
    1302          20 :   ctx->rtol    = PETSC_MACHINE_EPSILON/PetscSqrtReal(PETSC_SQRT_MACHINE_EPSILON);
    1303             : 
    1304          20 :   ds->ops->allocate       = DSAllocate_NEP;
    1305          20 :   ds->ops->setfromoptions = DSSetFromOptions_NEP;
    1306          20 :   ds->ops->view           = DSView_NEP;
    1307          20 :   ds->ops->vectors        = DSVectors_NEP;
    1308          20 :   ds->ops->solve[0]       = DSSolve_NEP_SLP;
    1309             : #if defined(PETSC_USE_COMPLEX)
    1310             :   ds->ops->solve[1]       = DSSolve_NEP_Contour;
    1311             : #endif
    1312          20 :   ds->ops->sort           = DSSort_NEP;
    1313             : #if !defined(PETSC_HAVE_MPIUNI)
    1314          20 :   ds->ops->synchronize    = DSSynchronize_NEP;
    1315             : #endif
    1316          20 :   ds->ops->destroy        = DSDestroy_NEP;
    1317          20 :   ds->ops->matgetsize     = DSMatGetSize_NEP;
    1318             : 
    1319          20 :   PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSNEPSetFN_C",DSNEPSetFN_NEP));
    1320          20 :   PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSNEPGetFN_C",DSNEPGetFN_NEP));
    1321          20 :   PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSNEPGetNumFN_C",DSNEPGetNumFN_NEP));
    1322          20 :   PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSNEPGetMinimality_C",DSNEPGetMinimality_NEP));
    1323          20 :   PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSNEPSetMinimality_C",DSNEPSetMinimality_NEP));
    1324          20 :   PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSNEPGetRefine_C",DSNEPGetRefine_NEP));
    1325          20 :   PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSNEPSetRefine_C",DSNEPSetRefine_NEP));
    1326          20 :   PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSNEPGetIntegrationPoints_C",DSNEPGetIntegrationPoints_NEP));
    1327          20 :   PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSNEPSetIntegrationPoints_C",DSNEPSetIntegrationPoints_NEP));
    1328          20 :   PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSNEPGetSamplingSize_C",DSNEPGetSamplingSize_NEP));
    1329          20 :   PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSNEPSetSamplingSize_C",DSNEPSetSamplingSize_NEP));
    1330          20 :   PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSNEPSetRG_C",DSNEPSetRG_NEP));
    1331          20 :   PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSNEPGetRG_C",DSNEPGetRG_NEP));
    1332          20 :   PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSNEPSetComputeMatrixFunction_C",DSNEPSetComputeMatrixFunction_NEP));
    1333          20 :   PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSNEPGetComputeMatrixFunction_C",DSNEPGetComputeMatrixFunction_NEP));
    1334          20 :   PetscFunctionReturn(PETSC_SUCCESS);
    1335             : }

Generated by: LCOV version 1.14