LCOV - code coverage report
Current view: top level - pep/tutorials/nlevp - sleeper.c (source / functions) Hit Total Coverage
Test: SLEPc Lines: 68 72 94.4 %
Date: 2024-11-23 00:34:26 Functions: 1 1 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       3             :    SLEPc - Scalable Library for Eigenvalue Problem Computations
       4             :    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
       5             : 
       6             :    This file is part of SLEPc.
       7             :    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
       8             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       9             : */
      10             : /*
      11             :    This example implements one of the problems found at
      12             :        NLEVP: A Collection of Nonlinear Eigenvalue Problems,
      13             :        The University of Manchester.
      14             :    The details of the collection can be found at:
      15             :        [1] T. Betcke et al., "NLEVP: A Collection of Nonlinear Eigenvalue
      16             :            Problems", ACM Trans. Math. Software 39(2), Article 7, 2013.
      17             : 
      18             :    The sleeper problem is a proportionally damped QEP describing the
      19             :    oscillations of a rail track resting on sleepers.
      20             : */
      21             : 
      22             : static char help[] = "Oscillations of a rail track resting on sleepers.\n\n"
      23             :   "The command line options are:\n"
      24             :   "  -n <n>, where <n> = dimension of the matrices.\n\n";
      25             : 
      26             : #include <slepcpep.h>
      27             : 
      28           7 : int main(int argc,char **argv)
      29             : {
      30           7 :   Mat            M,C,K,A[3];      /* problem matrices */
      31           7 :   PEP            pep;             /* polynomial eigenproblem solver context */
      32           7 :   PetscInt       n=10,Istart,Iend,i;
      33           7 :   PetscBool      terse;
      34             : 
      35           7 :   PetscFunctionBeginUser;
      36           7 :   PetscCall(SlepcInitialize(&argc,&argv,NULL,help));
      37             : 
      38           7 :   PetscCall(PetscOptionsGetInt(NULL,NULL,"-n",&n,NULL));
      39           7 :   PetscCall(PetscPrintf(PETSC_COMM_WORLD,"\nRailtrack resting on sleepers, n=%" PetscInt_FMT "\n\n",n));
      40             : 
      41             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      42             :      Compute the matrices that define the eigensystem, (k^2*M+k*C+K)x=0
      43             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
      44             : 
      45             :   /* K is a pentadiagonal */
      46           7 :   PetscCall(MatCreate(PETSC_COMM_WORLD,&K));
      47           7 :   PetscCall(MatSetSizes(K,PETSC_DECIDE,PETSC_DECIDE,n,n));
      48           7 :   PetscCall(MatSetFromOptions(K));
      49             : 
      50           7 :   PetscCall(MatGetOwnershipRange(K,&Istart,&Iend));
      51         900 :   for (i=Istart;i<Iend;i++) {
      52         893 :     if (i==0) {
      53           7 :       PetscCall(MatSetValue(K,i,n-1,-3.0,INSERT_VALUES));
      54           7 :       PetscCall(MatSetValue(K,i,n-2,1.0,INSERT_VALUES));
      55             :     }
      56         893 :     if (i==1) PetscCall(MatSetValue(K,i,n-1,1.0,INSERT_VALUES));
      57         893 :     if (i>0) PetscCall(MatSetValue(K,i,i-1,-3.0,INSERT_VALUES));
      58         893 :     if (i>1) PetscCall(MatSetValue(K,i,i-2,1.0,INSERT_VALUES));
      59         893 :     PetscCall(MatSetValue(K,i,i,5.0,INSERT_VALUES));
      60         893 :     if (i==n-1) {
      61           7 :       PetscCall(MatSetValue(K,i,0,-3.0,INSERT_VALUES));
      62           7 :       PetscCall(MatSetValue(K,i,1,1.0,INSERT_VALUES));
      63             :     }
      64         893 :     if (i==n-2) PetscCall(MatSetValue(K,i,0,1.0,INSERT_VALUES));
      65         893 :     if (i<n-1) PetscCall(MatSetValue(K,i,i+1,-3.0,INSERT_VALUES));
      66         893 :     if (i<n-2) PetscCall(MatSetValue(K,i,i+2,1.0,INSERT_VALUES));
      67             :   }
      68             : 
      69           7 :   PetscCall(MatAssemblyBegin(K,MAT_FINAL_ASSEMBLY));
      70           7 :   PetscCall(MatAssemblyEnd(K,MAT_FINAL_ASSEMBLY));
      71             : 
      72             :   /* C is a circulant matrix */
      73           7 :   PetscCall(MatCreate(PETSC_COMM_WORLD,&C));
      74           7 :   PetscCall(MatSetSizes(C,PETSC_DECIDE,PETSC_DECIDE,n,n));
      75           7 :   PetscCall(MatSetFromOptions(C));
      76             : 
      77           7 :   PetscCall(MatGetOwnershipRange(C,&Istart,&Iend));
      78         900 :   for (i=Istart;i<Iend;i++) {
      79         893 :     if (i==0) {
      80           7 :       PetscCall(MatSetValue(C,i,n-1,-4.0,INSERT_VALUES));
      81           7 :       PetscCall(MatSetValue(C,i,n-2,1.0,INSERT_VALUES));
      82             :     }
      83         893 :     if (i==1) PetscCall(MatSetValue(C,i,n-1,1.0,INSERT_VALUES));
      84         893 :     if (i>0) PetscCall(MatSetValue(C,i,i-1,-4.0,INSERT_VALUES));
      85         893 :     if (i>1) PetscCall(MatSetValue(C,i,i-2,1.0,INSERT_VALUES));
      86         893 :     PetscCall(MatSetValue(C,i,i,7.0,INSERT_VALUES));
      87         893 :     if (i==n-1) {
      88           7 :       PetscCall(MatSetValue(C,i,0,-4.0,INSERT_VALUES));
      89           7 :       PetscCall(MatSetValue(C,i,1,1.0,INSERT_VALUES));
      90             :     }
      91         893 :     if (i==n-2) PetscCall(MatSetValue(C,i,0,1.0,INSERT_VALUES));
      92         893 :     if (i<n-1) PetscCall(MatSetValue(C,i,i+1,-4.0,INSERT_VALUES));
      93         893 :     if (i<n-2) PetscCall(MatSetValue(C,i,i+2,1.0,INSERT_VALUES));
      94             :   }
      95             : 
      96           7 :   PetscCall(MatAssemblyBegin(C,MAT_FINAL_ASSEMBLY));
      97           7 :   PetscCall(MatAssemblyEnd(C,MAT_FINAL_ASSEMBLY));
      98             : 
      99             :   /* M is the identity matrix */
     100           7 :   PetscCall(MatCreate(PETSC_COMM_WORLD,&M));
     101           7 :   PetscCall(MatSetSizes(M,PETSC_DECIDE,PETSC_DECIDE,n,n));
     102           7 :   PetscCall(MatSetFromOptions(M));
     103           7 :   PetscCall(MatGetOwnershipRange(M,&Istart,&Iend));
     104         900 :   for (i=Istart;i<Iend;i++) PetscCall(MatSetValue(M,i,i,1.0,INSERT_VALUES));
     105           7 :   PetscCall(MatAssemblyBegin(M,MAT_FINAL_ASSEMBLY));
     106           7 :   PetscCall(MatAssemblyEnd(M,MAT_FINAL_ASSEMBLY));
     107             : 
     108             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     109             :                 Create the eigensolver and solve the problem
     110             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
     111             : 
     112           7 :   PetscCall(PEPCreate(PETSC_COMM_WORLD,&pep));
     113           7 :   A[0] = K; A[1] = C; A[2] = M;
     114           7 :   PetscCall(PEPSetOperators(pep,3,A));
     115           7 :   PetscCall(PEPSetFromOptions(pep));
     116           7 :   PetscCall(PEPSolve(pep));
     117             : 
     118             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     119             :                     Display solution and clean up
     120             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
     121             : 
     122             :   /* show detailed info unless -terse option is given by user */
     123           7 :   PetscCall(PetscOptionsHasName(NULL,NULL,"-terse",&terse));
     124           7 :   if (terse) PetscCall(PEPErrorView(pep,PEP_ERROR_BACKWARD,NULL));
     125             :   else {
     126           0 :     PetscCall(PetscViewerPushFormat(PETSC_VIEWER_STDOUT_WORLD,PETSC_VIEWER_ASCII_INFO_DETAIL));
     127           0 :     PetscCall(PEPConvergedReasonView(pep,PETSC_VIEWER_STDOUT_WORLD));
     128           0 :     PetscCall(PEPErrorView(pep,PEP_ERROR_BACKWARD,PETSC_VIEWER_STDOUT_WORLD));
     129           0 :     PetscCall(PetscViewerPopFormat(PETSC_VIEWER_STDOUT_WORLD));
     130             :   }
     131           7 :   PetscCall(PEPDestroy(&pep));
     132           7 :   PetscCall(MatDestroy(&M));
     133           7 :   PetscCall(MatDestroy(&C));
     134           7 :   PetscCall(MatDestroy(&K));
     135           7 :   PetscCall(SlepcFinalize());
     136             :   return 0;
     137             : }
     138             : 
     139             : /*TEST
     140             : 
     141             :    testset:
     142             :       args: -n 100 -pep_nev 4 -pep_ncv 24 -st_type sinvert -terse
     143             :       output_file: output/sleeper_1.out
     144             :       requires: !single
     145             :       filter: sed -e "s/[+-]0\.0*i//g"
     146             :       test:
     147             :          suffix: 1
     148             :          args: -pep_type {{toar linear}} -pep_ncv 20
     149             :       test:
     150             :          suffix: 1_qarnoldi
     151             :          args: -pep_type qarnoldi -pep_qarnoldi_restart 0.4
     152             : 
     153             :    testset:
     154             :       args: -n 24 -pep_nev 4 -pep_ncv 9 -pep_target -.62 -terse
     155             :       output_file: output/sleeper_2.out
     156             :       test:
     157             :          suffix: 2_toar
     158             :          args: -pep_type toar -pep_toar_restart .3 -st_type sinvert
     159             :       test:
     160             :          suffix: 2_jd
     161             :          args: -pep_type jd -pep_jd_restart .3 -pep_jd_projection orthogonal
     162             : 
     163             :    test:
     164             :       suffix: 3
     165             :       args: -n 275 -pep_type stoar -pep_hermitian -st_type sinvert -pep_nev 2 -pep_target -.89 -terse
     166             :       requires: !single
     167             : 
     168             :    test:
     169             :       suffix: 4
     170             :       args: -n 270 -pep_type stoar -pep_hermitian -pep_interval -3,-2.51 -st_type sinvert -st_pc_type cholesky -terse
     171             :       requires: !single
     172             : 
     173             : TEST*/

Generated by: LCOV version 1.14