LCOV - code coverage report
Current view: top level - pep/tutorials - ex28.c (source / functions) Hit Total Coverage
Test: SLEPc Lines: 98 102 96.1 %
Date: 2024-12-18 00:42:09 Functions: 8 8 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       3             :    SLEPc - Scalable Library for Eigenvalue Problem Computations
       4             :    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
       5             : 
       6             :    This file is part of SLEPc.
       7             :    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
       8             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       9             : */
      10             : 
      11             : static char help[] = "A quadratic eigenproblem defined using shell matrices.\n\n"
      12             :   "The command line options are:\n"
      13             :   "  -n <n>, where <n> = number of grid subdivisions in x and y dimensions.\n\n";
      14             : 
      15             : #include <slepcpep.h>
      16             : 
      17             : /*
      18             :    User-defined routines
      19             : */
      20             : PetscErrorCode MatMult_Laplacian2D(Mat A,Vec x,Vec y);
      21             : PetscErrorCode MatGetDiagonal_Laplacian2D(Mat A,Vec diag);
      22             : PetscErrorCode MatMult_Zero(Mat A,Vec x,Vec y);
      23             : PetscErrorCode MatGetDiagonal_Zero(Mat A,Vec diag);
      24             : PetscErrorCode MatMult_Identity(Mat A,Vec x,Vec y);
      25             : PetscErrorCode MatGetDiagonal_Identity(Mat A,Vec diag);
      26             : 
      27           3 : int main(int argc,char **argv)
      28             : {
      29           3 :   Mat            M,C,K,A[3];      /* problem matrices */
      30           3 :   PEP            pep;             /* polynomial eigenproblem solver context */
      31           3 :   PEPType        type;
      32           3 :   PetscInt       N,n=10,nev;
      33           3 :   PetscMPIInt    size;
      34           3 :   PetscBool      terse;
      35           3 :   ST             st;
      36             : 
      37           3 :   PetscFunctionBeginUser;
      38           3 :   PetscCall(SlepcInitialize(&argc,&argv,NULL,help));
      39           3 :   PetscCallMPI(MPI_Comm_size(PETSC_COMM_WORLD,&size));
      40           3 :   PetscCheck(size==1,PETSC_COMM_WORLD,PETSC_ERR_WRONG_MPI_SIZE,"This is a uniprocessor example only");
      41             : 
      42           3 :   PetscCall(PetscOptionsGetInt(NULL,NULL,"-n",&n,NULL));
      43           3 :   N = n*n;
      44           3 :   PetscCall(PetscPrintf(PETSC_COMM_WORLD,"\nQuadratic Eigenproblem with shell matrices, N=%" PetscInt_FMT " (%" PetscInt_FMT "x%" PetscInt_FMT " grid)\n\n",N,n,n));
      45             : 
      46             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      47             :      Compute the matrices that define the eigensystem, (k^2*M+k*C+K)x=0
      48             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
      49             : 
      50             :   /* K is the 2-D Laplacian */
      51           3 :   PetscCall(MatCreateShell(PETSC_COMM_WORLD,N,N,N,N,&n,&K));
      52           3 :   PetscCall(MatShellSetOperation(K,MATOP_MULT,(void(*)(void))MatMult_Laplacian2D));
      53           3 :   PetscCall(MatShellSetOperation(K,MATOP_MULT_TRANSPOSE,(void(*)(void))MatMult_Laplacian2D));
      54           3 :   PetscCall(MatShellSetOperation(K,MATOP_GET_DIAGONAL,(void(*)(void))MatGetDiagonal_Laplacian2D));
      55             : 
      56             :   /* C is the zero matrix */
      57           3 :   PetscCall(MatCreateShell(PETSC_COMM_WORLD,N,N,N,N,NULL,&C));
      58           3 :   PetscCall(MatShellSetOperation(C,MATOP_MULT,(void(*)(void))MatMult_Zero));
      59           3 :   PetscCall(MatShellSetOperation(C,MATOP_MULT_TRANSPOSE,(void(*)(void))MatMult_Zero));
      60           3 :   PetscCall(MatShellSetOperation(C,MATOP_GET_DIAGONAL,(void(*)(void))MatGetDiagonal_Zero));
      61             : 
      62             :   /* M is the identity matrix */
      63           3 :   PetscCall(MatCreateShell(PETSC_COMM_WORLD,N,N,N,N,NULL,&M));
      64           3 :   PetscCall(MatShellSetOperation(M,MATOP_MULT,(void(*)(void))MatMult_Identity));
      65           3 :   PetscCall(MatShellSetOperation(M,MATOP_MULT_TRANSPOSE,(void(*)(void))MatMult_Identity));
      66           3 :   PetscCall(MatShellSetOperation(M,MATOP_GET_DIAGONAL,(void(*)(void))MatGetDiagonal_Identity));
      67             : 
      68             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      69             :                 Create the eigensolver and set various options
      70             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
      71             : 
      72             :   /*
      73             :      Create eigensolver context
      74             :   */
      75           3 :   PetscCall(PEPCreate(PETSC_COMM_WORLD,&pep));
      76             : 
      77             :   /*
      78             :      Set matrices and problem type
      79             :   */
      80           3 :   A[0] = K; A[1] = C; A[2] = M;
      81           3 :   PetscCall(PEPSetOperators(pep,3,A));
      82           3 :   PetscCall(PEPGetST(pep,&st));
      83           3 :   PetscCall(STSetMatMode(st,ST_MATMODE_SHELL));
      84             : 
      85             :   /*
      86             :      Set solver parameters at runtime
      87             :   */
      88           3 :   PetscCall(PEPSetFromOptions(pep));
      89             : 
      90             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      91             :                       Solve the eigensystem
      92             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
      93             : 
      94           3 :   PetscCall(PEPSolve(pep));
      95             : 
      96             :   /*
      97             :      Optional: Get some information from the solver and display it
      98             :   */
      99           3 :   PetscCall(PEPGetType(pep,&type));
     100           3 :   PetscCall(PetscPrintf(PETSC_COMM_WORLD," Solution method: %s\n\n",type));
     101           3 :   PetscCall(PEPGetDimensions(pep,&nev,NULL,NULL));
     102           3 :   PetscCall(PetscPrintf(PETSC_COMM_WORLD," Number of requested eigenvalues: %" PetscInt_FMT "\n",nev));
     103             : 
     104             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     105             :                     Display solution and clean up
     106             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
     107             : 
     108             :   /* show detailed info unless -terse option is given by user */
     109           3 :   PetscCall(PetscOptionsHasName(NULL,NULL,"-terse",&terse));
     110           3 :   if (terse) PetscCall(PEPErrorView(pep,PEP_ERROR_RELATIVE,NULL));
     111             :   else {
     112           0 :     PetscCall(PetscViewerPushFormat(PETSC_VIEWER_STDOUT_WORLD,PETSC_VIEWER_ASCII_INFO_DETAIL));
     113           0 :     PetscCall(PEPConvergedReasonView(pep,PETSC_VIEWER_STDOUT_WORLD));
     114           0 :     PetscCall(PEPErrorView(pep,PEP_ERROR_RELATIVE,PETSC_VIEWER_STDOUT_WORLD));
     115           0 :     PetscCall(PetscViewerPopFormat(PETSC_VIEWER_STDOUT_WORLD));
     116             :   }
     117           3 :   PetscCall(PEPDestroy(&pep));
     118           3 :   PetscCall(MatDestroy(&M));
     119           3 :   PetscCall(MatDestroy(&C));
     120           3 :   PetscCall(MatDestroy(&K));
     121           3 :   PetscCall(SlepcFinalize());
     122             :   return 0;
     123             : }
     124             : 
     125             : /*
     126             :     Compute the matrix vector multiplication y<---T*x where T is a nx by nx
     127             :     tridiagonal matrix with DD on the diagonal, DL on the subdiagonal, and
     128             :     DU on the superdiagonal.
     129             :  */
     130        4790 : static void tv(int nx,const PetscScalar *x,PetscScalar *y)
     131             : {
     132        4790 :   PetscScalar dd,dl,du;
     133        4790 :   int         j;
     134             : 
     135        4790 :   dd  = 4.0;
     136        4790 :   dl  = -1.0;
     137        4790 :   du  = -1.0;
     138             : 
     139        4790 :   y[0] =  dd*x[0] + du*x[1];
     140       43110 :   for (j=1;j<nx-1;j++)
     141       38320 :     y[j] = dl*x[j-1] + dd*x[j] + du*x[j+1];
     142        4790 :   y[nx-1] = dl*x[nx-2] + dd*x[nx-1];
     143        4790 : }
     144             : 
     145             : /*
     146             :     Matrix-vector product subroutine for the 2D Laplacian.
     147             : 
     148             :     The matrix used is the 2 dimensional discrete Laplacian on unit square with
     149             :     zero Dirichlet boundary condition.
     150             : 
     151             :     Computes y <-- A*x, where A is the block tridiagonal matrix
     152             : 
     153             :                  | T -I          |
     154             :                  |-I  T -I       |
     155             :              A = |   -I  T       |
     156             :                  |        ...  -I|
     157             :                  |           -I T|
     158             : 
     159             :     The subroutine TV is called to compute y<--T*x.
     160             :  */
     161         479 : PetscErrorCode MatMult_Laplacian2D(Mat A,Vec x,Vec y)
     162             : {
     163         479 :   void              *ctx;
     164         479 :   int               nx,lo,i,j;
     165         479 :   const PetscScalar *px;
     166         479 :   PetscScalar       *py;
     167             : 
     168         479 :   PetscFunctionBeginUser;
     169         479 :   PetscCall(MatShellGetContext(A,&ctx));
     170         479 :   nx = *(int*)ctx;
     171         479 :   PetscCall(VecGetArrayRead(x,&px));
     172         479 :   PetscCall(VecGetArray(y,&py));
     173             : 
     174         479 :   tv(nx,&px[0],&py[0]);
     175        5748 :   for (i=0;i<nx;i++) py[i] -= px[nx+i];
     176             : 
     177        4311 :   for (j=2;j<nx;j++) {
     178        3832 :     lo = (j-1)*nx;
     179        3832 :     tv(nx,&px[lo],&py[lo]);
     180       45984 :     for (i=0;i<nx;i++) py[lo+i] -= px[lo-nx+i] + px[lo+nx+i];
     181             :   }
     182             : 
     183         479 :   lo = (nx-1)*nx;
     184         479 :   tv(nx,&px[lo],&py[lo]);
     185        5748 :   for (i=0;i<nx;i++) py[lo+i] -= px[lo-nx+i];
     186             : 
     187         479 :   PetscCall(VecRestoreArrayRead(x,&px));
     188         479 :   PetscCall(VecRestoreArray(y,&py));
     189         479 :   PetscFunctionReturn(PETSC_SUCCESS);
     190             : }
     191             : 
     192           2 : PetscErrorCode MatGetDiagonal_Laplacian2D(Mat A,Vec diag)
     193             : {
     194           2 :   PetscFunctionBeginUser;
     195           2 :   PetscCall(VecSet(diag,4.0));
     196           2 :   PetscFunctionReturn(PETSC_SUCCESS);
     197             : }
     198             : 
     199             : /*
     200             :     Matrix-vector product subroutine for the Null matrix.
     201             :  */
     202         479 : PetscErrorCode MatMult_Zero(Mat A,Vec x,Vec y)
     203             : {
     204         479 :   PetscFunctionBeginUser;
     205         479 :   PetscCall(VecSet(y,0.0));
     206         479 :   PetscFunctionReturn(PETSC_SUCCESS);
     207             : }
     208             : 
     209           2 : PetscErrorCode MatGetDiagonal_Zero(Mat A,Vec diag)
     210             : {
     211           2 :   PetscFunctionBeginUser;
     212           2 :   PetscCall(VecSet(diag,0.0));
     213           2 :   PetscFunctionReturn(PETSC_SUCCESS);
     214             : }
     215             : 
     216             : /*
     217             :     Matrix-vector product subroutine for the Identity matrix.
     218             :  */
     219         297 : PetscErrorCode MatMult_Identity(Mat A,Vec x,Vec y)
     220             : {
     221         297 :   PetscFunctionBeginUser;
     222         297 :   PetscCall(VecCopy(x,y));
     223         297 :   PetscFunctionReturn(PETSC_SUCCESS);
     224             : }
     225             : 
     226           3 : PetscErrorCode MatGetDiagonal_Identity(Mat A,Vec diag)
     227             : {
     228           3 :   PetscFunctionBeginUser;
     229           3 :   PetscCall(VecSet(diag,1.0));
     230           3 :   PetscFunctionReturn(PETSC_SUCCESS);
     231             : }
     232             : 
     233             : /*TEST
     234             : 
     235             :    test:
     236             :       suffix: 1
     237             :       args: -pep_type {{toar qarnoldi linear}} -pep_nev 4 -terse
     238             :       filter: grep -v Solution | sed -e "s/2.7996[1-8]i/2.79964i/g" | sed -e "s/2.7570[5-9]i/2.75708i/g" | sed -e "s/0.00000-2.79964i, 0.00000+2.79964i/0.00000+2.79964i, 0.00000-2.79964i/" | sed -e "s/0.00000-2.75708i, 0.00000+2.75708i/0.00000+2.75708i, 0.00000-2.75708i/"
     239             : 
     240             : TEST*/

Generated by: LCOV version 1.14