Line data Source code
1 : /*
2 : - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3 : SLEPc - Scalable Library for Eigenvalue Problem Computations
4 : Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
5 :
6 : This file is part of SLEPc.
7 : SLEPc is distributed under a 2-clause BSD license (see LICENSE).
8 : - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9 : */
10 :
11 : static char help[] = "Test interface functions of polynomial JD.\n\n"
12 : "This is based on ex16.c. The command line options are:\n"
13 : " -n <n>, where <n> = number of grid subdivisions in x dimension.\n"
14 : " -m <m>, where <m> = number of grid subdivisions in y dimension.\n\n";
15 :
16 : #include <slepcpep.h>
17 :
18 1 : int main(int argc,char **argv)
19 : {
20 1 : Mat M,C,K,A[3]; /* problem matrices */
21 1 : PEP pep; /* polynomial eigenproblem solver context */
22 1 : PetscInt N,n=10,m,Istart,Iend,II,i,j,midx;
23 1 : PetscReal restart,fix;
24 1 : PetscBool flag,reuse;
25 1 : PEPJDProjection proj;
26 :
27 1 : PetscFunctionBeginUser;
28 1 : PetscCall(SlepcInitialize(&argc,&argv,NULL,help));
29 :
30 1 : PetscCall(PetscOptionsGetInt(NULL,NULL,"-n",&n,NULL));
31 1 : PetscCall(PetscOptionsGetInt(NULL,NULL,"-m",&m,&flag));
32 1 : if (!flag) m=n;
33 1 : N = n*m;
34 1 : PetscCall(PetscPrintf(PETSC_COMM_WORLD,"\nQuadratic Eigenproblem, N=%" PetscInt_FMT " (%" PetscInt_FMT "x%" PetscInt_FMT " grid)\n\n",N,n,m));
35 :
36 : /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
37 : Compute the matrices that define the eigensystem, (k^2*M+k*C+K)x=0
38 : - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
39 :
40 : /* K is the 2-D Laplacian */
41 1 : PetscCall(MatCreate(PETSC_COMM_WORLD,&K));
42 1 : PetscCall(MatSetSizes(K,PETSC_DECIDE,PETSC_DECIDE,N,N));
43 1 : PetscCall(MatSetFromOptions(K));
44 1 : PetscCall(MatGetOwnershipRange(K,&Istart,&Iend));
45 145 : for (II=Istart;II<Iend;II++) {
46 144 : i = II/n; j = II-i*n;
47 144 : if (i>0) PetscCall(MatSetValue(K,II,II-n,-1.0,INSERT_VALUES));
48 144 : if (i<m-1) PetscCall(MatSetValue(K,II,II+n,-1.0,INSERT_VALUES));
49 144 : if (j>0) PetscCall(MatSetValue(K,II,II-1,-1.0,INSERT_VALUES));
50 144 : if (j<n-1) PetscCall(MatSetValue(K,II,II+1,-1.0,INSERT_VALUES));
51 144 : PetscCall(MatSetValue(K,II,II,4.0,INSERT_VALUES));
52 : }
53 1 : PetscCall(MatAssemblyBegin(K,MAT_FINAL_ASSEMBLY));
54 1 : PetscCall(MatAssemblyEnd(K,MAT_FINAL_ASSEMBLY));
55 :
56 : /* C is the 1-D Laplacian on horizontal lines */
57 1 : PetscCall(MatCreate(PETSC_COMM_WORLD,&C));
58 1 : PetscCall(MatSetSizes(C,PETSC_DECIDE,PETSC_DECIDE,N,N));
59 1 : PetscCall(MatSetFromOptions(C));
60 1 : PetscCall(MatGetOwnershipRange(C,&Istart,&Iend));
61 145 : for (II=Istart;II<Iend;II++) {
62 144 : i = II/n; j = II-i*n;
63 144 : if (j>0) PetscCall(MatSetValue(C,II,II-1,-1.0,INSERT_VALUES));
64 144 : if (j<n-1) PetscCall(MatSetValue(C,II,II+1,-1.0,INSERT_VALUES));
65 144 : PetscCall(MatSetValue(C,II,II,2.0,INSERT_VALUES));
66 : }
67 1 : PetscCall(MatAssemblyBegin(C,MAT_FINAL_ASSEMBLY));
68 1 : PetscCall(MatAssemblyEnd(C,MAT_FINAL_ASSEMBLY));
69 :
70 : /* M is a diagonal matrix */
71 1 : PetscCall(MatCreate(PETSC_COMM_WORLD,&M));
72 1 : PetscCall(MatSetSizes(M,PETSC_DECIDE,PETSC_DECIDE,N,N));
73 1 : PetscCall(MatSetFromOptions(M));
74 1 : PetscCall(MatGetOwnershipRange(M,&Istart,&Iend));
75 145 : for (II=Istart;II<Iend;II++) PetscCall(MatSetValue(M,II,II,(PetscReal)(II+1),INSERT_VALUES));
76 1 : PetscCall(MatAssemblyBegin(M,MAT_FINAL_ASSEMBLY));
77 1 : PetscCall(MatAssemblyEnd(M,MAT_FINAL_ASSEMBLY));
78 :
79 : /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
80 : Create the eigensolver and set various options
81 : - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
82 :
83 1 : PetscCall(PEPCreate(PETSC_COMM_WORLD,&pep));
84 1 : A[0] = K; A[1] = C; A[2] = M;
85 1 : PetscCall(PEPSetOperators(pep,3,A));
86 1 : PetscCall(PEPSetType(pep,PEPJD));
87 :
88 : /*
89 : Test interface functions of JD solver
90 : */
91 1 : PetscCall(PEPJDGetRestart(pep,&restart));
92 1 : PetscCall(PetscPrintf(PETSC_COMM_WORLD," Restart parameter before changing = %g",(double)restart));
93 1 : PetscCall(PEPJDSetRestart(pep,0.3));
94 1 : PetscCall(PEPJDGetRestart(pep,&restart));
95 1 : PetscCall(PetscPrintf(PETSC_COMM_WORLD," ... changed to %g\n",(double)restart));
96 :
97 1 : PetscCall(PEPJDGetFix(pep,&fix));
98 1 : PetscCall(PetscPrintf(PETSC_COMM_WORLD," Fix parameter before changing = %g",(double)fix));
99 1 : PetscCall(PEPJDSetFix(pep,0.001));
100 1 : PetscCall(PEPJDGetFix(pep,&fix));
101 1 : PetscCall(PetscPrintf(PETSC_COMM_WORLD," ... changed to %g\n",(double)fix));
102 :
103 1 : PetscCall(PEPJDGetReusePreconditioner(pep,&reuse));
104 1 : PetscCall(PetscPrintf(PETSC_COMM_WORLD," Reuse preconditioner flag before changing = %d",(int)reuse));
105 1 : PetscCall(PEPJDSetReusePreconditioner(pep,PETSC_TRUE));
106 1 : PetscCall(PEPJDGetReusePreconditioner(pep,&reuse));
107 1 : PetscCall(PetscPrintf(PETSC_COMM_WORLD," ... changed to %d\n",(int)reuse));
108 :
109 1 : PetscCall(PEPJDGetProjection(pep,&proj));
110 1 : PetscCall(PetscPrintf(PETSC_COMM_WORLD," Projection type before changing = %d",(int)proj));
111 1 : PetscCall(PEPJDSetProjection(pep,PEP_JD_PROJECTION_ORTHOGONAL));
112 1 : PetscCall(PEPJDGetProjection(pep,&proj));
113 1 : PetscCall(PetscPrintf(PETSC_COMM_WORLD," ... changed to %d\n",(int)proj));
114 :
115 1 : PetscCall(PEPJDGetMinimalityIndex(pep,&midx));
116 1 : PetscCall(PetscPrintf(PETSC_COMM_WORLD," Minimality index before changing = %" PetscInt_FMT,midx));
117 1 : PetscCall(PEPJDSetMinimalityIndex(pep,2));
118 1 : PetscCall(PEPJDGetMinimalityIndex(pep,&midx));
119 1 : PetscCall(PetscPrintf(PETSC_COMM_WORLD," ... changed to %" PetscInt_FMT "\n",midx));
120 :
121 1 : PetscCall(PEPSetFromOptions(pep));
122 :
123 : /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
124 : Solve the eigensystem
125 : - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
126 :
127 1 : PetscCall(PEPSolve(pep));
128 1 : PetscCall(PEPErrorView(pep,PEP_ERROR_BACKWARD,NULL));
129 1 : PetscCall(PEPDestroy(&pep));
130 1 : PetscCall(MatDestroy(&M));
131 1 : PetscCall(MatDestroy(&C));
132 1 : PetscCall(MatDestroy(&K));
133 1 : PetscCall(SlepcFinalize());
134 : return 0;
135 : }
136 :
137 : /*TEST
138 :
139 : test:
140 : args: -n 12 -pep_nev 2 -pep_ncv 21 -pep_conv_abs
141 :
142 : TEST*/
|