Line data Source code
1 : /*
2 : - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3 : SLEPc - Scalable Library for Eigenvalue Problem Computations
4 : Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
5 :
6 : This file is part of SLEPc.
7 : SLEPc is distributed under a 2-clause BSD license (see LICENSE).
8 : - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9 : */
10 :
11 : static char help[] = "Test PEP interface functions.\n\n";
12 :
13 : #include <slepcpep.h>
14 :
15 1 : int main(int argc,char **argv)
16 : {
17 1 : Mat A[3],B; /* problem matrices */
18 1 : PEP pep; /* eigenproblem solver context */
19 1 : ST st;
20 1 : KSP ksp;
21 1 : Vec Dl,Dr;
22 1 : DS ds;
23 1 : PetscReal tol,alpha;
24 1 : PetscScalar target;
25 1 : PetscInt n=20,i,its,nev,ncv,mpd,Istart,Iend,nmat;
26 1 : PEPWhich which;
27 1 : PEPConvergedReason reason;
28 1 : PEPType type;
29 1 : PEPExtract extr;
30 1 : PEPBasis basis;
31 1 : PEPScale scale;
32 1 : PEPRefine refine;
33 1 : PEPRefineScheme rscheme;
34 1 : PEPConv conv;
35 1 : PEPStop stop;
36 1 : PEPProblemType ptype;
37 1 : PetscViewerAndFormat *vf;
38 :
39 1 : PetscFunctionBeginUser;
40 1 : PetscCall(SlepcInitialize(&argc,&argv,NULL,help));
41 1 : PetscCall(PetscPrintf(PETSC_COMM_WORLD,"\nDiagonal Quadratic Eigenproblem, n=%" PetscInt_FMT "\n\n",n));
42 :
43 1 : PetscCall(MatCreate(PETSC_COMM_WORLD,&A[0]));
44 1 : PetscCall(MatSetSizes(A[0],PETSC_DECIDE,PETSC_DECIDE,n,n));
45 1 : PetscCall(MatSetFromOptions(A[0]));
46 1 : PetscCall(MatGetOwnershipRange(A[0],&Istart,&Iend));
47 21 : for (i=Istart;i<Iend;i++) PetscCall(MatSetValue(A[0],i,i,i+1,INSERT_VALUES));
48 1 : PetscCall(MatAssemblyBegin(A[0],MAT_FINAL_ASSEMBLY));
49 1 : PetscCall(MatAssemblyEnd(A[0],MAT_FINAL_ASSEMBLY));
50 :
51 1 : PetscCall(MatCreate(PETSC_COMM_WORLD,&A[1]));
52 1 : PetscCall(MatSetSizes(A[1],PETSC_DECIDE,PETSC_DECIDE,n,n));
53 1 : PetscCall(MatSetFromOptions(A[1]));
54 1 : PetscCall(MatGetOwnershipRange(A[1],&Istart,&Iend));
55 21 : for (i=Istart;i<Iend;i++) PetscCall(MatSetValue(A[1],i,i,1.0,INSERT_VALUES));
56 1 : PetscCall(MatAssemblyBegin(A[1],MAT_FINAL_ASSEMBLY));
57 1 : PetscCall(MatAssemblyEnd(A[1],MAT_FINAL_ASSEMBLY));
58 :
59 1 : PetscCall(MatCreate(PETSC_COMM_WORLD,&A[2]));
60 1 : PetscCall(MatSetSizes(A[2],PETSC_DECIDE,PETSC_DECIDE,n,n));
61 1 : PetscCall(MatSetFromOptions(A[2]));
62 1 : PetscCall(MatGetOwnershipRange(A[1],&Istart,&Iend));
63 21 : for (i=Istart;i<Iend;i++) PetscCall(MatSetValue(A[2],i,i,n/(PetscReal)(i+1),INSERT_VALUES));
64 1 : PetscCall(MatAssemblyBegin(A[2],MAT_FINAL_ASSEMBLY));
65 1 : PetscCall(MatAssemblyEnd(A[2],MAT_FINAL_ASSEMBLY));
66 :
67 1 : PetscCall(MatCreateVecs(A[0],&Dr,&Dl));
68 1 : PetscCall(VecSet(Dl,1.0));
69 1 : PetscCall(VecSet(Dr,0.95));
70 :
71 : /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
72 : Create eigensolver and test interface functions
73 : - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
74 1 : PetscCall(PEPCreate(PETSC_COMM_WORLD,&pep));
75 1 : PetscCall(PEPSetOperators(pep,3,A));
76 1 : PetscCall(PEPGetNumMatrices(pep,&nmat));
77 1 : PetscCall(PetscPrintf(PETSC_COMM_WORLD," Polynomial of degree %" PetscInt_FMT "\n",nmat-1));
78 1 : PetscCall(PEPGetOperators(pep,0,&B));
79 1 : PetscCall(MatView(B,NULL));
80 :
81 1 : PetscCall(PEPSetType(pep,PEPTOAR));
82 1 : PetscCall(PEPGetType(pep,&type));
83 1 : PetscCall(PetscPrintf(PETSC_COMM_WORLD," Type set to %s\n",type));
84 :
85 1 : PetscCall(PEPGetProblemType(pep,&ptype));
86 1 : PetscCall(PetscPrintf(PETSC_COMM_WORLD," Problem type before changing = %d",(int)ptype));
87 1 : PetscCall(PEPSetProblemType(pep,PEP_HERMITIAN));
88 1 : PetscCall(PEPGetProblemType(pep,&ptype));
89 1 : PetscCall(PetscPrintf(PETSC_COMM_WORLD," ... changed to %d.\n",(int)ptype));
90 :
91 1 : PetscCall(PEPGetExtract(pep,&extr));
92 1 : PetscCall(PetscPrintf(PETSC_COMM_WORLD," Extraction before changing = %d",(int)extr));
93 1 : PetscCall(PEPSetExtract(pep,PEP_EXTRACT_STRUCTURED));
94 1 : PetscCall(PEPGetExtract(pep,&extr));
95 1 : PetscCall(PetscPrintf(PETSC_COMM_WORLD," ... changed to %d\n",(int)extr));
96 :
97 1 : PetscCall(PEPSetScale(pep,PEP_SCALE_BOTH,.1,Dl,Dr,5,1.0));
98 1 : PetscCall(PEPGetScale(pep,&scale,&alpha,NULL,NULL,&its,NULL));
99 1 : PetscCall(PetscPrintf(PETSC_COMM_WORLD," Scaling: %s, alpha=%g, its=%" PetscInt_FMT "\n",PEPScaleTypes[scale],(double)alpha,its));
100 :
101 1 : PetscCall(PEPSetBasis(pep,PEP_BASIS_CHEBYSHEV1));
102 1 : PetscCall(PEPGetBasis(pep,&basis));
103 1 : PetscCall(PetscPrintf(PETSC_COMM_WORLD," Polynomial basis: %s\n",PEPBasisTypes[basis]));
104 :
105 1 : PetscCall(PEPSetRefine(pep,PEP_REFINE_SIMPLE,1,1e-9,2,PEP_REFINE_SCHEME_SCHUR));
106 1 : PetscCall(PEPGetRefine(pep,&refine,NULL,&tol,&its,&rscheme));
107 1 : PetscCall(PetscPrintf(PETSC_COMM_WORLD," Refinement: %s, tol=%g, its=%" PetscInt_FMT ", scheme=%s\n",PEPRefineTypes[refine],(double)tol,its,PEPRefineSchemes[rscheme]));
108 :
109 1 : PetscCall(PEPSetTarget(pep,4.8));
110 1 : PetscCall(PEPGetTarget(pep,&target));
111 1 : PetscCall(PEPSetWhichEigenpairs(pep,PEP_TARGET_MAGNITUDE));
112 1 : PetscCall(PEPGetWhichEigenpairs(pep,&which));
113 1 : PetscCall(PetscPrintf(PETSC_COMM_WORLD," Which = %d, target = %g\n",(int)which,(double)PetscRealPart(target)));
114 :
115 1 : PetscCall(PEPSetDimensions(pep,4,PETSC_DETERMINE,PETSC_DETERMINE));
116 1 : PetscCall(PEPGetDimensions(pep,&nev,&ncv,&mpd));
117 1 : PetscCall(PetscPrintf(PETSC_COMM_WORLD," Dimensions: nev=%" PetscInt_FMT ", ncv=%" PetscInt_FMT ", mpd=%" PetscInt_FMT "\n",nev,ncv,mpd));
118 :
119 1 : PetscCall(PEPSetTolerances(pep,2.2e-4,200));
120 1 : PetscCall(PEPGetTolerances(pep,&tol,&its));
121 1 : PetscCall(PetscPrintf(PETSC_COMM_WORLD," Tolerance = %.5f, max_its = %" PetscInt_FMT "\n",(double)tol,its));
122 :
123 1 : PetscCall(PEPSetConvergenceTest(pep,PEP_CONV_ABS));
124 1 : PetscCall(PEPGetConvergenceTest(pep,&conv));
125 1 : PetscCall(PEPSetStoppingTest(pep,PEP_STOP_BASIC));
126 1 : PetscCall(PEPGetStoppingTest(pep,&stop));
127 1 : PetscCall(PetscPrintf(PETSC_COMM_WORLD," Convergence test = %d, stopping test = %d\n",(int)conv,(int)stop));
128 :
129 1 : PetscCall(PetscViewerAndFormatCreate(PETSC_VIEWER_STDOUT_WORLD,PETSC_VIEWER_DEFAULT,&vf));
130 1 : PetscCall(PEPMonitorSet(pep,(PetscErrorCode (*)(PEP,PetscInt,PetscInt,PetscScalar*,PetscScalar*,PetscReal*,PetscInt,void*))PEPMonitorFirst,vf,(PetscCtxDestroyFn*)PetscViewerAndFormatDestroy));
131 1 : PetscCall(PEPMonitorCancel(pep));
132 :
133 1 : PetscCall(PEPGetST(pep,&st));
134 1 : PetscCall(STGetKSP(st,&ksp));
135 1 : PetscCall(KSPSetTolerances(ksp,1e-8,1e-35,PETSC_CURRENT,PETSC_CURRENT));
136 1 : PetscCall(STView(st,NULL));
137 1 : PetscCall(PEPGetDS(pep,&ds));
138 1 : PetscCall(DSView(ds,NULL));
139 :
140 1 : PetscCall(PEPSetFromOptions(pep));
141 1 : PetscCall(PEPSolve(pep));
142 1 : PetscCall(PEPGetConvergedReason(pep,&reason));
143 1 : PetscCall(PetscPrintf(PETSC_COMM_WORLD," Finished - converged reason = %d\n",(int)reason));
144 :
145 : /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
146 : Display solution and clean up
147 : - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
148 1 : PetscCall(PEPErrorView(pep,PEP_ERROR_RELATIVE,NULL));
149 1 : PetscCall(PEPDestroy(&pep));
150 1 : PetscCall(MatDestroy(&A[0]));
151 1 : PetscCall(MatDestroy(&A[1]));
152 1 : PetscCall(MatDestroy(&A[2]));
153 1 : PetscCall(VecDestroy(&Dl));
154 1 : PetscCall(VecDestroy(&Dr));
155 1 : PetscCall(SlepcFinalize());
156 : return 0;
157 : }
158 :
159 : /*TEST
160 :
161 : test:
162 : suffix: 1
163 : args: -pep_tol 1e-6 -pep_ncv 22
164 : filter: sed -e "s/[+-]0\.0*i//g"
165 :
166 : TEST*/
|