LCOV - code coverage report
Current view: top level - pep/tests - test10.c (source / functions) Hit Total Coverage
Test: SLEPc Lines: 66 66 100.0 %
Date: 2024-12-18 00:42:09 Functions: 2 2 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       3             :    SLEPc - Scalable Library for Eigenvalue Problem Computations
       4             :    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
       5             : 
       6             :    This file is part of SLEPc.
       7             :    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
       8             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       9             : */
      10             : 
      11             : static char help[] = "Tests a user-defined convergence test in PEP (based on ex16.c).\n\n"
      12             :   "The command line options are:\n"
      13             :   "  -n <n>, where <n> = number of grid subdivisions in x dimension.\n"
      14             :   "  -m <m>, where <m> = number of grid subdivisions in y dimension.\n\n";
      15             : 
      16             : #include <slepcpep.h>
      17             : 
      18             : /*
      19             :   MyConvergedRel - Convergence test relative to the norm of M (given in ctx).
      20             : */
      21           4 : PetscErrorCode MyConvergedRel(PEP pep,PetscScalar eigr,PetscScalar eigi,PetscReal res,PetscReal *errest,void *ctx)
      22             : {
      23           4 :   PetscReal norm = *(PetscReal*)ctx;
      24             : 
      25           4 :   PetscFunctionBegin;
      26           4 :   *errest = res/norm;
      27           4 :   PetscFunctionReturn(PETSC_SUCCESS);
      28             : }
      29             : 
      30           1 : int main(int argc,char **argv)
      31             : {
      32           1 :   Mat            M,C,K,A[3];      /* problem matrices */
      33           1 :   PEP            pep;             /* polynomial eigenproblem solver context */
      34           1 :   PetscInt       N,n=10,m,Istart,Iend,II,nev,i,j;
      35           1 :   PetscBool      flag;
      36           1 :   PetscReal      norm;
      37             : 
      38           1 :   PetscFunctionBeginUser;
      39           1 :   PetscCall(SlepcInitialize(&argc,&argv,NULL,help));
      40             : 
      41           1 :   PetscCall(PetscOptionsGetInt(NULL,NULL,"-n",&n,NULL));
      42           1 :   PetscCall(PetscOptionsGetInt(NULL,NULL,"-m",&m,&flag));
      43           1 :   if (!flag) m=n;
      44           1 :   N = n*m;
      45           1 :   PetscCall(PetscPrintf(PETSC_COMM_WORLD,"\nQuadratic Eigenproblem, N=%" PetscInt_FMT " (%" PetscInt_FMT "x%" PetscInt_FMT " grid)\n\n",N,n,m));
      46             : 
      47             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      48             :      Compute the matrices that define the eigensystem, (k^2*M+k*C+K)x=0
      49             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
      50             : 
      51             :   /* K is the 2-D Laplacian */
      52           1 :   PetscCall(MatCreate(PETSC_COMM_WORLD,&K));
      53           1 :   PetscCall(MatSetSizes(K,PETSC_DECIDE,PETSC_DECIDE,N,N));
      54           1 :   PetscCall(MatSetFromOptions(K));
      55           1 :   PetscCall(MatGetOwnershipRange(K,&Istart,&Iend));
      56         101 :   for (II=Istart;II<Iend;II++) {
      57         100 :     i = II/n; j = II-i*n;
      58         100 :     if (i>0) PetscCall(MatSetValue(K,II,II-n,-1.0,INSERT_VALUES));
      59         100 :     if (i<m-1) PetscCall(MatSetValue(K,II,II+n,-1.0,INSERT_VALUES));
      60         100 :     if (j>0) PetscCall(MatSetValue(K,II,II-1,-1.0,INSERT_VALUES));
      61         100 :     if (j<n-1) PetscCall(MatSetValue(K,II,II+1,-1.0,INSERT_VALUES));
      62         100 :     PetscCall(MatSetValue(K,II,II,4.0,INSERT_VALUES));
      63             :   }
      64           1 :   PetscCall(MatAssemblyBegin(K,MAT_FINAL_ASSEMBLY));
      65           1 :   PetscCall(MatAssemblyEnd(K,MAT_FINAL_ASSEMBLY));
      66             : 
      67             :   /* C is the 1-D Laplacian on horizontal lines */
      68           1 :   PetscCall(MatCreate(PETSC_COMM_WORLD,&C));
      69           1 :   PetscCall(MatSetSizes(C,PETSC_DECIDE,PETSC_DECIDE,N,N));
      70           1 :   PetscCall(MatSetFromOptions(C));
      71           1 :   PetscCall(MatGetOwnershipRange(C,&Istart,&Iend));
      72         101 :   for (II=Istart;II<Iend;II++) {
      73         100 :     i = II/n; j = II-i*n;
      74         100 :     if (j>0) PetscCall(MatSetValue(C,II,II-1,-1.0,INSERT_VALUES));
      75         100 :     if (j<n-1) PetscCall(MatSetValue(C,II,II+1,-1.0,INSERT_VALUES));
      76         100 :     PetscCall(MatSetValue(C,II,II,2.0,INSERT_VALUES));
      77             :   }
      78           1 :   PetscCall(MatAssemblyBegin(C,MAT_FINAL_ASSEMBLY));
      79           1 :   PetscCall(MatAssemblyEnd(C,MAT_FINAL_ASSEMBLY));
      80             : 
      81             :   /* M is a diagonal matrix */
      82           1 :   PetscCall(MatCreate(PETSC_COMM_WORLD,&M));
      83           1 :   PetscCall(MatSetSizes(M,PETSC_DECIDE,PETSC_DECIDE,N,N));
      84           1 :   PetscCall(MatSetFromOptions(M));
      85           1 :   PetscCall(MatGetOwnershipRange(M,&Istart,&Iend));
      86         101 :   for (II=Istart;II<Iend;II++) PetscCall(MatSetValue(M,II,II,(PetscReal)(II+1),INSERT_VALUES));
      87           1 :   PetscCall(MatAssemblyBegin(M,MAT_FINAL_ASSEMBLY));
      88           1 :   PetscCall(MatAssemblyEnd(M,MAT_FINAL_ASSEMBLY));
      89             : 
      90             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      91             :                 Create the eigensolver and set various options
      92             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
      93             : 
      94           1 :   PetscCall(PEPCreate(PETSC_COMM_WORLD,&pep));
      95           1 :   A[0] = K; A[1] = C; A[2] = M;
      96           1 :   PetscCall(PEPSetOperators(pep,3,A));
      97           1 :   PetscCall(PEPSetProblemType(pep,PEP_HERMITIAN));
      98           1 :   PetscCall(PEPSetDimensions(pep,4,20,PETSC_DETERMINE));
      99             : 
     100             :   /* setup convergence test relative to the norm of M */
     101           1 :   PetscCall(MatNorm(M,NORM_1,&norm));
     102           1 :   PetscCall(PEPSetConvergenceTestFunction(pep,MyConvergedRel,&norm,NULL));
     103           1 :   PetscCall(PEPSetFromOptions(pep));
     104             : 
     105             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     106             :                       Solve the eigensystem
     107             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
     108             : 
     109           1 :   PetscCall(PEPSolve(pep));
     110           1 :   PetscCall(PEPGetDimensions(pep,&nev,NULL,NULL));
     111           1 :   PetscCall(PetscPrintf(PETSC_COMM_WORLD," Number of requested eigenvalues: %" PetscInt_FMT "\n",nev));
     112             : 
     113             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     114             :                     Display solution and clean up
     115             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
     116             : 
     117           1 :   PetscCall(PEPErrorView(pep,PEP_ERROR_BACKWARD,NULL));
     118           1 :   PetscCall(PEPDestroy(&pep));
     119           1 :   PetscCall(MatDestroy(&M));
     120           1 :   PetscCall(MatDestroy(&C));
     121           1 :   PetscCall(MatDestroy(&K));
     122           1 :   PetscCall(SlepcFinalize());
     123             :   return 0;
     124             : }
     125             : 
     126             : /*TEST
     127             : 
     128             :    testset:
     129             :       requires: double
     130             :       suffix: 1
     131             : 
     132             : TEST*/

Generated by: LCOV version 1.14