LCOV - code coverage report
Current view: top level - pep/tests - test1.c (source / functions) Hit Total Coverage
Test: SLEPc Lines: 94 96 97.9 %
Date: 2024-11-21 00:34:55 Functions: 1 1 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       3             :    SLEPc - Scalable Library for Eigenvalue Problem Computations
       4             :    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
       5             : 
       6             :    This file is part of SLEPc.
       7             :    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
       8             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       9             : */
      10             : 
      11             : static char help[] = "Test the solution of a PEP without calling PEPSetFromOptions (based on ex16.c).\n\n"
      12             :   "The command line options are:\n"
      13             :   "  -n <n>, where <n> = number of grid subdivisions in x dimension.\n"
      14             :   "  -m <m>, where <m> = number of grid subdivisions in y dimension.\n"
      15             :   "  -type <pep_type> = pep type to test.\n"
      16             :   "  -epstype <eps_type> = eps type to test (for linear).\n\n";
      17             : 
      18             : #include <slepcpep.h>
      19             : 
      20           4 : int main(int argc,char **argv)
      21             : {
      22           4 :   Mat            M,C,K,A[3];      /* problem matrices */
      23           4 :   PEP            pep;             /* polynomial eigenproblem solver context */
      24           4 :   PetscInt       N,n=10,m,Istart,Iend,II,nev,i,j;
      25           4 :   PetscReal      keep;
      26           4 :   PetscBool      flag,isgd2,epsgiven,lock;
      27           4 :   char           peptype[30] = "linear",epstype[30] = "";
      28           4 :   EPS            eps;
      29           4 :   ST             st;
      30           4 :   KSP            ksp;
      31           4 :   PC             pc;
      32             : 
      33           4 :   PetscFunctionBeginUser;
      34           4 :   PetscCall(SlepcInitialize(&argc,&argv,NULL,help));
      35             : 
      36           4 :   PetscCall(PetscOptionsGetInt(NULL,NULL,"-n",&n,NULL));
      37           4 :   PetscCall(PetscOptionsGetInt(NULL,NULL,"-m",&m,&flag));
      38           4 :   if (!flag) m=n;
      39           4 :   N = n*m;
      40           4 :   PetscCall(PetscOptionsGetString(NULL,NULL,"-type",peptype,sizeof(peptype),NULL));
      41           4 :   PetscCall(PetscOptionsGetString(NULL,NULL,"-epstype",epstype,sizeof(epstype),&epsgiven));
      42           4 :   PetscCall(PetscPrintf(PETSC_COMM_WORLD,"\nQuadratic Eigenproblem, N=%" PetscInt_FMT " (%" PetscInt_FMT "x%" PetscInt_FMT " grid)\n\n",N,n,m));
      43             : 
      44             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      45             :      Compute the matrices that define the eigensystem, (k^2*M+k*C+K)x=0
      46             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
      47             : 
      48             :   /* K is the 2-D Laplacian */
      49           4 :   PetscCall(MatCreate(PETSC_COMM_WORLD,&K));
      50           4 :   PetscCall(MatSetSizes(K,PETSC_DECIDE,PETSC_DECIDE,N,N));
      51           4 :   PetscCall(MatSetFromOptions(K));
      52           4 :   PetscCall(MatGetOwnershipRange(K,&Istart,&Iend));
      53         444 :   for (II=Istart;II<Iend;II++) {
      54         440 :     i = II/n; j = II-i*n;
      55         440 :     if (i>0) PetscCall(MatSetValue(K,II,II-n,-1.0,INSERT_VALUES));
      56         440 :     if (i<m-1) PetscCall(MatSetValue(K,II,II+n,-1.0,INSERT_VALUES));
      57         440 :     if (j>0) PetscCall(MatSetValue(K,II,II-1,-1.0,INSERT_VALUES));
      58         440 :     if (j<n-1) PetscCall(MatSetValue(K,II,II+1,-1.0,INSERT_VALUES));
      59         440 :     PetscCall(MatSetValue(K,II,II,4.0,INSERT_VALUES));
      60             :   }
      61           4 :   PetscCall(MatAssemblyBegin(K,MAT_FINAL_ASSEMBLY));
      62           4 :   PetscCall(MatAssemblyEnd(K,MAT_FINAL_ASSEMBLY));
      63             : 
      64             :   /* C is the 1-D Laplacian on horizontal lines */
      65           4 :   PetscCall(MatCreate(PETSC_COMM_WORLD,&C));
      66           4 :   PetscCall(MatSetSizes(C,PETSC_DECIDE,PETSC_DECIDE,N,N));
      67           4 :   PetscCall(MatSetFromOptions(C));
      68           4 :   PetscCall(MatGetOwnershipRange(C,&Istart,&Iend));
      69         444 :   for (II=Istart;II<Iend;II++) {
      70         440 :     i = II/n; j = II-i*n;
      71         440 :     if (j>0) PetscCall(MatSetValue(C,II,II-1,-1.0,INSERT_VALUES));
      72         440 :     if (j<n-1) PetscCall(MatSetValue(C,II,II+1,-1.0,INSERT_VALUES));
      73         440 :     PetscCall(MatSetValue(C,II,II,2.0,INSERT_VALUES));
      74             :   }
      75           4 :   PetscCall(MatAssemblyBegin(C,MAT_FINAL_ASSEMBLY));
      76           4 :   PetscCall(MatAssemblyEnd(C,MAT_FINAL_ASSEMBLY));
      77             : 
      78             :   /* M is a diagonal matrix */
      79           4 :   PetscCall(MatCreate(PETSC_COMM_WORLD,&M));
      80           4 :   PetscCall(MatSetSizes(M,PETSC_DECIDE,PETSC_DECIDE,N,N));
      81           4 :   PetscCall(MatSetFromOptions(M));
      82           4 :   PetscCall(MatGetOwnershipRange(M,&Istart,&Iend));
      83         444 :   for (II=Istart;II<Iend;II++) PetscCall(MatSetValue(M,II,II,(PetscReal)(II+1),INSERT_VALUES));
      84           4 :   PetscCall(MatAssemblyBegin(M,MAT_FINAL_ASSEMBLY));
      85           4 :   PetscCall(MatAssemblyEnd(M,MAT_FINAL_ASSEMBLY));
      86             : 
      87             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      88             :                 Create the eigensolver and set various options
      89             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
      90             : 
      91           4 :   PetscCall(PEPCreate(PETSC_COMM_WORLD,&pep));
      92           4 :   A[0] = K; A[1] = C; A[2] = M;
      93           4 :   PetscCall(PEPSetOperators(pep,3,A));
      94           4 :   PetscCall(PEPSetProblemType(pep,PEP_GENERAL));
      95           4 :   PetscCall(PEPSetDimensions(pep,4,20,PETSC_DETERMINE));
      96           4 :   PetscCall(PEPSetTolerances(pep,PETSC_SMALL,PETSC_CURRENT));
      97             : 
      98             :   /*
      99             :      Set solver type at runtime
     100             :   */
     101           4 :   PetscCall(PEPSetType(pep,peptype));
     102           4 :   if (epsgiven) {
     103           1 :     PetscCall(PetscObjectTypeCompare((PetscObject)pep,PEPLINEAR,&flag));
     104           1 :     if (flag) {
     105           1 :       PetscCall(PEPLinearGetEPS(pep,&eps));
     106           1 :       PetscCall(PetscStrcmp(epstype,"gd2",&isgd2));
     107           1 :       if (isgd2) {
     108           0 :         PetscCall(EPSSetType(eps,EPSGD));
     109           0 :         PetscCall(EPSGDSetDoubleExpansion(eps,PETSC_TRUE));
     110           1 :       } else PetscCall(EPSSetType(eps,epstype));
     111           1 :       PetscCall(EPSGetST(eps,&st));
     112           1 :       PetscCall(STGetKSP(st,&ksp));
     113           1 :       PetscCall(KSPGetPC(ksp,&pc));
     114           1 :       PetscCall(PCSetType(pc,PCJACOBI));
     115           1 :       PetscCall(PetscObjectTypeCompare((PetscObject)eps,EPSGD,&flag));
     116             :     }
     117           1 :     PetscCall(PEPLinearSetExplicitMatrix(pep,PETSC_TRUE));
     118             :   }
     119           4 :   PetscCall(PetscObjectTypeCompare((PetscObject)pep,PEPQARNOLDI,&flag));
     120           4 :   if (flag) {
     121           1 :     PetscCall(STCreate(PETSC_COMM_WORLD,&st));
     122           1 :     PetscCall(STSetTransform(st,PETSC_TRUE));
     123           1 :     PetscCall(PEPSetST(pep,st));
     124           1 :     PetscCall(STDestroy(&st));
     125           1 :     PetscCall(PEPQArnoldiGetRestart(pep,&keep));
     126           1 :     PetscCall(PEPQArnoldiGetLocking(pep,&lock));
     127           1 :     if (!lock && keep<0.6) PetscCall(PEPQArnoldiSetRestart(pep,0.6));
     128             :   }
     129           4 :   PetscCall(PetscObjectTypeCompare((PetscObject)pep,PEPTOAR,&flag));
     130           4 :   if (flag) {
     131           1 :     PetscCall(PEPTOARGetRestart(pep,&keep));
     132           1 :     PetscCall(PEPTOARGetLocking(pep,&lock));
     133           1 :     if (!lock && keep<0.6) PetscCall(PEPTOARSetRestart(pep,0.6));
     134             :   }
     135             : 
     136             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     137             :                       Solve the eigensystem
     138             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
     139             : 
     140           4 :   PetscCall(PEPSolve(pep));
     141           4 :   PetscCall(PEPGetDimensions(pep,&nev,NULL,NULL));
     142           4 :   PetscCall(PetscPrintf(PETSC_COMM_WORLD," Number of requested eigenvalues: %" PetscInt_FMT "\n",nev));
     143             : 
     144             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     145             :                     Display solution and clean up
     146             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
     147             : 
     148           4 :   PetscCall(PEPErrorView(pep,PEP_ERROR_BACKWARD,NULL));
     149           4 :   PetscCall(PEPDestroy(&pep));
     150           4 :   PetscCall(MatDestroy(&M));
     151           4 :   PetscCall(MatDestroy(&C));
     152           4 :   PetscCall(MatDestroy(&K));
     153           4 :   PetscCall(SlepcFinalize());
     154             :   return 0;
     155             : }
     156             : 
     157             : /*TEST
     158             : 
     159             :    testset:
     160             :       args: -m 11
     161             :       output_file: output/test1_1.out
     162             :       filter: sed -e "s/1.16403/1.16404/g" | sed -e "s/1.65362i/1.65363i/g" | sed -e "s/-1.16404-1.65363i, -1.16404+1.65363i/-1.16404+1.65363i, -1.16404-1.65363i/" | sed -e "s/-0.51784-1.31039i, -0.51784+1.31039i/-0.51784+1.31039i, -0.51784-1.31039i/"
     163             :       requires: !single
     164             :       test:
     165             :          suffix: 1
     166             :          args: -type {{toar qarnoldi linear}}
     167             :       test:
     168             :          suffix: 1_linear_gd
     169             :          args: -type linear -epstype gd
     170             :          requires: !__float128
     171             : 
     172             : TEST*/

Generated by: LCOV version 1.14