Line data Source code
1 : /*
2 : - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3 : SLEPc - Scalable Library for Eigenvalue Problem Computations
4 : Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
5 :
6 : This file is part of SLEPc.
7 : SLEPc is distributed under a 2-clause BSD license (see LICENSE).
8 : - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9 : */
10 : /*
11 : PEP routines related to options that can be set via the command-line
12 : or procedurally
13 : */
14 :
15 : #include <slepc/private/pepimpl.h> /*I "slepcpep.h" I*/
16 : #include <petscdraw.h>
17 :
18 : /*@C
19 : PEPMonitorSetFromOptions - Sets a monitor function and viewer appropriate for the type
20 : indicated by the user.
21 :
22 : Collective
23 :
24 : Input Parameters:
25 : + pep - the polynomial eigensolver context
26 : . opt - the command line option for this monitor
27 : . name - the monitor type one is seeking
28 : . ctx - an optional user context for the monitor, or NULL
29 : - trackall - whether this monitor tracks all eigenvalues or not
30 :
31 : Level: developer
32 :
33 : .seealso: PEPMonitorSet(), PEPSetTrackAll()
34 : @*/
35 477 : PetscErrorCode PEPMonitorSetFromOptions(PEP pep,const char opt[],const char name[],void *ctx,PetscBool trackall)
36 : {
37 477 : PetscErrorCode (*mfunc)(PEP,PetscInt,PetscInt,PetscScalar*,PetscScalar*,PetscReal*,PetscInt,void*);
38 477 : PetscErrorCode (*cfunc)(PetscViewer,PetscViewerFormat,void*,PetscViewerAndFormat**);
39 477 : PetscErrorCode (*dfunc)(PetscViewerAndFormat**);
40 477 : PetscViewerAndFormat *vf;
41 477 : PetscViewer viewer;
42 477 : PetscViewerFormat format;
43 477 : PetscViewerType vtype;
44 477 : char key[PETSC_MAX_PATH_LEN];
45 477 : PetscBool flg;
46 :
47 477 : PetscFunctionBegin;
48 477 : PetscCall(PetscOptionsCreateViewer(PetscObjectComm((PetscObject)pep),((PetscObject)pep)->options,((PetscObject)pep)->prefix,opt,&viewer,&format,&flg));
49 477 : if (!flg) PetscFunctionReturn(PETSC_SUCCESS);
50 :
51 4 : PetscCall(PetscViewerGetType(viewer,&vtype));
52 4 : PetscCall(SlepcMonitorMakeKey_Internal(name,vtype,format,key));
53 4 : PetscCall(PetscFunctionListFind(PEPMonitorList,key,&mfunc));
54 4 : PetscCheck(mfunc,PetscObjectComm((PetscObject)pep),PETSC_ERR_SUP,"Specified viewer and format not supported");
55 4 : PetscCall(PetscFunctionListFind(PEPMonitorCreateList,key,&cfunc));
56 4 : PetscCall(PetscFunctionListFind(PEPMonitorDestroyList,key,&dfunc));
57 4 : if (!cfunc) cfunc = PetscViewerAndFormatCreate_Internal;
58 4 : if (!dfunc) dfunc = PetscViewerAndFormatDestroy;
59 :
60 4 : PetscCall((*cfunc)(viewer,format,ctx,&vf));
61 4 : PetscCall(PetscViewerDestroy(&viewer));
62 4 : PetscCall(PEPMonitorSet(pep,mfunc,vf,(PetscCtxDestroyFn*)dfunc));
63 4 : if (trackall) PetscCall(PEPSetTrackAll(pep,PETSC_TRUE));
64 4 : PetscFunctionReturn(PETSC_SUCCESS);
65 : }
66 :
67 : /*@
68 : PEPSetFromOptions - Sets PEP options from the options database.
69 : This routine must be called before PEPSetUp() if the user is to be
70 : allowed to set the solver type.
71 :
72 : Collective
73 :
74 : Input Parameters:
75 : . pep - the polynomial eigensolver context
76 :
77 : Notes:
78 : To see all options, run your program with the -help option.
79 :
80 : Level: beginner
81 :
82 : .seealso: PEPSetOptionsPrefix()
83 : @*/
84 159 : PetscErrorCode PEPSetFromOptions(PEP pep)
85 : {
86 159 : char type[256];
87 159 : PetscBool set,flg,flg1,flg2,flg3,flg4,flg5;
88 159 : PetscReal r,t,array[2]={0,0};
89 159 : PetscScalar s;
90 159 : PetscInt i,j,k;
91 159 : PEPScale scale;
92 159 : PEPRefine refine;
93 159 : PEPRefineScheme scheme;
94 :
95 159 : PetscFunctionBegin;
96 159 : PetscValidHeaderSpecific(pep,PEP_CLASSID,1);
97 159 : PetscCall(PEPRegisterAll());
98 477 : PetscObjectOptionsBegin((PetscObject)pep);
99 169 : PetscCall(PetscOptionsFList("-pep_type","Polynomial eigensolver method","PEPSetType",PEPList,(char*)(((PetscObject)pep)->type_name?((PetscObject)pep)->type_name:PEPTOAR),type,sizeof(type),&flg));
100 159 : if (flg) PetscCall(PEPSetType(pep,type));
101 67 : else if (!((PetscObject)pep)->type_name) PetscCall(PEPSetType(pep,PEPTOAR));
102 :
103 159 : PetscCall(PetscOptionsBoolGroupBegin("-pep_general","General polynomial eigenvalue problem","PEPSetProblemType",&flg));
104 159 : if (flg) PetscCall(PEPSetProblemType(pep,PEP_GENERAL));
105 159 : PetscCall(PetscOptionsBoolGroup("-pep_hermitian","Hermitian polynomial eigenvalue problem","PEPSetProblemType",&flg));
106 159 : if (flg) PetscCall(PEPSetProblemType(pep,PEP_HERMITIAN));
107 159 : PetscCall(PetscOptionsBoolGroup("-pep_hyperbolic","Hyperbolic polynomial eigenvalue problem","PEPSetProblemType",&flg));
108 159 : if (flg) PetscCall(PEPSetProblemType(pep,PEP_HYPERBOLIC));
109 159 : PetscCall(PetscOptionsBoolGroupEnd("-pep_gyroscopic","Gyroscopic polynomial eigenvalue problem","PEPSetProblemType",&flg));
110 159 : if (flg) PetscCall(PEPSetProblemType(pep,PEP_GYROSCOPIC));
111 :
112 159 : scale = pep->scale;
113 159 : PetscCall(PetscOptionsEnum("-pep_scale","Scaling strategy","PEPSetScale",PEPScaleTypes,(PetscEnum)scale,(PetscEnum*)&scale,&flg1));
114 159 : r = pep->sfactor;
115 159 : PetscCall(PetscOptionsReal("-pep_scale_factor","Scale factor","PEPSetScale",pep->sfactor,&r,&flg2));
116 159 : if (!flg2 && r==1.0) r = PETSC_DETERMINE;
117 159 : j = pep->sits;
118 159 : PetscCall(PetscOptionsInt("-pep_scale_its","Number of iterations in diagonal scaling","PEPSetScale",pep->sits,&j,&flg3));
119 159 : t = pep->slambda;
120 159 : PetscCall(PetscOptionsReal("-pep_scale_lambda","Estimate of eigenvalue (modulus) for diagonal scaling","PEPSetScale",pep->slambda,&t,&flg4));
121 159 : if (flg1 || flg2 || flg3 || flg4) PetscCall(PEPSetScale(pep,scale,r,NULL,NULL,j,t));
122 :
123 159 : PetscCall(PetscOptionsEnum("-pep_extract","Extraction method","PEPSetExtract",PEPExtractTypes,(PetscEnum)pep->extract,(PetscEnum*)&pep->extract,NULL));
124 :
125 159 : refine = pep->refine;
126 159 : PetscCall(PetscOptionsEnum("-pep_refine","Iterative refinement method","PEPSetRefine",PEPRefineTypes,(PetscEnum)refine,(PetscEnum*)&refine,&flg1));
127 159 : i = pep->npart;
128 159 : PetscCall(PetscOptionsInt("-pep_refine_partitions","Number of partitions of the communicator for iterative refinement","PEPSetRefine",pep->npart,&i,&flg2));
129 159 : r = pep->rtol;
130 160 : PetscCall(PetscOptionsReal("-pep_refine_tol","Tolerance for iterative refinement","PEPSetRefine",pep->rtol==(PetscReal)PETSC_DETERMINE?SLEPC_DEFAULT_TOL/1000:pep->rtol,&r,&flg3));
131 159 : j = pep->rits;
132 159 : PetscCall(PetscOptionsInt("-pep_refine_its","Maximum number of iterations for iterative refinement","PEPSetRefine",pep->rits,&j,&flg4));
133 159 : scheme = pep->scheme;
134 159 : PetscCall(PetscOptionsEnum("-pep_refine_scheme","Scheme used for linear systems within iterative refinement","PEPSetRefine",PEPRefineSchemes,(PetscEnum)scheme,(PetscEnum*)&scheme,&flg5));
135 159 : if (flg1 || flg2 || flg3 || flg4 || flg5) PetscCall(PEPSetRefine(pep,refine,i,r,j,scheme));
136 :
137 159 : i = pep->max_it;
138 159 : PetscCall(PetscOptionsInt("-pep_max_it","Maximum number of iterations","PEPSetTolerances",pep->max_it,&i,&flg1));
139 159 : r = pep->tol;
140 256 : PetscCall(PetscOptionsReal("-pep_tol","Tolerance","PEPSetTolerances",SlepcDefaultTol(pep->tol),&r,&flg2));
141 159 : if (flg1 || flg2) PetscCall(PEPSetTolerances(pep,r,i));
142 :
143 159 : PetscCall(PetscOptionsBoolGroupBegin("-pep_conv_rel","Relative error convergence test","PEPSetConvergenceTest",&flg));
144 159 : if (flg) PetscCall(PEPSetConvergenceTest(pep,PEP_CONV_REL));
145 159 : PetscCall(PetscOptionsBoolGroup("-pep_conv_norm","Convergence test relative to the matrix norms","PEPSetConvergenceTest",&flg));
146 159 : if (flg) PetscCall(PEPSetConvergenceTest(pep,PEP_CONV_NORM));
147 159 : PetscCall(PetscOptionsBoolGroup("-pep_conv_abs","Absolute error convergence test","PEPSetConvergenceTest",&flg));
148 159 : if (flg) PetscCall(PEPSetConvergenceTest(pep,PEP_CONV_ABS));
149 159 : PetscCall(PetscOptionsBoolGroupEnd("-pep_conv_user","User-defined convergence test","PEPSetConvergenceTest",&flg));
150 159 : if (flg) PetscCall(PEPSetConvergenceTest(pep,PEP_CONV_USER));
151 :
152 159 : PetscCall(PetscOptionsBoolGroupBegin("-pep_stop_basic","Stop iteration if all eigenvalues converged or max_it reached","PEPSetStoppingTest",&flg));
153 159 : if (flg) PetscCall(PEPSetStoppingTest(pep,PEP_STOP_BASIC));
154 159 : PetscCall(PetscOptionsBoolGroupEnd("-pep_stop_user","User-defined stopping test","PEPSetStoppingTest",&flg));
155 159 : if (flg) PetscCall(PEPSetStoppingTest(pep,PEP_STOP_USER));
156 :
157 159 : i = pep->nev;
158 159 : PetscCall(PetscOptionsInt("-pep_nev","Number of eigenvalues to compute","PEPSetDimensions",pep->nev,&i,&flg1));
159 159 : j = pep->ncv;
160 159 : PetscCall(PetscOptionsInt("-pep_ncv","Number of basis vectors","PEPSetDimensions",pep->ncv,&j,&flg2));
161 159 : k = pep->mpd;
162 159 : PetscCall(PetscOptionsInt("-pep_mpd","Maximum dimension of projected problem","PEPSetDimensions",pep->mpd,&k,&flg3));
163 159 : if (flg1 || flg2 || flg3) PetscCall(PEPSetDimensions(pep,i,j,k));
164 :
165 159 : PetscCall(PetscOptionsEnum("-pep_basis","Polynomial basis","PEPSetBasis",PEPBasisTypes,(PetscEnum)pep->basis,(PetscEnum*)&pep->basis,NULL));
166 :
167 159 : PetscCall(PetscOptionsBoolGroupBegin("-pep_largest_magnitude","Compute largest eigenvalues in magnitude","PEPSetWhichEigenpairs",&flg));
168 159 : if (flg) PetscCall(PEPSetWhichEigenpairs(pep,PEP_LARGEST_MAGNITUDE));
169 159 : PetscCall(PetscOptionsBoolGroup("-pep_smallest_magnitude","Compute smallest eigenvalues in magnitude","PEPSetWhichEigenpairs",&flg));
170 159 : if (flg) PetscCall(PEPSetWhichEigenpairs(pep,PEP_SMALLEST_MAGNITUDE));
171 159 : PetscCall(PetscOptionsBoolGroup("-pep_largest_real","Compute eigenvalues with largest real parts","PEPSetWhichEigenpairs",&flg));
172 159 : if (flg) PetscCall(PEPSetWhichEigenpairs(pep,PEP_LARGEST_REAL));
173 159 : PetscCall(PetscOptionsBoolGroup("-pep_smallest_real","Compute eigenvalues with smallest real parts","PEPSetWhichEigenpairs",&flg));
174 159 : if (flg) PetscCall(PEPSetWhichEigenpairs(pep,PEP_SMALLEST_REAL));
175 159 : PetscCall(PetscOptionsBoolGroup("-pep_largest_imaginary","Compute eigenvalues with largest imaginary parts","PEPSetWhichEigenpairs",&flg));
176 159 : if (flg) PetscCall(PEPSetWhichEigenpairs(pep,PEP_LARGEST_IMAGINARY));
177 159 : PetscCall(PetscOptionsBoolGroup("-pep_smallest_imaginary","Compute eigenvalues with smallest imaginary parts","PEPSetWhichEigenpairs",&flg));
178 159 : if (flg) PetscCall(PEPSetWhichEigenpairs(pep,PEP_SMALLEST_IMAGINARY));
179 159 : PetscCall(PetscOptionsBoolGroup("-pep_target_magnitude","Compute eigenvalues closest to target","PEPSetWhichEigenpairs",&flg));
180 159 : if (flg) PetscCall(PEPSetWhichEigenpairs(pep,PEP_TARGET_MAGNITUDE));
181 159 : PetscCall(PetscOptionsBoolGroup("-pep_target_real","Compute eigenvalues with real parts closest to target","PEPSetWhichEigenpairs",&flg));
182 159 : if (flg) PetscCall(PEPSetWhichEigenpairs(pep,PEP_TARGET_REAL));
183 159 : PetscCall(PetscOptionsBoolGroup("-pep_target_imaginary","Compute eigenvalues with imaginary parts closest to target","PEPSetWhichEigenpairs",&flg));
184 159 : if (flg) PetscCall(PEPSetWhichEigenpairs(pep,PEP_TARGET_IMAGINARY));
185 159 : PetscCall(PetscOptionsBoolGroupEnd("-pep_all","Compute all eigenvalues in an interval or a region","PEPSetWhichEigenpairs",&flg));
186 159 : if (flg) PetscCall(PEPSetWhichEigenpairs(pep,PEP_ALL));
187 :
188 159 : PetscCall(PetscOptionsScalar("-pep_target","Value of the target","PEPSetTarget",pep->target,&s,&flg));
189 159 : if (flg) {
190 54 : if (pep->which!=PEP_TARGET_REAL && pep->which!=PEP_TARGET_IMAGINARY) PetscCall(PEPSetWhichEigenpairs(pep,PEP_TARGET_MAGNITUDE));
191 54 : PetscCall(PEPSetTarget(pep,s));
192 : }
193 :
194 159 : k = 2;
195 159 : PetscCall(PetscOptionsRealArray("-pep_interval","Computational interval (two real values separated with a comma without spaces)","PEPSetInterval",array,&k,&flg));
196 159 : if (flg) {
197 6 : PetscCheck(k>1,PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_SIZ,"Must pass two values in -pep_interval (comma-separated without spaces)");
198 6 : PetscCall(PEPSetWhichEigenpairs(pep,PEP_ALL));
199 6 : PetscCall(PEPSetInterval(pep,array[0],array[1]));
200 : }
201 :
202 : /* -----------------------------------------------------------------------*/
203 : /*
204 : Cancels all monitors hardwired into code before call to PEPSetFromOptions()
205 : */
206 159 : PetscCall(PetscOptionsBool("-pep_monitor_cancel","Remove any hardwired monitor routines","PEPMonitorCancel",PETSC_FALSE,&flg,&set));
207 159 : if (set && flg) PetscCall(PEPMonitorCancel(pep));
208 159 : PetscCall(PEPMonitorSetFromOptions(pep,"-pep_monitor","first_approximation",NULL,PETSC_FALSE));
209 159 : PetscCall(PEPMonitorSetFromOptions(pep,"-pep_monitor_all","all_approximations",NULL,PETSC_TRUE));
210 159 : PetscCall(PEPMonitorSetFromOptions(pep,"-pep_monitor_conv","convergence_history",NULL,PETSC_FALSE));
211 :
212 : /* -----------------------------------------------------------------------*/
213 159 : PetscCall(PetscOptionsName("-pep_view","Print detailed information on solver used","PEPView",&set));
214 159 : PetscCall(PetscOptionsName("-pep_view_vectors","View computed eigenvectors","PEPVectorsView",&set));
215 159 : PetscCall(PetscOptionsName("-pep_view_values","View computed eigenvalues","PEPValuesView",&set));
216 159 : PetscCall(PetscOptionsName("-pep_converged_reason","Print reason for convergence, and number of iterations","PEPConvergedReasonView",&set));
217 159 : PetscCall(PetscOptionsName("-pep_error_absolute","Print absolute errors of each eigenpair","PEPErrorView",&set));
218 159 : PetscCall(PetscOptionsName("-pep_error_relative","Print relative errors of each eigenpair","PEPErrorView",&set));
219 159 : PetscCall(PetscOptionsName("-pep_error_backward","Print backward errors of each eigenpair","PEPErrorView",&set));
220 :
221 159 : PetscTryTypeMethod(pep,setfromoptions,PetscOptionsObject);
222 159 : PetscCall(PetscObjectProcessOptionsHandlers((PetscObject)pep,PetscOptionsObject));
223 159 : PetscOptionsEnd();
224 :
225 159 : if (!pep->V) PetscCall(PEPGetBV(pep,&pep->V));
226 159 : PetscCall(BVSetFromOptions(pep->V));
227 159 : if (!pep->rg) PetscCall(PEPGetRG(pep,&pep->rg));
228 159 : PetscCall(RGSetFromOptions(pep->rg));
229 159 : if (!pep->ds) PetscCall(PEPGetDS(pep,&pep->ds));
230 159 : PetscCall(PEPSetDSType(pep));
231 159 : PetscCall(DSSetFromOptions(pep->ds));
232 159 : if (!pep->st) PetscCall(PEPGetST(pep,&pep->st));
233 159 : PetscCall(PEPSetDefaultST(pep));
234 159 : PetscCall(STSetFromOptions(pep->st));
235 159 : if (!pep->refineksp) PetscCall(PEPRefineGetKSP(pep,&pep->refineksp));
236 159 : PetscCall(KSPSetFromOptions(pep->refineksp));
237 159 : PetscFunctionReturn(PETSC_SUCCESS);
238 : }
239 :
240 : /*@
241 : PEPGetTolerances - Gets the tolerance and maximum iteration count used
242 : by the PEP convergence tests.
243 :
244 : Not Collective
245 :
246 : Input Parameter:
247 : . pep - the polynomial eigensolver context
248 :
249 : Output Parameters:
250 : + tol - the convergence tolerance
251 : - maxits - maximum number of iterations
252 :
253 : Notes:
254 : The user can specify NULL for any parameter that is not needed.
255 :
256 : Level: intermediate
257 :
258 : .seealso: PEPSetTolerances()
259 : @*/
260 27 : PetscErrorCode PEPGetTolerances(PEP pep,PetscReal *tol,PetscInt *maxits)
261 : {
262 27 : PetscFunctionBegin;
263 27 : PetscValidHeaderSpecific(pep,PEP_CLASSID,1);
264 27 : if (tol) *tol = pep->tol;
265 27 : if (maxits) *maxits = pep->max_it;
266 27 : PetscFunctionReturn(PETSC_SUCCESS);
267 : }
268 :
269 : /*@
270 : PEPSetTolerances - Sets the tolerance and maximum iteration count used
271 : by the PEP convergence tests.
272 :
273 : Logically Collective
274 :
275 : Input Parameters:
276 : + pep - the polynomial eigensolver context
277 : . tol - the convergence tolerance
278 : - maxits - maximum number of iterations to use
279 :
280 : Options Database Keys:
281 : + -pep_tol <tol> - Sets the convergence tolerance
282 : - -pep_max_it <maxits> - Sets the maximum number of iterations allowed
283 :
284 : Notes:
285 : Use PETSC_CURRENT to retain the current value of any of the parameters.
286 : Use PETSC_DETERMINE for either argument to assign a default value computed
287 : internally (may be different in each solver).
288 : For maxits use PETSC_UMLIMITED to indicate there is no upper bound on this value.
289 :
290 : Level: intermediate
291 :
292 : .seealso: PEPGetTolerances()
293 : @*/
294 106 : PetscErrorCode PEPSetTolerances(PEP pep,PetscReal tol,PetscInt maxits)
295 : {
296 106 : PetscFunctionBegin;
297 106 : PetscValidHeaderSpecific(pep,PEP_CLASSID,1);
298 318 : PetscValidLogicalCollectiveReal(pep,tol,2);
299 318 : PetscValidLogicalCollectiveInt(pep,maxits,3);
300 106 : if (tol == (PetscReal)PETSC_DETERMINE) {
301 0 : pep->tol = PETSC_DETERMINE;
302 0 : pep->state = PEP_STATE_INITIAL;
303 106 : } else if (tol != (PetscReal)PETSC_CURRENT) {
304 102 : PetscCheck(tol>0.0,PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of tol. Must be > 0");
305 102 : pep->tol = tol;
306 : }
307 106 : if (maxits == PETSC_DETERMINE) {
308 11 : pep->max_it = PETSC_DETERMINE;
309 11 : pep->state = PEP_STATE_INITIAL;
310 95 : } else if (maxits == PETSC_UNLIMITED) {
311 0 : pep->max_it = PETSC_INT_MAX;
312 95 : } else if (maxits != PETSC_CURRENT) {
313 31 : PetscCheck(maxits>0,PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of maxits. Must be > 0");
314 31 : pep->max_it = maxits;
315 : }
316 106 : PetscFunctionReturn(PETSC_SUCCESS);
317 : }
318 :
319 : /*@
320 : PEPGetDimensions - Gets the number of eigenvalues to compute
321 : and the dimension of the subspace.
322 :
323 : Not Collective
324 :
325 : Input Parameter:
326 : . pep - the polynomial eigensolver context
327 :
328 : Output Parameters:
329 : + nev - number of eigenvalues to compute
330 : . ncv - the maximum dimension of the subspace to be used by the solver
331 : - mpd - the maximum dimension allowed for the projected problem
332 :
333 : Notes:
334 : The user can specify NULL for any parameter that is not needed.
335 :
336 : Level: intermediate
337 :
338 : .seealso: PEPSetDimensions()
339 : @*/
340 78 : PetscErrorCode PEPGetDimensions(PEP pep,PetscInt *nev,PetscInt *ncv,PetscInt *mpd)
341 : {
342 78 : PetscFunctionBegin;
343 78 : PetscValidHeaderSpecific(pep,PEP_CLASSID,1);
344 78 : if (nev) *nev = pep->nev;
345 78 : if (ncv) *ncv = pep->ncv;
346 78 : if (mpd) *mpd = pep->mpd;
347 78 : PetscFunctionReturn(PETSC_SUCCESS);
348 : }
349 :
350 : /*@
351 : PEPSetDimensions - Sets the number of eigenvalues to compute
352 : and the dimension of the subspace.
353 :
354 : Logically Collective
355 :
356 : Input Parameters:
357 : + pep - the polynomial eigensolver context
358 : . nev - number of eigenvalues to compute
359 : . ncv - the maximum dimension of the subspace to be used by the solver
360 : - mpd - the maximum dimension allowed for the projected problem
361 :
362 : Options Database Keys:
363 : + -pep_nev <nev> - Sets the number of eigenvalues
364 : . -pep_ncv <ncv> - Sets the dimension of the subspace
365 : - -pep_mpd <mpd> - Sets the maximum projected dimension
366 :
367 : Notes:
368 : Use PETSC_DETERMINE for ncv and mpd to assign a reasonably good value, which is
369 : dependent on the solution method. For any of the arguments, use PETSC_CURRENT
370 : to preserve the current value.
371 :
372 : The parameters ncv and mpd are intimately related, so that the user is advised
373 : to set one of them at most. Normal usage is that
374 : (a) in cases where nev is small, the user sets ncv (a reasonable default is 2*nev); and
375 : (b) in cases where nev is large, the user sets mpd.
376 :
377 : The value of ncv should always be between nev and (nev+mpd), typically
378 : ncv=nev+mpd. If nev is not too large, mpd=nev is a reasonable choice, otherwise
379 : a smaller value should be used.
380 :
381 : When computing all eigenvalues in an interval, see PEPSetInterval(), these
382 : parameters lose relevance, and tuning must be done with PEPSTOARSetDimensions().
383 :
384 : Level: intermediate
385 :
386 : .seealso: PEPGetDimensions(), PEPSetInterval(), PEPSTOARSetDimensions()
387 : @*/
388 155 : PetscErrorCode PEPSetDimensions(PEP pep,PetscInt nev,PetscInt ncv,PetscInt mpd)
389 : {
390 155 : PetscFunctionBegin;
391 155 : PetscValidHeaderSpecific(pep,PEP_CLASSID,1);
392 465 : PetscValidLogicalCollectiveInt(pep,nev,2);
393 465 : PetscValidLogicalCollectiveInt(pep,ncv,3);
394 465 : PetscValidLogicalCollectiveInt(pep,mpd,4);
395 155 : if (nev != PETSC_CURRENT) {
396 155 : PetscCheck(nev>0,PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of nev. Must be > 0");
397 155 : pep->nev = nev;
398 : }
399 155 : if (ncv == PETSC_DETERMINE) {
400 76 : pep->ncv = PETSC_DETERMINE;
401 79 : } else if (ncv != PETSC_CURRENT) {
402 79 : PetscCheck(ncv>0,PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of ncv. Must be > 0");
403 79 : pep->ncv = ncv;
404 : }
405 155 : if (mpd == PETSC_DETERMINE) {
406 131 : pep->mpd = PETSC_DETERMINE;
407 24 : } else if (mpd != PETSC_CURRENT) {
408 24 : PetscCheck(mpd>0,PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of mpd. Must be > 0");
409 24 : pep->mpd = mpd;
410 : }
411 155 : pep->state = PEP_STATE_INITIAL;
412 155 : PetscFunctionReturn(PETSC_SUCCESS);
413 : }
414 :
415 : /*@
416 : PEPSetWhichEigenpairs - Specifies which portion of the spectrum is
417 : to be sought.
418 :
419 : Logically Collective
420 :
421 : Input Parameters:
422 : + pep - eigensolver context obtained from PEPCreate()
423 : - which - the portion of the spectrum to be sought
424 :
425 : Options Database Keys:
426 : + -pep_largest_magnitude - Sets largest eigenvalues in magnitude
427 : . -pep_smallest_magnitude - Sets smallest eigenvalues in magnitude
428 : . -pep_largest_real - Sets largest real parts
429 : . -pep_smallest_real - Sets smallest real parts
430 : . -pep_largest_imaginary - Sets largest imaginary parts
431 : . -pep_smallest_imaginary - Sets smallest imaginary parts
432 : . -pep_target_magnitude - Sets eigenvalues closest to target
433 : . -pep_target_real - Sets real parts closest to target
434 : . -pep_target_imaginary - Sets imaginary parts closest to target
435 : - -pep_all - Sets all eigenvalues in an interval or region
436 :
437 : Notes:
438 : The parameter 'which' can have one of these values
439 :
440 : + PEP_LARGEST_MAGNITUDE - largest eigenvalues in magnitude (default)
441 : . PEP_SMALLEST_MAGNITUDE - smallest eigenvalues in magnitude
442 : . PEP_LARGEST_REAL - largest real parts
443 : . PEP_SMALLEST_REAL - smallest real parts
444 : . PEP_LARGEST_IMAGINARY - largest imaginary parts
445 : . PEP_SMALLEST_IMAGINARY - smallest imaginary parts
446 : . PEP_TARGET_MAGNITUDE - eigenvalues closest to the target (in magnitude)
447 : . PEP_TARGET_REAL - eigenvalues with real part closest to target
448 : . PEP_TARGET_IMAGINARY - eigenvalues with imaginary part closest to target
449 : . PEP_ALL - all eigenvalues contained in a given interval or region
450 : - PEP_WHICH_USER - user defined ordering set with PEPSetEigenvalueComparison()
451 :
452 : Not all eigensolvers implemented in PEP account for all the possible values
453 : stated above. If SLEPc is compiled for real numbers PEP_LARGEST_IMAGINARY
454 : and PEP_SMALLEST_IMAGINARY use the absolute value of the imaginary part
455 : for eigenvalue selection.
456 :
457 : The target is a scalar value provided with PEPSetTarget().
458 :
459 : The criterion PEP_TARGET_IMAGINARY is available only in case PETSc and
460 : SLEPc have been built with complex scalars.
461 :
462 : PEP_ALL is intended for use in combination with an interval (see
463 : PEPSetInterval()), when all eigenvalues within the interval are requested,
464 : and also for computing all eigenvalues in a region with the CISS solver.
465 : In both cases, the number of eigenvalues is unknown, so the nev parameter
466 : has a different sense, see PEPSetDimensions().
467 :
468 : Level: intermediate
469 :
470 : .seealso: PEPGetWhichEigenpairs(), PEPSetTarget(), PEPSetInterval(),
471 : PEPSetDimensions(), PEPSetEigenvalueComparison(), PEPWhich
472 : @*/
473 97 : PetscErrorCode PEPSetWhichEigenpairs(PEP pep,PEPWhich which)
474 : {
475 97 : PetscFunctionBegin;
476 97 : PetscValidHeaderSpecific(pep,PEP_CLASSID,1);
477 291 : PetscValidLogicalCollectiveEnum(pep,which,2);
478 97 : switch (which) {
479 97 : case PEP_LARGEST_MAGNITUDE:
480 : case PEP_SMALLEST_MAGNITUDE:
481 : case PEP_LARGEST_REAL:
482 : case PEP_SMALLEST_REAL:
483 : case PEP_LARGEST_IMAGINARY:
484 : case PEP_SMALLEST_IMAGINARY:
485 : case PEP_TARGET_MAGNITUDE:
486 : case PEP_TARGET_REAL:
487 : #if defined(PETSC_USE_COMPLEX)
488 : case PEP_TARGET_IMAGINARY:
489 : #endif
490 : case PEP_ALL:
491 : case PEP_WHICH_USER:
492 97 : if (pep->which != which) {
493 93 : pep->state = PEP_STATE_INITIAL;
494 93 : pep->which = which;
495 : }
496 97 : break;
497 : #if !defined(PETSC_USE_COMPLEX)
498 0 : case PEP_TARGET_IMAGINARY:
499 0 : SETERRQ(PetscObjectComm((PetscObject)pep),PETSC_ERR_SUP,"PEP_TARGET_IMAGINARY can be used only with complex scalars");
500 : #endif
501 0 : default:
502 0 : SETERRQ(PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"Invalid 'which' value");
503 : }
504 97 : PetscFunctionReturn(PETSC_SUCCESS);
505 : }
506 :
507 : /*@
508 : PEPGetWhichEigenpairs - Returns which portion of the spectrum is to be
509 : sought.
510 :
511 : Not Collective
512 :
513 : Input Parameter:
514 : . pep - eigensolver context obtained from PEPCreate()
515 :
516 : Output Parameter:
517 : . which - the portion of the spectrum to be sought
518 :
519 : Notes:
520 : See PEPSetWhichEigenpairs() for possible values of 'which'.
521 :
522 : Level: intermediate
523 :
524 : .seealso: PEPSetWhichEigenpairs(), PEPWhich
525 : @*/
526 1 : PetscErrorCode PEPGetWhichEigenpairs(PEP pep,PEPWhich *which)
527 : {
528 1 : PetscFunctionBegin;
529 1 : PetscValidHeaderSpecific(pep,PEP_CLASSID,1);
530 1 : PetscAssertPointer(which,2);
531 1 : *which = pep->which;
532 1 : PetscFunctionReturn(PETSC_SUCCESS);
533 : }
534 :
535 : /*@C
536 : PEPSetEigenvalueComparison - Specifies the eigenvalue comparison function
537 : when PEPSetWhichEigenpairs() is set to PEP_WHICH_USER.
538 :
539 : Logically Collective
540 :
541 : Input Parameters:
542 : + pep - eigensolver context obtained from PEPCreate()
543 : . comp - a pointer to the comparison function
544 : - ctx - a context pointer (the last parameter to the comparison function)
545 :
546 : Calling sequence of comp:
547 : $ PetscErrorCode comp(PetscScalar ar,PetscScalar ai,PetscScalar br,PetscScalar bi,PetscInt *res,void *ctx)
548 : + ar - real part of the 1st eigenvalue
549 : . ai - imaginary part of the 1st eigenvalue
550 : . br - real part of the 2nd eigenvalue
551 : . bi - imaginary part of the 2nd eigenvalue
552 : . res - result of comparison
553 : - ctx - optional context, as set by PEPSetEigenvalueComparison()
554 :
555 : Note:
556 : The returning parameter 'res' can be
557 : + negative - if the 1st eigenvalue is preferred to the 2st one
558 : . zero - if both eigenvalues are equally preferred
559 : - positive - if the 2st eigenvalue is preferred to the 1st one
560 :
561 : Level: advanced
562 :
563 : .seealso: PEPSetWhichEigenpairs(), PEPWhich
564 : @*/
565 1 : PetscErrorCode PEPSetEigenvalueComparison(PEP pep,PetscErrorCode (*comp)(PetscScalar ar,PetscScalar ai,PetscScalar br,PetscScalar bi,PetscInt *res,void *ctx),void* ctx)
566 : {
567 1 : PetscFunctionBegin;
568 1 : PetscValidHeaderSpecific(pep,PEP_CLASSID,1);
569 1 : pep->sc->comparison = comp;
570 1 : pep->sc->comparisonctx = ctx;
571 1 : pep->which = PEP_WHICH_USER;
572 1 : PetscFunctionReturn(PETSC_SUCCESS);
573 : }
574 :
575 : /*@
576 : PEPSetProblemType - Specifies the type of the polynomial eigenvalue problem.
577 :
578 : Logically Collective
579 :
580 : Input Parameters:
581 : + pep - the polynomial eigensolver context
582 : - type - a known type of polynomial eigenvalue problem
583 :
584 : Options Database Keys:
585 : + -pep_general - general problem with no particular structure
586 : . -pep_hermitian - problem whose coefficient matrices are Hermitian
587 : . -pep_hyperbolic - Hermitian problem that satisfies the definition of hyperbolic
588 : - -pep_gyroscopic - problem with Hamiltonian structure
589 :
590 : Notes:
591 : Allowed values for the problem type are general (PEP_GENERAL), Hermitian
592 : (PEP_HERMITIAN), hyperbolic (PEP_HYPERBOLIC), and gyroscopic (PEP_GYROSCOPIC).
593 :
594 : This function is used to instruct SLEPc to exploit certain structure in
595 : the polynomial eigenproblem. By default, no particular structure is assumed.
596 :
597 : If the problem matrices are Hermitian (symmetric in the real case) or
598 : Hermitian/skew-Hermitian then the solver can exploit this fact to perform
599 : less operations or provide better stability. Hyperbolic problems are a
600 : particular case of Hermitian problems, some solvers may treat them simply as
601 : Hermitian.
602 :
603 : Level: intermediate
604 :
605 : .seealso: PEPSetOperators(), PEPSetType(), PEPGetProblemType(), PEPProblemType
606 : @*/
607 174 : PetscErrorCode PEPSetProblemType(PEP pep,PEPProblemType type)
608 : {
609 174 : PetscFunctionBegin;
610 174 : PetscValidHeaderSpecific(pep,PEP_CLASSID,1);
611 522 : PetscValidLogicalCollectiveEnum(pep,type,2);
612 174 : PetscCheck(type==PEP_GENERAL || type==PEP_HERMITIAN || type==PEP_HYPERBOLIC || type==PEP_GYROSCOPIC,PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_WRONG,"Unknown eigenvalue problem type");
613 174 : if (type != pep->problem_type) {
614 172 : pep->problem_type = type;
615 172 : pep->state = PEP_STATE_INITIAL;
616 : }
617 174 : PetscFunctionReturn(PETSC_SUCCESS);
618 : }
619 :
620 : /*@
621 : PEPGetProblemType - Gets the problem type from the PEP object.
622 :
623 : Not Collective
624 :
625 : Input Parameter:
626 : . pep - the polynomial eigensolver context
627 :
628 : Output Parameter:
629 : . type - the problem type
630 :
631 : Level: intermediate
632 :
633 : .seealso: PEPSetProblemType(), PEPProblemType
634 : @*/
635 3 : PetscErrorCode PEPGetProblemType(PEP pep,PEPProblemType *type)
636 : {
637 3 : PetscFunctionBegin;
638 3 : PetscValidHeaderSpecific(pep,PEP_CLASSID,1);
639 3 : PetscAssertPointer(type,2);
640 3 : *type = pep->problem_type;
641 3 : PetscFunctionReturn(PETSC_SUCCESS);
642 : }
643 :
644 : /*@
645 : PEPSetBasis - Specifies the type of polynomial basis used to describe the
646 : polynomial eigenvalue problem.
647 :
648 : Logically Collective
649 :
650 : Input Parameters:
651 : + pep - the polynomial eigensolver context
652 : - basis - the type of polynomial basis
653 :
654 : Options Database Key:
655 : . -pep_basis <basis> - Select the basis type
656 :
657 : Notes:
658 : By default, the coefficient matrices passed via PEPSetOperators() are
659 : expressed in the monomial basis, i.e.
660 : P(lambda) = A_0 + lambda*A_1 + lambda^2*A_2 + ... + lambda^d*A_d.
661 : Other polynomial bases may have better numerical behaviour, but the user
662 : must then pass the coefficient matrices accordingly.
663 :
664 : Level: intermediate
665 :
666 : .seealso: PEPSetOperators(), PEPGetBasis(), PEPBasis
667 : @*/
668 24 : PetscErrorCode PEPSetBasis(PEP pep,PEPBasis basis)
669 : {
670 24 : PetscFunctionBegin;
671 24 : PetscValidHeaderSpecific(pep,PEP_CLASSID,1);
672 72 : PetscValidLogicalCollectiveEnum(pep,basis,2);
673 24 : pep->basis = basis;
674 24 : PetscFunctionReturn(PETSC_SUCCESS);
675 : }
676 :
677 : /*@
678 : PEPGetBasis - Gets the type of polynomial basis from the PEP object.
679 :
680 : Not Collective
681 :
682 : Input Parameter:
683 : . pep - the polynomial eigensolver context
684 :
685 : Output Parameter:
686 : . basis - the polynomial basis
687 :
688 : Level: intermediate
689 :
690 : .seealso: PEPSetBasis(), PEPBasis
691 : @*/
692 14 : PetscErrorCode PEPGetBasis(PEP pep,PEPBasis *basis)
693 : {
694 14 : PetscFunctionBegin;
695 14 : PetscValidHeaderSpecific(pep,PEP_CLASSID,1);
696 14 : PetscAssertPointer(basis,2);
697 14 : *basis = pep->basis;
698 14 : PetscFunctionReturn(PETSC_SUCCESS);
699 : }
700 :
701 : /*@
702 : PEPSetTrackAll - Specifies if the solver must compute the residual of all
703 : approximate eigenpairs or not.
704 :
705 : Logically Collective
706 :
707 : Input Parameters:
708 : + pep - the eigensolver context
709 : - trackall - whether compute all residuals or not
710 :
711 : Notes:
712 : If the user sets trackall=PETSC_TRUE then the solver explicitly computes
713 : the residual for each eigenpair approximation. Computing the residual is
714 : usually an expensive operation and solvers commonly compute the associated
715 : residual to the first unconverged eigenpair.
716 :
717 : The option '-pep_monitor_all' automatically activates this option.
718 :
719 : Level: developer
720 :
721 : .seealso: PEPGetTrackAll()
722 : @*/
723 24 : PetscErrorCode PEPSetTrackAll(PEP pep,PetscBool trackall)
724 : {
725 24 : PetscFunctionBegin;
726 24 : PetscValidHeaderSpecific(pep,PEP_CLASSID,1);
727 72 : PetscValidLogicalCollectiveBool(pep,trackall,2);
728 24 : pep->trackall = trackall;
729 24 : PetscFunctionReturn(PETSC_SUCCESS);
730 : }
731 :
732 : /*@
733 : PEPGetTrackAll - Returns the flag indicating whether all residual norms must
734 : be computed or not.
735 :
736 : Not Collective
737 :
738 : Input Parameter:
739 : . pep - the eigensolver context
740 :
741 : Output Parameter:
742 : . trackall - the returned flag
743 :
744 : Level: developer
745 :
746 : .seealso: PEPSetTrackAll()
747 : @*/
748 34 : PetscErrorCode PEPGetTrackAll(PEP pep,PetscBool *trackall)
749 : {
750 34 : PetscFunctionBegin;
751 34 : PetscValidHeaderSpecific(pep,PEP_CLASSID,1);
752 34 : PetscAssertPointer(trackall,2);
753 34 : *trackall = pep->trackall;
754 34 : PetscFunctionReturn(PETSC_SUCCESS);
755 : }
756 :
757 : /*@C
758 : PEPSetConvergenceTestFunction - Sets a function to compute the error estimate
759 : used in the convergence test.
760 :
761 : Logically Collective
762 :
763 : Input Parameters:
764 : + pep - eigensolver context obtained from PEPCreate()
765 : . conv - convergence test function, see PEPConvergenceTestFn for the calling sequence
766 : . ctx - context for private data for the convergence routine (may be NULL)
767 : - destroy - a routine for destroying the context (may be NULL), see PetscCtxDestroyFn for the calling sequence
768 :
769 : Note:
770 : If the error estimate returned by the convergence test function is less than
771 : the tolerance, then the eigenvalue is accepted as converged.
772 :
773 : Level: advanced
774 :
775 : .seealso: PEPSetConvergenceTest(), PEPSetTolerances()
776 : @*/
777 1 : PetscErrorCode PEPSetConvergenceTestFunction(PEP pep,PEPConvergenceTestFn *conv,void* ctx,PetscCtxDestroyFn *destroy)
778 : {
779 1 : PetscFunctionBegin;
780 1 : PetscValidHeaderSpecific(pep,PEP_CLASSID,1);
781 1 : if (pep->convergeddestroy) PetscCall((*pep->convergeddestroy)(&pep->convergedctx));
782 1 : pep->convergeduser = conv;
783 1 : pep->convergeddestroy = destroy;
784 1 : pep->convergedctx = ctx;
785 1 : if (conv == PEPConvergedRelative) pep->conv = PEP_CONV_REL;
786 1 : else if (conv == PEPConvergedNorm) pep->conv = PEP_CONV_NORM;
787 1 : else if (conv == PEPConvergedAbsolute) pep->conv = PEP_CONV_ABS;
788 : else {
789 1 : pep->conv = PEP_CONV_USER;
790 1 : pep->converged = pep->convergeduser;
791 : }
792 1 : PetscFunctionReturn(PETSC_SUCCESS);
793 : }
794 :
795 : /*@
796 : PEPSetConvergenceTest - Specifies how to compute the error estimate
797 : used in the convergence test.
798 :
799 : Logically Collective
800 :
801 : Input Parameters:
802 : + pep - eigensolver context obtained from PEPCreate()
803 : - conv - the type of convergence test
804 :
805 : Options Database Keys:
806 : + -pep_conv_abs - Sets the absolute convergence test
807 : . -pep_conv_rel - Sets the convergence test relative to the eigenvalue
808 : . -pep_conv_norm - Sets the convergence test relative to the matrix norms
809 : - -pep_conv_user - Selects the user-defined convergence test
810 :
811 : Note:
812 : The parameter 'conv' can have one of these values
813 : + PEP_CONV_ABS - absolute error ||r||
814 : . PEP_CONV_REL - error relative to the eigenvalue l, ||r||/|l|
815 : . PEP_CONV_NORM - error relative matrix norms, ||r||/sum_i(l^i*||A_i||)
816 : - PEP_CONV_USER - function set by PEPSetConvergenceTestFunction()
817 :
818 : Level: intermediate
819 :
820 : .seealso: PEPGetConvergenceTest(), PEPSetConvergenceTestFunction(), PEPSetStoppingTest(), PEPConv
821 : @*/
822 7 : PetscErrorCode PEPSetConvergenceTest(PEP pep,PEPConv conv)
823 : {
824 7 : PetscFunctionBegin;
825 7 : PetscValidHeaderSpecific(pep,PEP_CLASSID,1);
826 21 : PetscValidLogicalCollectiveEnum(pep,conv,2);
827 7 : switch (conv) {
828 2 : case PEP_CONV_ABS: pep->converged = PEPConvergedAbsolute; break;
829 2 : case PEP_CONV_REL: pep->converged = PEPConvergedRelative; break;
830 3 : case PEP_CONV_NORM: pep->converged = PEPConvergedNorm; break;
831 0 : case PEP_CONV_USER:
832 0 : PetscCheck(pep->convergeduser,PetscObjectComm((PetscObject)pep),PETSC_ERR_ORDER,"Must call PEPSetConvergenceTestFunction() first");
833 0 : pep->converged = pep->convergeduser;
834 0 : break;
835 0 : default:
836 0 : SETERRQ(PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"Invalid 'conv' value");
837 : }
838 7 : pep->conv = conv;
839 7 : PetscFunctionReturn(PETSC_SUCCESS);
840 : }
841 :
842 : /*@
843 : PEPGetConvergenceTest - Gets the method used to compute the error estimate
844 : used in the convergence test.
845 :
846 : Not Collective
847 :
848 : Input Parameters:
849 : . pep - eigensolver context obtained from PEPCreate()
850 :
851 : Output Parameters:
852 : . conv - the type of convergence test
853 :
854 : Level: intermediate
855 :
856 : .seealso: PEPSetConvergenceTest(), PEPConv
857 : @*/
858 1 : PetscErrorCode PEPGetConvergenceTest(PEP pep,PEPConv *conv)
859 : {
860 1 : PetscFunctionBegin;
861 1 : PetscValidHeaderSpecific(pep,PEP_CLASSID,1);
862 1 : PetscAssertPointer(conv,2);
863 1 : *conv = pep->conv;
864 1 : PetscFunctionReturn(PETSC_SUCCESS);
865 : }
866 :
867 : /*@C
868 : PEPSetStoppingTestFunction - Sets a function to decide when to stop the outer
869 : iteration of the eigensolver.
870 :
871 : Logically Collective
872 :
873 : Input Parameters:
874 : + pep - eigensolver context obtained from PEPCreate()
875 : . stop - stopping test function, see PEPStoppingTestFn for the calling sequence
876 : . ctx - context for private data for the stopping routine (may be NULL)
877 : - destroy - a routine for destroying the context (may be NULL), see PetscCtxDestroyFn for the calling sequence
878 :
879 : Note:
880 : Normal usage is to first call the default routine PEPStoppingBasic() and then
881 : set reason to PEP_CONVERGED_USER if some user-defined conditions have been
882 : met. To let the eigensolver continue iterating, the result must be left as
883 : PEP_CONVERGED_ITERATING.
884 :
885 : Level: advanced
886 :
887 : .seealso: PEPSetStoppingTest(), PEPStoppingBasic()
888 : @*/
889 1 : PetscErrorCode PEPSetStoppingTestFunction(PEP pep,PEPStoppingTestFn *stop,void* ctx,PetscCtxDestroyFn *destroy)
890 : {
891 1 : PetscFunctionBegin;
892 1 : PetscValidHeaderSpecific(pep,PEP_CLASSID,1);
893 1 : if (pep->stoppingdestroy) PetscCall((*pep->stoppingdestroy)(&pep->stoppingctx));
894 1 : pep->stoppinguser = stop;
895 1 : pep->stoppingdestroy = destroy;
896 1 : pep->stoppingctx = ctx;
897 1 : if (stop == PEPStoppingBasic) pep->stop = PEP_STOP_BASIC;
898 : else {
899 1 : pep->stop = PEP_STOP_USER;
900 1 : pep->stopping = pep->stoppinguser;
901 : }
902 1 : PetscFunctionReturn(PETSC_SUCCESS);
903 : }
904 :
905 : /*@
906 : PEPSetStoppingTest - Specifies how to decide the termination of the outer
907 : loop of the eigensolver.
908 :
909 : Logically Collective
910 :
911 : Input Parameters:
912 : + pep - eigensolver context obtained from PEPCreate()
913 : - stop - the type of stopping test
914 :
915 : Options Database Keys:
916 : + -pep_stop_basic - Sets the default stopping test
917 : - -pep_stop_user - Selects the user-defined stopping test
918 :
919 : Note:
920 : The parameter 'stop' can have one of these values
921 : + PEP_STOP_BASIC - default stopping test
922 : - PEP_STOP_USER - function set by PEPSetStoppingTestFunction()
923 :
924 : Level: advanced
925 :
926 : .seealso: PEPGetStoppingTest(), PEPSetStoppingTestFunction(), PEPSetConvergenceTest(), PEPStop
927 : @*/
928 1 : PetscErrorCode PEPSetStoppingTest(PEP pep,PEPStop stop)
929 : {
930 1 : PetscFunctionBegin;
931 1 : PetscValidHeaderSpecific(pep,PEP_CLASSID,1);
932 3 : PetscValidLogicalCollectiveEnum(pep,stop,2);
933 1 : switch (stop) {
934 1 : case PEP_STOP_BASIC: pep->stopping = PEPStoppingBasic; break;
935 0 : case PEP_STOP_USER:
936 0 : PetscCheck(pep->stoppinguser,PetscObjectComm((PetscObject)pep),PETSC_ERR_ORDER,"Must call PEPSetStoppingTestFunction() first");
937 0 : pep->stopping = pep->stoppinguser;
938 0 : break;
939 0 : default:
940 0 : SETERRQ(PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"Invalid 'stop' value");
941 : }
942 1 : pep->stop = stop;
943 1 : PetscFunctionReturn(PETSC_SUCCESS);
944 : }
945 :
946 : /*@
947 : PEPGetStoppingTest - Gets the method used to decide the termination of the outer
948 : loop of the eigensolver.
949 :
950 : Not Collective
951 :
952 : Input Parameters:
953 : . pep - eigensolver context obtained from PEPCreate()
954 :
955 : Output Parameters:
956 : . stop - the type of stopping test
957 :
958 : Level: advanced
959 :
960 : .seealso: PEPSetStoppingTest(), PEPStop
961 : @*/
962 1 : PetscErrorCode PEPGetStoppingTest(PEP pep,PEPStop *stop)
963 : {
964 1 : PetscFunctionBegin;
965 1 : PetscValidHeaderSpecific(pep,PEP_CLASSID,1);
966 1 : PetscAssertPointer(stop,2);
967 1 : *stop = pep->stop;
968 1 : PetscFunctionReturn(PETSC_SUCCESS);
969 : }
970 :
971 : /*@
972 : PEPSetScale - Specifies the scaling strategy to be used.
973 :
974 : Collective
975 :
976 : Input Parameters:
977 : + pep - the eigensolver context
978 : . scale - scaling strategy
979 : . alpha - the scaling factor used in the scalar strategy
980 : . Dl - the left diagonal matrix of the diagonal scaling algorithm
981 : . Dr - the right diagonal matrix of the diagonal scaling algorithm
982 : . its - number of iterations of the diagonal scaling algorithm
983 : - lambda - approximation to wanted eigenvalues (modulus)
984 :
985 : Options Database Keys:
986 : + -pep_scale <type> - scaling type, one of <none,scalar,diagonal,both>
987 : . -pep_scale_factor <alpha> - the scaling factor
988 : . -pep_scale_its <its> - number of iterations
989 : - -pep_scale_lambda <lambda> - approximation to eigenvalues
990 :
991 : Notes:
992 : There are two non-exclusive scaling strategies, scalar and diagonal.
993 :
994 : In the scalar strategy, scaling is applied to the eigenvalue, that is,
995 : mu = lambda/alpha is the new eigenvalue and all matrices are scaled
996 : accordingly. After solving the scaled problem, the original lambda is
997 : recovered. Parameter 'alpha' must be positive. Use PETSC_DETERMINE to let
998 : the solver compute a reasonable scaling factor, and PETSC_CURRENT to
999 : retain a previously set value.
1000 :
1001 : In the diagonal strategy, the solver works implicitly with matrix Dl*A*Dr,
1002 : where Dl and Dr are appropriate diagonal matrices. This improves the accuracy
1003 : of the computed results in some cases. The user may provide the Dr and Dl
1004 : matrices represented as Vec objects storing diagonal elements. If not
1005 : provided, these matrices are computed internally. This option requires
1006 : that the polynomial coefficient matrices are of MATAIJ type.
1007 : The parameter 'its' is the number of iterations performed by the method.
1008 : Parameter 'lambda' must be positive. Use PETSC_DETERMINE or set lambda = 1.0
1009 : if no information about eigenvalues is available. PETSC_CURRENT can also
1010 : be used to leave its and lambda unchanged.
1011 :
1012 : Level: intermediate
1013 :
1014 : .seealso: PEPGetScale()
1015 : @*/
1016 28 : PetscErrorCode PEPSetScale(PEP pep,PEPScale scale,PetscReal alpha,Vec Dl,Vec Dr,PetscInt its,PetscReal lambda)
1017 : {
1018 28 : PetscFunctionBegin;
1019 28 : PetscValidHeaderSpecific(pep,PEP_CLASSID,1);
1020 84 : PetscValidLogicalCollectiveEnum(pep,scale,2);
1021 28 : pep->scale = scale;
1022 28 : if (scale==PEP_SCALE_SCALAR || scale==PEP_SCALE_BOTH) {
1023 36 : PetscValidLogicalCollectiveReal(pep,alpha,3);
1024 12 : if (alpha == (PetscReal)PETSC_DETERMINE) {
1025 11 : pep->sfactor = 0.0;
1026 11 : pep->sfactor_set = PETSC_FALSE;
1027 1 : } else if (alpha != (PetscReal)PETSC_CURRENT) {
1028 1 : PetscCheck(alpha>0.0,PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of alpha. Must be > 0");
1029 1 : pep->sfactor = alpha;
1030 1 : pep->sfactor_set = PETSC_TRUE;
1031 : }
1032 : }
1033 28 : if (scale==PEP_SCALE_DIAGONAL || scale==PEP_SCALE_BOTH) {
1034 18 : if (Dl) {
1035 1 : PetscValidHeaderSpecific(Dl,VEC_CLASSID,4);
1036 1 : PetscCheckSameComm(pep,1,Dl,4);
1037 1 : PetscCall(PetscObjectReference((PetscObject)Dl));
1038 1 : PetscCall(VecDestroy(&pep->Dl));
1039 1 : pep->Dl = Dl;
1040 : }
1041 18 : if (Dr) {
1042 1 : PetscValidHeaderSpecific(Dr,VEC_CLASSID,5);
1043 1 : PetscCheckSameComm(pep,1,Dr,5);
1044 1 : PetscCall(PetscObjectReference((PetscObject)Dr));
1045 1 : PetscCall(VecDestroy(&pep->Dr));
1046 1 : pep->Dr = Dr;
1047 : }
1048 54 : PetscValidLogicalCollectiveInt(pep,its,6);
1049 54 : PetscValidLogicalCollectiveReal(pep,lambda,7);
1050 18 : if (its==PETSC_DETERMINE) pep->sits = 5;
1051 18 : else if (its!=PETSC_CURRENT) {
1052 18 : PetscCheck(its>0,PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of its. Must be > 0");
1053 18 : pep->sits = its;
1054 : }
1055 18 : if (lambda == (PetscReal)PETSC_DETERMINE) pep->slambda = 1.0;
1056 18 : else if (lambda != (PetscReal)PETSC_CURRENT) {
1057 18 : PetscCheck(lambda>0.0,PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of lambda. Must be > 0");
1058 18 : pep->slambda = lambda;
1059 : }
1060 : }
1061 28 : pep->state = PEP_STATE_INITIAL;
1062 28 : PetscFunctionReturn(PETSC_SUCCESS);
1063 : }
1064 :
1065 : /*@
1066 : PEPGetScale - Gets the scaling strategy used by the PEP object, and the
1067 : associated parameters.
1068 :
1069 : Not Collective
1070 :
1071 : Input Parameter:
1072 : . pep - the eigensolver context
1073 :
1074 : Output Parameters:
1075 : + scale - scaling strategy
1076 : . alpha - the scaling factor used in the scalar strategy
1077 : . Dl - the left diagonal matrix of the diagonal scaling algorithm
1078 : . Dr - the right diagonal matrix of the diagonal scaling algorithm
1079 : . its - number of iterations of the diagonal scaling algorithm
1080 : - lambda - approximation to wanted eigenvalues (modulus)
1081 :
1082 : Level: intermediate
1083 :
1084 : Note:
1085 : The user can specify NULL for any parameter that is not needed.
1086 :
1087 : If Dl or Dr were not set by the user, then the ones computed internally are
1088 : returned (or a null pointer if called before PEPSetUp).
1089 :
1090 : .seealso: PEPSetScale(), PEPSetUp()
1091 : @*/
1092 1 : PetscErrorCode PEPGetScale(PEP pep,PEPScale *scale,PetscReal *alpha,Vec *Dl,Vec *Dr,PetscInt *its,PetscReal *lambda)
1093 : {
1094 1 : PetscFunctionBegin;
1095 1 : PetscValidHeaderSpecific(pep,PEP_CLASSID,1);
1096 1 : if (scale) *scale = pep->scale;
1097 1 : if (alpha) *alpha = pep->sfactor;
1098 1 : if (Dl) *Dl = pep->Dl;
1099 1 : if (Dr) *Dr = pep->Dr;
1100 1 : if (its) *its = pep->sits;
1101 1 : if (lambda) *lambda = pep->slambda;
1102 1 : PetscFunctionReturn(PETSC_SUCCESS);
1103 : }
1104 :
1105 : /*@
1106 : PEPSetExtract - Specifies the extraction strategy to be used.
1107 :
1108 : Logically Collective
1109 :
1110 : Input Parameters:
1111 : + pep - the eigensolver context
1112 : - extract - extraction strategy
1113 :
1114 : Options Database Keys:
1115 : . -pep_extract <type> - extraction type, one of <none,norm,residual,structured>
1116 :
1117 : Level: intermediate
1118 :
1119 : .seealso: PEPGetExtract()
1120 : @*/
1121 1 : PetscErrorCode PEPSetExtract(PEP pep,PEPExtract extract)
1122 : {
1123 1 : PetscFunctionBegin;
1124 1 : PetscValidHeaderSpecific(pep,PEP_CLASSID,1);
1125 3 : PetscValidLogicalCollectiveEnum(pep,extract,2);
1126 1 : pep->extract = extract;
1127 1 : PetscFunctionReturn(PETSC_SUCCESS);
1128 : }
1129 :
1130 : /*@
1131 : PEPGetExtract - Gets the extraction strategy used by the PEP object.
1132 :
1133 : Not Collective
1134 :
1135 : Input Parameter:
1136 : . pep - the eigensolver context
1137 :
1138 : Output Parameter:
1139 : . extract - extraction strategy
1140 :
1141 : Level: intermediate
1142 :
1143 : .seealso: PEPSetExtract(), PEPExtract
1144 : @*/
1145 2 : PetscErrorCode PEPGetExtract(PEP pep,PEPExtract *extract)
1146 : {
1147 2 : PetscFunctionBegin;
1148 2 : PetscValidHeaderSpecific(pep,PEP_CLASSID,1);
1149 2 : PetscAssertPointer(extract,2);
1150 2 : *extract = pep->extract;
1151 2 : PetscFunctionReturn(PETSC_SUCCESS);
1152 : }
1153 :
1154 : /*@
1155 : PEPSetRefine - Specifies the refinement type (and options) to be used
1156 : after the solve.
1157 :
1158 : Logically Collective
1159 :
1160 : Input Parameters:
1161 : + pep - the polynomial eigensolver context
1162 : . refine - refinement type
1163 : . npart - number of partitions of the communicator
1164 : . tol - the convergence tolerance
1165 : . its - maximum number of refinement iterations
1166 : - scheme - which scheme to be used for solving the involved linear systems
1167 :
1168 : Options Database Keys:
1169 : + -pep_refine <type> - refinement type, one of <none,simple,multiple>
1170 : . -pep_refine_partitions <n> - the number of partitions
1171 : . -pep_refine_tol <tol> - the tolerance
1172 : . -pep_refine_its <its> - number of iterations
1173 : - -pep_refine_scheme - to set the scheme for the linear solves
1174 :
1175 : Notes:
1176 : By default, iterative refinement is disabled, since it may be very
1177 : costly. There are two possible refinement strategies, simple and multiple.
1178 : The simple approach performs iterative refinement on each of the
1179 : converged eigenpairs individually, whereas the multiple strategy works
1180 : with the invariant pair as a whole, refining all eigenpairs simultaneously.
1181 : The latter may be required for the case of multiple eigenvalues.
1182 :
1183 : In some cases, especially when using direct solvers within the
1184 : iterative refinement method, it may be helpful for improved scalability
1185 : to split the communicator in several partitions. The npart parameter
1186 : indicates how many partitions to use (defaults to 1).
1187 :
1188 : The tol and its parameters specify the stopping criterion. In the simple
1189 : method, refinement continues until the residual of each eigenpair is
1190 : below the tolerance (tol defaults to the PEP tol, but may be set to a
1191 : different value). In contrast, the multiple method simply performs its
1192 : refinement iterations (just one by default).
1193 :
1194 : The scheme argument is used to change the way in which linear systems are
1195 : solved. Possible choices are explicit, mixed block elimination (MBE),
1196 : and Schur complement.
1197 :
1198 : Use PETSC_CURRENT to retain the current value of npart, tol or its. Use
1199 : PETSC_DETERMINE to assign a default value.
1200 :
1201 : Level: intermediate
1202 :
1203 : .seealso: PEPGetRefine()
1204 : @*/
1205 30 : PetscErrorCode PEPSetRefine(PEP pep,PEPRefine refine,PetscInt npart,PetscReal tol,PetscInt its,PEPRefineScheme scheme)
1206 : {
1207 30 : PetscMPIInt size;
1208 :
1209 30 : PetscFunctionBegin;
1210 30 : PetscValidHeaderSpecific(pep,PEP_CLASSID,1);
1211 90 : PetscValidLogicalCollectiveEnum(pep,refine,2);
1212 90 : PetscValidLogicalCollectiveInt(pep,npart,3);
1213 90 : PetscValidLogicalCollectiveReal(pep,tol,4);
1214 90 : PetscValidLogicalCollectiveInt(pep,its,5);
1215 90 : PetscValidLogicalCollectiveEnum(pep,scheme,6);
1216 30 : pep->refine = refine;
1217 30 : if (refine) { /* process parameters only if not REFINE_NONE */
1218 29 : if (npart!=pep->npart) {
1219 12 : PetscCall(PetscSubcommDestroy(&pep->refinesubc));
1220 12 : PetscCall(KSPDestroy(&pep->refineksp));
1221 : }
1222 29 : if (npart == PETSC_DETERMINE) {
1223 0 : pep->npart = 1;
1224 29 : } else if (npart != PETSC_CURRENT) {
1225 29 : PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)pep),&size));
1226 29 : PetscCheck(npart>0 && npart<=size,PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of npart");
1227 29 : pep->npart = npart;
1228 : }
1229 29 : if (tol == (PetscReal)PETSC_DETERMINE) {
1230 28 : pep->rtol = PETSC_DETERMINE;
1231 1 : } else if (tol != (PetscReal)PETSC_CURRENT) {
1232 1 : PetscCheck(tol>0.0,PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of tol. Must be > 0");
1233 1 : pep->rtol = tol;
1234 : }
1235 29 : if (its==PETSC_DETERMINE) {
1236 28 : pep->rits = PETSC_DETERMINE;
1237 1 : } else if (its != PETSC_CURRENT) {
1238 1 : PetscCheck(its>=0,PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of its. Must be >= 0");
1239 1 : pep->rits = its;
1240 : }
1241 29 : pep->scheme = scheme;
1242 : }
1243 30 : pep->state = PEP_STATE_INITIAL;
1244 30 : PetscFunctionReturn(PETSC_SUCCESS);
1245 : }
1246 :
1247 : /*@
1248 : PEPGetRefine - Gets the refinement strategy used by the PEP object, and the
1249 : associated parameters.
1250 :
1251 : Not Collective
1252 :
1253 : Input Parameter:
1254 : . pep - the polynomial eigensolver context
1255 :
1256 : Output Parameters:
1257 : + refine - refinement type
1258 : . npart - number of partitions of the communicator
1259 : . tol - the convergence tolerance
1260 : . its - maximum number of refinement iterations
1261 : - scheme - the scheme used for solving linear systems
1262 :
1263 : Level: intermediate
1264 :
1265 : Note:
1266 : The user can specify NULL for any parameter that is not needed.
1267 :
1268 : .seealso: PEPSetRefine()
1269 : @*/
1270 1 : PetscErrorCode PEPGetRefine(PEP pep,PEPRefine *refine,PetscInt *npart,PetscReal *tol,PetscInt *its,PEPRefineScheme *scheme)
1271 : {
1272 1 : PetscFunctionBegin;
1273 1 : PetscValidHeaderSpecific(pep,PEP_CLASSID,1);
1274 1 : if (refine) *refine = pep->refine;
1275 1 : if (npart) *npart = pep->npart;
1276 1 : if (tol) *tol = pep->rtol;
1277 1 : if (its) *its = pep->rits;
1278 1 : if (scheme) *scheme = pep->scheme;
1279 1 : PetscFunctionReturn(PETSC_SUCCESS);
1280 : }
1281 :
1282 : /*@
1283 : PEPSetOptionsPrefix - Sets the prefix used for searching for all
1284 : PEP options in the database.
1285 :
1286 : Logically Collective
1287 :
1288 : Input Parameters:
1289 : + pep - the polynomial eigensolver context
1290 : - prefix - the prefix string to prepend to all PEP option requests
1291 :
1292 : Notes:
1293 : A hyphen (-) must NOT be given at the beginning of the prefix name.
1294 : The first character of all runtime options is AUTOMATICALLY the
1295 : hyphen.
1296 :
1297 : For example, to distinguish between the runtime options for two
1298 : different PEP contexts, one could call
1299 : .vb
1300 : PEPSetOptionsPrefix(pep1,"qeig1_")
1301 : PEPSetOptionsPrefix(pep2,"qeig2_")
1302 : .ve
1303 :
1304 : Level: advanced
1305 :
1306 : .seealso: PEPAppendOptionsPrefix(), PEPGetOptionsPrefix()
1307 : @*/
1308 24 : PetscErrorCode PEPSetOptionsPrefix(PEP pep,const char *prefix)
1309 : {
1310 24 : PetscFunctionBegin;
1311 24 : PetscValidHeaderSpecific(pep,PEP_CLASSID,1);
1312 24 : if (!pep->st) PetscCall(PEPGetST(pep,&pep->st));
1313 24 : PetscCall(STSetOptionsPrefix(pep->st,prefix));
1314 24 : if (!pep->V) PetscCall(PEPGetBV(pep,&pep->V));
1315 24 : PetscCall(BVSetOptionsPrefix(pep->V,prefix));
1316 24 : if (!pep->ds) PetscCall(PEPGetDS(pep,&pep->ds));
1317 24 : PetscCall(DSSetOptionsPrefix(pep->ds,prefix));
1318 24 : if (!pep->rg) PetscCall(PEPGetRG(pep,&pep->rg));
1319 24 : PetscCall(RGSetOptionsPrefix(pep->rg,prefix));
1320 24 : PetscCall(PetscObjectSetOptionsPrefix((PetscObject)pep,prefix));
1321 24 : PetscFunctionReturn(PETSC_SUCCESS);
1322 : }
1323 :
1324 : /*@
1325 : PEPAppendOptionsPrefix - Appends to the prefix used for searching for all
1326 : PEP options in the database.
1327 :
1328 : Logically Collective
1329 :
1330 : Input Parameters:
1331 : + pep - the polynomial eigensolver context
1332 : - prefix - the prefix string to prepend to all PEP option requests
1333 :
1334 : Notes:
1335 : A hyphen (-) must NOT be given at the beginning of the prefix name.
1336 : The first character of all runtime options is AUTOMATICALLY the hyphen.
1337 :
1338 : Level: advanced
1339 :
1340 : .seealso: PEPSetOptionsPrefix(), PEPGetOptionsPrefix()
1341 : @*/
1342 24 : PetscErrorCode PEPAppendOptionsPrefix(PEP pep,const char *prefix)
1343 : {
1344 24 : PetscFunctionBegin;
1345 24 : PetscValidHeaderSpecific(pep,PEP_CLASSID,1);
1346 24 : if (!pep->st) PetscCall(PEPGetST(pep,&pep->st));
1347 24 : PetscCall(STAppendOptionsPrefix(pep->st,prefix));
1348 24 : if (!pep->V) PetscCall(PEPGetBV(pep,&pep->V));
1349 24 : PetscCall(BVAppendOptionsPrefix(pep->V,prefix));
1350 24 : if (!pep->ds) PetscCall(PEPGetDS(pep,&pep->ds));
1351 24 : PetscCall(DSAppendOptionsPrefix(pep->ds,prefix));
1352 24 : if (!pep->rg) PetscCall(PEPGetRG(pep,&pep->rg));
1353 24 : PetscCall(RGAppendOptionsPrefix(pep->rg,prefix));
1354 24 : PetscCall(PetscObjectAppendOptionsPrefix((PetscObject)pep,prefix));
1355 24 : PetscFunctionReturn(PETSC_SUCCESS);
1356 : }
1357 :
1358 : /*@
1359 : PEPGetOptionsPrefix - Gets the prefix used for searching for all
1360 : PEP options in the database.
1361 :
1362 : Not Collective
1363 :
1364 : Input Parameters:
1365 : . pep - the polynomial eigensolver context
1366 :
1367 : Output Parameters:
1368 : . prefix - pointer to the prefix string used is returned
1369 :
1370 : Note:
1371 : On the Fortran side, the user should pass in a string 'prefix' of
1372 : sufficient length to hold the prefix.
1373 :
1374 : Level: advanced
1375 :
1376 : .seealso: PEPSetOptionsPrefix(), PEPAppendOptionsPrefix()
1377 : @*/
1378 1 : PetscErrorCode PEPGetOptionsPrefix(PEP pep,const char *prefix[])
1379 : {
1380 1 : PetscFunctionBegin;
1381 1 : PetscValidHeaderSpecific(pep,PEP_CLASSID,1);
1382 1 : PetscAssertPointer(prefix,2);
1383 1 : PetscCall(PetscObjectGetOptionsPrefix((PetscObject)pep,prefix));
1384 1 : PetscFunctionReturn(PETSC_SUCCESS);
1385 : }
|