LCOV - code coverage report
Current view: top level - pep/impls/krylov/qarnoldi - qarnoldi.c (source / functions) Hit Total Coverage
Test: SLEPc Lines: 262 273 96.0 %
Date: 2024-04-25 00:48:42 Functions: 16 17 94.1 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       3             :    SLEPc - Scalable Library for Eigenvalue Problem Computations
       4             :    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
       5             : 
       6             :    This file is part of SLEPc.
       7             :    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
       8             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       9             : */
      10             : /*
      11             :    SLEPc quadratic eigensolver: "qarnoldi"
      12             : 
      13             :    Method: Q-Arnoldi
      14             : 
      15             :    Algorithm:
      16             : 
      17             :        Quadratic Arnoldi with Krylov-Schur type restart.
      18             : 
      19             :    References:
      20             : 
      21             :        [1] K. Meerbergen, "The Quadratic Arnoldi method for the solution
      22             :            of the quadratic eigenvalue problem", SIAM J. Matrix Anal.
      23             :            Appl. 30(4):1462-1482, 2008.
      24             : */
      25             : 
      26             : #include <slepc/private/pepimpl.h>    /*I "slepcpep.h" I*/
      27             : #include <petscblaslapack.h>
      28             : 
      29             : typedef struct {
      30             :   PetscReal keep;         /* restart parameter */
      31             :   PetscBool lock;         /* locking/non-locking variant */
      32             : } PEP_QARNOLDI;
      33             : 
      34          16 : static PetscErrorCode PEPSetUp_QArnoldi(PEP pep)
      35             : {
      36          16 :   PEP_QARNOLDI   *ctx = (PEP_QARNOLDI*)pep->data;
      37          16 :   PetscBool      flg;
      38             : 
      39          16 :   PetscFunctionBegin;
      40          16 :   PEPCheckQuadratic(pep);
      41          16 :   PEPCheckShiftSinvert(pep);
      42          16 :   PetscCall(PEPSetDimensions_Default(pep,pep->nev,&pep->ncv,&pep->mpd));
      43          16 :   PetscCheck(ctx->lock || pep->mpd>=pep->ncv,PetscObjectComm((PetscObject)pep),PETSC_ERR_SUP,"Should not use mpd parameter in non-locking variant");
      44          16 :   if (pep->max_it==PETSC_DEFAULT) pep->max_it = PetscMax(100,4*pep->n/pep->ncv);
      45          16 :   if (!pep->which) PetscCall(PEPSetWhichEigenpairs_Default(pep));
      46          16 :   PetscCheck(pep->which!=PEP_ALL,PetscObjectComm((PetscObject)pep),PETSC_ERR_SUP,"This solver does not support computing all eigenvalues");
      47             : 
      48          16 :   PetscCall(STGetTransform(pep->st,&flg));
      49          16 :   PetscCheck(flg,PetscObjectComm((PetscObject)pep),PETSC_ERR_SUP,"Solver requires the ST transformation flag set, see STSetTransform()");
      50             : 
      51             :   /* set default extraction */
      52          16 :   if (!pep->extract) pep->extract = PEP_EXTRACT_NONE;
      53          16 :   PEPCheckUnsupported(pep,PEP_FEATURE_NONMONOMIAL | PEP_FEATURE_EXTRACT);
      54             : 
      55          16 :   if (!ctx->keep) ctx->keep = 0.5;
      56             : 
      57          16 :   PetscCall(PEPAllocateSolution(pep,0));
      58          16 :   PetscCall(PEPSetWorkVecs(pep,4));
      59             : 
      60          16 :   PetscCall(DSSetType(pep->ds,DSNHEP));
      61          16 :   PetscCall(DSSetExtraRow(pep->ds,PETSC_TRUE));
      62          16 :   PetscCall(DSAllocate(pep->ds,pep->ncv+1));
      63          16 :   PetscFunctionReturn(PETSC_SUCCESS);
      64             : }
      65             : 
      66          16 : static PetscErrorCode PEPExtractVectors_QArnoldi(PEP pep)
      67             : {
      68          16 :   PetscInt       k=pep->nconv;
      69          16 :   Mat            X,X0;
      70             : 
      71          16 :   PetscFunctionBegin;
      72          16 :   if (pep->nconv==0) PetscFunctionReturn(PETSC_SUCCESS);
      73          16 :   PetscCall(DSVectors(pep->ds,DS_MAT_X,NULL,NULL));
      74             : 
      75             :   /* update vectors V = V*X */
      76          16 :   PetscCall(DSGetMat(pep->ds,DS_MAT_X,&X));
      77          16 :   PetscCall(MatDenseGetSubMatrix(X,0,k,0,k,&X0));
      78          16 :   PetscCall(BVMultInPlace(pep->V,X0,0,k));
      79          16 :   PetscCall(MatDenseRestoreSubMatrix(X,&X0));
      80          16 :   PetscCall(DSRestoreMat(pep->ds,DS_MAT_X,&X));
      81          16 :   PetscFunctionReturn(PETSC_SUCCESS);
      82             : }
      83             : 
      84             : /*
      85             :   Compute a step of Classical Gram-Schmidt orthogonalization
      86             : */
      87        2695 : static PetscErrorCode PEPQArnoldiCGS(PEP pep,PetscScalar *H,PetscBLASInt ldh,PetscScalar *h,PetscBLASInt j,BV V,Vec t,Vec v,Vec w,PetscReal *onorm,PetscReal *norm,PetscScalar *work)
      88             : {
      89        2695 :   PetscBLASInt   ione = 1,j_1 = j+1;
      90        2695 :   PetscReal      x,y;
      91        2695 :   PetscScalar    dot,one = 1.0,zero = 0.0;
      92             : 
      93        2695 :   PetscFunctionBegin;
      94             :   /* compute norm of v and w */
      95        2695 :   if (onorm) {
      96        1362 :     PetscCall(VecNorm(v,NORM_2,&x));
      97        1362 :     PetscCall(VecNorm(w,NORM_2,&y));
      98        1362 :     *onorm = SlepcAbs(x,y);
      99             :   }
     100             : 
     101             :   /* orthogonalize: compute h */
     102        2695 :   PetscCall(BVDotVec(V,v,h));
     103        2695 :   PetscCall(BVDotVec(V,w,work));
     104        2695 :   if (j>0) PetscCallBLAS("BLASgemv",BLASgemv_("C",&j_1,&j,&one,H,&ldh,work,&ione,&one,h,&ione));
     105        2695 :   PetscCall(VecDot(w,t,&dot));
     106        2695 :   h[j] += dot;
     107             : 
     108             :   /* orthogonalize: update v and w */
     109        2695 :   PetscCall(BVMultVec(V,-1.0,1.0,v,h));
     110        2695 :   if (j>0) {
     111        2677 :     PetscCallBLAS("BLASgemv",BLASgemv_("N",&j_1,&j,&one,H,&ldh,h,&ione,&zero,work,&ione));
     112        2677 :     PetscCall(BVMultVec(V,-1.0,1.0,w,work));
     113             :   }
     114        2695 :   PetscCall(VecAXPY(w,-h[j],t));
     115             : 
     116             :   /* compute norm of v and w */
     117        2695 :   if (norm) {
     118        2566 :     PetscCall(VecNorm(v,NORM_2,&x));
     119        2566 :     PetscCall(VecNorm(w,NORM_2,&y));
     120        2566 :     *norm = SlepcAbs(x,y);
     121             :   }
     122        2695 :   PetscFunctionReturn(PETSC_SUCCESS);
     123             : }
     124             : 
     125             : /*
     126             :   Compute a run of Q-Arnoldi iterations
     127             : */
     128         118 : static PetscErrorCode PEPQArnoldi(PEP pep,Mat A,PetscInt k,PetscInt *M,Vec v,Vec w,PetscReal *beta,PetscBool *breakdown,PetscScalar *work)
     129             : {
     130         118 :   PetscInt           i,j,l,m = *M,ldh;
     131         118 :   Vec                t = pep->work[2],u = pep->work[3];
     132         118 :   BVOrthogRefineType refinement;
     133         118 :   PetscReal          norm=0.0,onorm,eta;
     134         118 :   PetscScalar        *H,*c = work + m;
     135             : 
     136         118 :   PetscFunctionBegin;
     137         118 :   *beta = 0.0;
     138         118 :   PetscCall(MatDenseGetArray(A,&H));
     139         118 :   PetscCall(MatDenseGetLDA(A,&ldh));
     140         118 :   PetscCall(BVGetOrthogonalization(pep->V,NULL,&refinement,&eta,NULL));
     141         118 :   PetscCall(BVInsertVec(pep->V,k,v));
     142        1539 :   for (j=k;j<m;j++) {
     143             :     /* apply operator */
     144        1421 :     PetscCall(VecCopy(w,t));
     145        1421 :     if (pep->Dr) PetscCall(VecPointwiseMult(v,v,pep->Dr));
     146        1421 :     PetscCall(STMatMult(pep->st,0,v,u));
     147        1421 :     PetscCall(VecCopy(t,v));
     148        1421 :     if (pep->Dr) PetscCall(VecPointwiseMult(t,t,pep->Dr));
     149        1421 :     PetscCall(STMatMult(pep->st,1,t,w));
     150        1421 :     PetscCall(VecAXPY(u,pep->sfactor,w));
     151        1421 :     PetscCall(STMatSolve(pep->st,u,w));
     152        1421 :     PetscCall(VecScale(w,-1.0/(pep->sfactor*pep->sfactor)));
     153        1421 :     if (pep->Dr) PetscCall(VecPointwiseDivide(w,w,pep->Dr));
     154        1421 :     PetscCall(VecCopy(v,t));
     155        1421 :     PetscCall(BVSetActiveColumns(pep->V,0,j+1));
     156             : 
     157             :     /* orthogonalize */
     158        1421 :     switch (refinement) {
     159          59 :       case BV_ORTHOG_REFINE_NEVER:
     160          59 :         PetscCall(PEPQArnoldiCGS(pep,H,ldh,H+ldh*j,j,pep->V,t,v,w,NULL,&norm,work));
     161          59 :         *breakdown = PETSC_FALSE;
     162          59 :         break;
     163         129 :       case BV_ORTHOG_REFINE_ALWAYS:
     164         129 :         PetscCall(PEPQArnoldiCGS(pep,H,ldh,H+ldh*j,j,pep->V,t,v,w,NULL,NULL,work));
     165         129 :         PetscCall(PEPQArnoldiCGS(pep,H,ldh,c,j,pep->V,t,v,w,&onorm,&norm,work));
     166        2033 :         for (i=0;i<=j;i++) H[ldh*j+i] += c[i];
     167         129 :         if (norm < eta * onorm) *breakdown = PETSC_TRUE;
     168         129 :         else *breakdown = PETSC_FALSE;
     169             :         break;
     170        1233 :       case BV_ORTHOG_REFINE_IFNEEDED:
     171        1233 :         PetscCall(PEPQArnoldiCGS(pep,H,ldh,H+ldh*j,j,pep->V,t,v,w,&onorm,&norm,work));
     172             :         /* ||q|| < eta ||h|| */
     173             :         l = 1;
     174        2378 :         while (l<3 && norm < eta * onorm) {
     175        1145 :           l++;
     176        1145 :           onorm = norm;
     177        1145 :           PetscCall(PEPQArnoldiCGS(pep,H,ldh,c,j,pep->V,t,v,w,NULL,&norm,work));
     178       20803 :           for (i=0;i<=j;i++) H[ldh*j+i] += c[i];
     179             :         }
     180        1233 :         if (norm < eta * onorm) *breakdown = PETSC_TRUE;
     181        1233 :         else *breakdown = PETSC_FALSE;
     182             :         break;
     183             :     }
     184        1421 :     PetscCall(VecScale(v,1.0/norm));
     185        1421 :     PetscCall(VecScale(w,1.0/norm));
     186             : 
     187        1421 :     H[j+1+ldh*j] = norm;
     188        1421 :     if (j<m-1) PetscCall(BVInsertVec(pep->V,j+1,v));
     189             :   }
     190         118 :   *beta = norm;
     191         118 :   PetscCall(MatDenseRestoreArray(A,&H));
     192         118 :   PetscFunctionReturn(PETSC_SUCCESS);
     193             : }
     194             : 
     195          16 : static PetscErrorCode PEPSolve_QArnoldi(PEP pep)
     196             : {
     197          16 :   PEP_QARNOLDI   *ctx = (PEP_QARNOLDI*)pep->data;
     198          16 :   PetscInt       j,k,l,lwork,nv,nconv;
     199          16 :   Vec            v=pep->work[0],w=pep->work[1];
     200          16 :   Mat            Q,S;
     201          16 :   PetscScalar    *work;
     202          16 :   PetscReal      beta,norm,x,y;
     203          16 :   PetscBool      breakdown=PETSC_FALSE,sinv;
     204             : 
     205          16 :   PetscFunctionBegin;
     206          16 :   lwork = 7*pep->ncv;
     207          16 :   PetscCall(PetscMalloc1(lwork,&work));
     208          16 :   PetscCall(PetscObjectTypeCompare((PetscObject)pep->st,STSINVERT,&sinv));
     209          16 :   PetscCall(RGPushScale(pep->rg,sinv?pep->sfactor:1.0/pep->sfactor));
     210          16 :   PetscCall(STScaleShift(pep->st,sinv?pep->sfactor:1.0/pep->sfactor));
     211             : 
     212             :   /* Get the starting Arnoldi vector */
     213          48 :   for (j=0;j<2;j++) {
     214          32 :     if (j>=pep->nini) PetscCall(BVSetRandomColumn(pep->V,j));
     215             :   }
     216          16 :   PetscCall(BVCopyVec(pep->V,0,v));
     217          16 :   PetscCall(BVCopyVec(pep->V,1,w));
     218          16 :   PetscCall(VecNorm(v,NORM_2,&x));
     219          16 :   PetscCall(VecNorm(w,NORM_2,&y));
     220          16 :   norm = SlepcAbs(x,y);
     221          16 :   PetscCall(VecScale(v,1.0/norm));
     222          16 :   PetscCall(VecScale(w,1.0/norm));
     223             : 
     224             :   /* clean projected matrix (including the extra-arrow) */
     225          16 :   PetscCall(DSSetDimensions(pep->ds,PETSC_DEFAULT,PETSC_DEFAULT,PETSC_DEFAULT));
     226          16 :   PetscCall(DSGetMat(pep->ds,DS_MAT_A,&S));
     227          16 :   PetscCall(MatZeroEntries(S));
     228          16 :   PetscCall(DSRestoreMat(pep->ds,DS_MAT_A,&S));
     229             : 
     230             :    /* Restart loop */
     231          16 :   l = 0;
     232          16 :   while (pep->reason == PEP_CONVERGED_ITERATING) {
     233         118 :     pep->its++;
     234             : 
     235             :     /* Compute an nv-step Arnoldi factorization */
     236         118 :     nv = PetscMin(pep->nconv+pep->mpd,pep->ncv);
     237         118 :     PetscCall(DSGetMat(pep->ds,DS_MAT_A,&S));
     238         118 :     PetscCall(PEPQArnoldi(pep,S,pep->nconv+l,&nv,v,w,&beta,&breakdown,work));
     239         118 :     PetscCall(DSRestoreMat(pep->ds,DS_MAT_A,&S));
     240         118 :     PetscCall(DSSetDimensions(pep->ds,nv,pep->nconv,pep->nconv+l));
     241         118 :     PetscCall(DSSetState(pep->ds,l?DS_STATE_RAW:DS_STATE_INTERMEDIATE));
     242         118 :     PetscCall(BVSetActiveColumns(pep->V,pep->nconv,nv));
     243             : 
     244             :     /* Solve projected problem */
     245         118 :     PetscCall(DSSolve(pep->ds,pep->eigr,pep->eigi));
     246         118 :     PetscCall(DSSort(pep->ds,pep->eigr,pep->eigi,NULL,NULL,NULL));
     247         118 :     PetscCall(DSUpdateExtraRow(pep->ds));
     248         118 :     PetscCall(DSSynchronize(pep->ds,pep->eigr,pep->eigi));
     249             : 
     250             :     /* Check convergence */
     251         118 :     PetscCall(PEPKrylovConvergence(pep,PETSC_FALSE,pep->nconv,nv-pep->nconv,beta,&k));
     252         118 :     PetscCall((*pep->stopping)(pep,pep->its,pep->max_it,k,pep->nev,&pep->reason,pep->stoppingctx));
     253         118 :     nconv = k;
     254             : 
     255             :     /* Update l */
     256         118 :     if (pep->reason != PEP_CONVERGED_ITERATING || breakdown) l = 0;
     257             :     else {
     258         102 :       l = PetscMax(1,(PetscInt)((nv-k)*ctx->keep));
     259         102 :       PetscCall(DSGetTruncateSize(pep->ds,k,nv,&l));
     260             :     }
     261         118 :     if (!ctx->lock && l>0) { l += k; k = 0; } /* non-locking variant: reset no. of converged pairs */
     262         118 :     if (l) PetscCall(PetscInfo(pep,"Preparing to restart keeping l=%" PetscInt_FMT " vectors\n",l));
     263             : 
     264         118 :     if (pep->reason == PEP_CONVERGED_ITERATING) {
     265         102 :       if (PetscUnlikely(breakdown)) {
     266             :         /* Stop if breakdown */
     267           0 :         PetscCall(PetscInfo(pep,"Breakdown Quadratic Arnoldi method (it=%" PetscInt_FMT " norm=%g)\n",pep->its,(double)beta));
     268           0 :         pep->reason = PEP_DIVERGED_BREAKDOWN;
     269             :       } else {
     270             :         /* Prepare the Rayleigh quotient for restart */
     271         102 :         PetscCall(DSTruncate(pep->ds,k+l,PETSC_FALSE));
     272             :       }
     273             :     }
     274             :     /* Update the corresponding vectors V(:,idx) = V*Q(:,idx) */
     275         118 :     PetscCall(DSGetMat(pep->ds,DS_MAT_Q,&Q));
     276         118 :     PetscCall(BVMultInPlace(pep->V,Q,pep->nconv,k+l));
     277         118 :     PetscCall(DSRestoreMat(pep->ds,DS_MAT_Q,&Q));
     278             : 
     279         118 :     pep->nconv = k;
     280         134 :     PetscCall(PEPMonitor(pep,pep->its,nconv,pep->eigr,pep->eigi,pep->errest,nv));
     281             :   }
     282          16 :   PetscCall(BVSetActiveColumns(pep->V,0,pep->nconv));
     283         107 :   for (j=0;j<pep->nconv;j++) {
     284          91 :     pep->eigr[j] *= pep->sfactor;
     285          91 :     pep->eigi[j] *= pep->sfactor;
     286             :   }
     287             : 
     288          16 :   PetscCall(STScaleShift(pep->st,sinv?1.0/pep->sfactor:pep->sfactor));
     289          16 :   PetscCall(RGPopScale(pep->rg));
     290             : 
     291          16 :   PetscCall(DSTruncate(pep->ds,pep->nconv,PETSC_TRUE));
     292          16 :   PetscCall(PetscFree(work));
     293          16 :   PetscFunctionReturn(PETSC_SUCCESS);
     294             : }
     295             : 
     296           1 : static PetscErrorCode PEPQArnoldiSetRestart_QArnoldi(PEP pep,PetscReal keep)
     297             : {
     298           1 :   PEP_QARNOLDI *ctx = (PEP_QARNOLDI*)pep->data;
     299             : 
     300           1 :   PetscFunctionBegin;
     301           1 :   if (keep==(PetscReal)PETSC_DEFAULT) ctx->keep = 0.5;
     302             :   else {
     303           1 :     PetscCheck(keep>=0.1 && keep<=0.9,PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"The keep argument must be in the range [0.1,0.9]");
     304           1 :     ctx->keep = keep;
     305             :   }
     306           1 :   PetscFunctionReturn(PETSC_SUCCESS);
     307             : }
     308             : 
     309             : /*@
     310             :    PEPQArnoldiSetRestart - Sets the restart parameter for the Q-Arnoldi
     311             :    method, in particular the proportion of basis vectors that must be kept
     312             :    after restart.
     313             : 
     314             :    Logically Collective
     315             : 
     316             :    Input Parameters:
     317             : +  pep  - the eigenproblem solver context
     318             : -  keep - the number of vectors to be kept at restart
     319             : 
     320             :    Options Database Key:
     321             : .  -pep_qarnoldi_restart - Sets the restart parameter
     322             : 
     323             :    Notes:
     324             :    Allowed values are in the range [0.1,0.9]. The default is 0.5.
     325             : 
     326             :    Level: advanced
     327             : 
     328             : .seealso: PEPQArnoldiGetRestart()
     329             : @*/
     330           1 : PetscErrorCode PEPQArnoldiSetRestart(PEP pep,PetscReal keep)
     331             : {
     332           1 :   PetscFunctionBegin;
     333           1 :   PetscValidHeaderSpecific(pep,PEP_CLASSID,1);
     334           4 :   PetscValidLogicalCollectiveReal(pep,keep,2);
     335           1 :   PetscTryMethod(pep,"PEPQArnoldiSetRestart_C",(PEP,PetscReal),(pep,keep));
     336           1 :   PetscFunctionReturn(PETSC_SUCCESS);
     337             : }
     338             : 
     339           1 : static PetscErrorCode PEPQArnoldiGetRestart_QArnoldi(PEP pep,PetscReal *keep)
     340             : {
     341           1 :   PEP_QARNOLDI *ctx = (PEP_QARNOLDI*)pep->data;
     342             : 
     343           1 :   PetscFunctionBegin;
     344           1 :   *keep = ctx->keep;
     345           1 :   PetscFunctionReturn(PETSC_SUCCESS);
     346             : }
     347             : 
     348             : /*@
     349             :    PEPQArnoldiGetRestart - Gets the restart parameter used in the Q-Arnoldi method.
     350             : 
     351             :    Not Collective
     352             : 
     353             :    Input Parameter:
     354             : .  pep - the eigenproblem solver context
     355             : 
     356             :    Output Parameter:
     357             : .  keep - the restart parameter
     358             : 
     359             :    Level: advanced
     360             : 
     361             : .seealso: PEPQArnoldiSetRestart()
     362             : @*/
     363           1 : PetscErrorCode PEPQArnoldiGetRestart(PEP pep,PetscReal *keep)
     364             : {
     365           1 :   PetscFunctionBegin;
     366           1 :   PetscValidHeaderSpecific(pep,PEP_CLASSID,1);
     367           1 :   PetscAssertPointer(keep,2);
     368           1 :   PetscUseMethod(pep,"PEPQArnoldiGetRestart_C",(PEP,PetscReal*),(pep,keep));
     369           1 :   PetscFunctionReturn(PETSC_SUCCESS);
     370             : }
     371             : 
     372           1 : static PetscErrorCode PEPQArnoldiSetLocking_QArnoldi(PEP pep,PetscBool lock)
     373             : {
     374           1 :   PEP_QARNOLDI *ctx = (PEP_QARNOLDI*)pep->data;
     375             : 
     376           1 :   PetscFunctionBegin;
     377           1 :   ctx->lock = lock;
     378           1 :   PetscFunctionReturn(PETSC_SUCCESS);
     379             : }
     380             : 
     381             : /*@
     382             :    PEPQArnoldiSetLocking - Choose between locking and non-locking variants of
     383             :    the Q-Arnoldi method.
     384             : 
     385             :    Logically Collective
     386             : 
     387             :    Input Parameters:
     388             : +  pep  - the eigenproblem solver context
     389             : -  lock - true if the locking variant must be selected
     390             : 
     391             :    Options Database Key:
     392             : .  -pep_qarnoldi_locking - Sets the locking flag
     393             : 
     394             :    Notes:
     395             :    The default is to lock converged eigenpairs when the method restarts.
     396             :    This behaviour can be changed so that all directions are kept in the
     397             :    working subspace even if already converged to working accuracy (the
     398             :    non-locking variant).
     399             : 
     400             :    Level: advanced
     401             : 
     402             : .seealso: PEPQArnoldiGetLocking()
     403             : @*/
     404           1 : PetscErrorCode PEPQArnoldiSetLocking(PEP pep,PetscBool lock)
     405             : {
     406           1 :   PetscFunctionBegin;
     407           1 :   PetscValidHeaderSpecific(pep,PEP_CLASSID,1);
     408           4 :   PetscValidLogicalCollectiveBool(pep,lock,2);
     409           1 :   PetscTryMethod(pep,"PEPQArnoldiSetLocking_C",(PEP,PetscBool),(pep,lock));
     410           1 :   PetscFunctionReturn(PETSC_SUCCESS);
     411             : }
     412             : 
     413           1 : static PetscErrorCode PEPQArnoldiGetLocking_QArnoldi(PEP pep,PetscBool *lock)
     414             : {
     415           1 :   PEP_QARNOLDI *ctx = (PEP_QARNOLDI*)pep->data;
     416             : 
     417           1 :   PetscFunctionBegin;
     418           1 :   *lock = ctx->lock;
     419           1 :   PetscFunctionReturn(PETSC_SUCCESS);
     420             : }
     421             : 
     422             : /*@
     423             :    PEPQArnoldiGetLocking - Gets the locking flag used in the Q-Arnoldi method.
     424             : 
     425             :    Not Collective
     426             : 
     427             :    Input Parameter:
     428             : .  pep - the eigenproblem solver context
     429             : 
     430             :    Output Parameter:
     431             : .  lock - the locking flag
     432             : 
     433             :    Level: advanced
     434             : 
     435             : .seealso: PEPQArnoldiSetLocking()
     436             : @*/
     437           1 : PetscErrorCode PEPQArnoldiGetLocking(PEP pep,PetscBool *lock)
     438             : {
     439           1 :   PetscFunctionBegin;
     440           1 :   PetscValidHeaderSpecific(pep,PEP_CLASSID,1);
     441           1 :   PetscAssertPointer(lock,2);
     442           1 :   PetscUseMethod(pep,"PEPQArnoldiGetLocking_C",(PEP,PetscBool*),(pep,lock));
     443           1 :   PetscFunctionReturn(PETSC_SUCCESS);
     444             : }
     445             : 
     446          14 : static PetscErrorCode PEPSetFromOptions_QArnoldi(PEP pep,PetscOptionItems *PetscOptionsObject)
     447             : {
     448          14 :   PetscBool      flg,lock;
     449          14 :   PetscReal      keep;
     450             : 
     451          14 :   PetscFunctionBegin;
     452          14 :   PetscOptionsHeadBegin(PetscOptionsObject,"PEP Q-Arnoldi Options");
     453             : 
     454          14 :     PetscCall(PetscOptionsReal("-pep_qarnoldi_restart","Proportion of vectors kept after restart","PEPQArnoldiSetRestart",0.5,&keep,&flg));
     455          14 :     if (flg) PetscCall(PEPQArnoldiSetRestart(pep,keep));
     456             : 
     457          14 :     PetscCall(PetscOptionsBool("-pep_qarnoldi_locking","Choose between locking and non-locking variants","PEPQArnoldiSetLocking",PETSC_FALSE,&lock,&flg));
     458          14 :     if (flg) PetscCall(PEPQArnoldiSetLocking(pep,lock));
     459             : 
     460          14 :   PetscOptionsHeadEnd();
     461          14 :   PetscFunctionReturn(PETSC_SUCCESS);
     462             : }
     463             : 
     464           0 : static PetscErrorCode PEPView_QArnoldi(PEP pep,PetscViewer viewer)
     465             : {
     466           0 :   PEP_QARNOLDI   *ctx = (PEP_QARNOLDI*)pep->data;
     467           0 :   PetscBool      isascii;
     468             : 
     469           0 :   PetscFunctionBegin;
     470           0 :   PetscCall(PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&isascii));
     471           0 :   if (isascii) {
     472           0 :     PetscCall(PetscViewerASCIIPrintf(viewer,"  %d%% of basis vectors kept after restart\n",(int)(100*ctx->keep)));
     473           0 :     PetscCall(PetscViewerASCIIPrintf(viewer,"  using the %slocking variant\n",ctx->lock?"":"non-"));
     474             :   }
     475           0 :   PetscFunctionReturn(PETSC_SUCCESS);
     476             : }
     477             : 
     478          15 : static PetscErrorCode PEPDestroy_QArnoldi(PEP pep)
     479             : {
     480          15 :   PetscFunctionBegin;
     481          15 :   PetscCall(PetscFree(pep->data));
     482          15 :   PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPQArnoldiSetRestart_C",NULL));
     483          15 :   PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPQArnoldiGetRestart_C",NULL));
     484          15 :   PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPQArnoldiSetLocking_C",NULL));
     485          15 :   PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPQArnoldiGetLocking_C",NULL));
     486          15 :   PetscFunctionReturn(PETSC_SUCCESS);
     487             : }
     488             : 
     489          15 : SLEPC_EXTERN PetscErrorCode PEPCreate_QArnoldi(PEP pep)
     490             : {
     491          15 :   PEP_QARNOLDI   *ctx;
     492             : 
     493          15 :   PetscFunctionBegin;
     494          15 :   PetscCall(PetscNew(&ctx));
     495          15 :   pep->data = (void*)ctx;
     496             : 
     497          15 :   pep->lineariz = PETSC_TRUE;
     498          15 :   ctx->lock     = PETSC_TRUE;
     499             : 
     500          15 :   pep->ops->solve          = PEPSolve_QArnoldi;
     501          15 :   pep->ops->setup          = PEPSetUp_QArnoldi;
     502          15 :   pep->ops->setfromoptions = PEPSetFromOptions_QArnoldi;
     503          15 :   pep->ops->destroy        = PEPDestroy_QArnoldi;
     504          15 :   pep->ops->view           = PEPView_QArnoldi;
     505          15 :   pep->ops->backtransform  = PEPBackTransform_Default;
     506          15 :   pep->ops->computevectors = PEPComputeVectors_Default;
     507          15 :   pep->ops->extractvectors = PEPExtractVectors_QArnoldi;
     508          15 :   pep->ops->setdefaultst   = PEPSetDefaultST_Transform;
     509             : 
     510          15 :   PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPQArnoldiSetRestart_C",PEPQArnoldiSetRestart_QArnoldi));
     511          15 :   PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPQArnoldiGetRestart_C",PEPQArnoldiGetRestart_QArnoldi));
     512          15 :   PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPQArnoldiSetLocking_C",PEPQArnoldiSetLocking_QArnoldi));
     513          15 :   PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPQArnoldiGetLocking_C",PEPQArnoldiGetLocking_QArnoldi));
     514          15 :   PetscFunctionReturn(PETSC_SUCCESS);
     515             : }

Generated by: LCOV version 1.14