LCOV - code coverage report
Current view: top level - nep/tutorials - ex20.c (source / functions) Hit Total Coverage
Test: SLEPc Lines: 166 169 98.2 %
Date: 2024-12-18 00:42:09 Functions: 6 6 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       3             :    SLEPc - Scalable Library for Eigenvalue Problem Computations
       4             :    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
       5             : 
       6             :    This file is part of SLEPc.
       7             :    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
       8             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       9             : */
      10             : 
      11             : static char help[] = "Simple 1-D nonlinear eigenproblem.\n\n"
      12             :   "The command line options are:\n"
      13             :   "  -n <n>, where <n> = number of grid subdivisions.\n"
      14             :   "  -draw_sol, to draw the computed solution.\n\n";
      15             : 
      16             : /*
      17             :    Solve 1-D PDE
      18             :             -u'' = lambda*u
      19             :    on [0,1] subject to
      20             :             u(0)=0, u'(1)=u(1)*lambda*kappa/(kappa-lambda)
      21             : */
      22             : 
      23             : #include <slepcnep.h>
      24             : 
      25             : /*
      26             :    User-defined routines
      27             : */
      28             : PetscErrorCode FormInitialGuess(Vec);
      29             : PetscErrorCode FormFunction(NEP,PetscScalar,Mat,Mat,void*);
      30             : PetscErrorCode FormJacobian(NEP,PetscScalar,Mat,void*);
      31             : PetscErrorCode CheckSolution(PetscScalar,Vec,PetscReal*,void*);
      32             : PetscErrorCode FixSign(Vec);
      33             : 
      34             : /*
      35             :    User-defined application context
      36             : */
      37             : typedef struct {
      38             :   PetscScalar kappa;   /* ratio between stiffness of spring and attached mass */
      39             :   PetscReal   h;       /* mesh spacing */
      40             : } ApplicationCtx;
      41             : 
      42           5 : int main(int argc,char **argv)
      43             : {
      44           5 :   NEP            nep;             /* nonlinear eigensolver context */
      45           5 :   Vec            x;               /* eigenvector */
      46           5 :   PetscScalar    lambda;          /* eigenvalue */
      47           5 :   Mat            F,J;             /* Function and Jacobian matrices */
      48           5 :   ApplicationCtx ctx;             /* user-defined context */
      49           5 :   NEPType        type;
      50           5 :   PetscInt       n=128,nev,i,its,maxit,nconv;
      51           5 :   PetscReal      re,im,tol,norm,error;
      52           5 :   PetscBool      draw_sol=PETSC_FALSE;
      53             : 
      54           5 :   PetscFunctionBeginUser;
      55           5 :   PetscCall(SlepcInitialize(&argc,&argv,NULL,help));
      56           5 :   PetscCall(PetscOptionsGetInt(NULL,NULL,"-n",&n,NULL));
      57           5 :   PetscCall(PetscPrintf(PETSC_COMM_WORLD,"\n1-D Nonlinear Eigenproblem, n=%" PetscInt_FMT "\n\n",n));
      58           5 :   ctx.h = 1.0/(PetscReal)n;
      59           5 :   ctx.kappa = 1.0;
      60           5 :   PetscCall(PetscOptionsGetBool(NULL,NULL,"-draw_sol",&draw_sol,NULL));
      61             : 
      62             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      63             :      Create nonlinear eigensolver context
      64             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
      65             : 
      66           5 :   PetscCall(NEPCreate(PETSC_COMM_WORLD,&nep));
      67             : 
      68             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      69             :      Create matrix data structure; set Function evaluation routine
      70             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
      71             : 
      72           5 :   PetscCall(MatCreate(PETSC_COMM_WORLD,&F));
      73           5 :   PetscCall(MatSetSizes(F,PETSC_DECIDE,PETSC_DECIDE,n,n));
      74           5 :   PetscCall(MatSetFromOptions(F));
      75           5 :   PetscCall(MatSeqAIJSetPreallocation(F,3,NULL));
      76           5 :   PetscCall(MatMPIAIJSetPreallocation(F,3,NULL,1,NULL));
      77             : 
      78             :   /*
      79             :      Set Function matrix data structure and default Function evaluation
      80             :      routine
      81             :   */
      82           5 :   PetscCall(NEPSetFunction(nep,F,F,FormFunction,&ctx));
      83             : 
      84             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      85             :      Create matrix data structure; set Jacobian evaluation routine
      86             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
      87             : 
      88           5 :   PetscCall(MatCreate(PETSC_COMM_WORLD,&J));
      89           5 :   PetscCall(MatSetSizes(J,PETSC_DECIDE,PETSC_DECIDE,n,n));
      90           5 :   PetscCall(MatSetFromOptions(J));
      91           5 :   PetscCall(MatSeqAIJSetPreallocation(J,3,NULL));
      92           5 :   PetscCall(MatMPIAIJSetPreallocation(J,3,NULL,1,NULL));
      93             : 
      94             :   /*
      95             :      Set Jacobian matrix data structure and default Jacobian evaluation
      96             :      routine
      97             :   */
      98           5 :   PetscCall(NEPSetJacobian(nep,J,FormJacobian,&ctx));
      99             : 
     100             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     101             :      Customize nonlinear solver; set runtime options
     102             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
     103             : 
     104           5 :   PetscCall(NEPSetTolerances(nep,1e-9,PETSC_CURRENT));
     105           5 :   PetscCall(NEPSetDimensions(nep,1,PETSC_DETERMINE,PETSC_DETERMINE));
     106             : 
     107             :   /*
     108             :      Set solver parameters at runtime
     109             :   */
     110           5 :   PetscCall(NEPSetFromOptions(nep));
     111             : 
     112             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     113             :                       Initialize application
     114             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
     115             : 
     116             :   /*
     117             :      Evaluate initial guess
     118             :   */
     119           5 :   PetscCall(MatCreateVecs(F,&x,NULL));
     120           5 :   PetscCall(FormInitialGuess(x));
     121           5 :   PetscCall(NEPSetInitialSpace(nep,1,&x));
     122             : 
     123             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     124             :                       Solve the eigensystem
     125             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
     126             : 
     127           5 :   PetscCall(NEPSolve(nep));
     128           5 :   PetscCall(NEPGetIterationNumber(nep,&its));
     129           5 :   PetscCall(PetscPrintf(PETSC_COMM_WORLD," Number of NEP iterations = %" PetscInt_FMT "\n\n",its));
     130             : 
     131             :   /*
     132             :      Optional: Get some information from the solver and display it
     133             :   */
     134           5 :   PetscCall(NEPGetType(nep,&type));
     135           5 :   PetscCall(PetscPrintf(PETSC_COMM_WORLD," Solution method: %s\n",type));
     136           5 :   PetscCall(NEPGetDimensions(nep,&nev,NULL,NULL));
     137           5 :   PetscCall(PetscPrintf(PETSC_COMM_WORLD," Number of requested eigenvalues: %" PetscInt_FMT "\n",nev));
     138           5 :   PetscCall(NEPGetTolerances(nep,&tol,&maxit));
     139           5 :   PetscCall(PetscPrintf(PETSC_COMM_WORLD," Stopping condition: tol=%g, maxit=%" PetscInt_FMT "\n",(double)tol,maxit));
     140             : 
     141             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     142             :                     Display solution and clean up
     143             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
     144             : 
     145             :   /*
     146             :      Get number of converged approximate eigenpairs
     147             :   */
     148           5 :   PetscCall(NEPGetConverged(nep,&nconv));
     149           5 :   PetscCall(PetscPrintf(PETSC_COMM_WORLD," Number of converged approximate eigenpairs: %" PetscInt_FMT "\n\n",nconv));
     150             : 
     151           5 :   if (nconv>0) {
     152             :     /*
     153             :        Display eigenvalues and relative errors
     154             :     */
     155           5 :     PetscCall(PetscPrintf(PETSC_COMM_WORLD,
     156             :          "           k              ||T(k)x||           error\n"
     157             :          "   ----------------- ------------------ ------------------\n"));
     158          20 :     for (i=0;i<nconv;i++) {
     159             :       /*
     160             :         Get converged eigenpairs (in this example they are always real)
     161             :       */
     162          15 :       PetscCall(NEPGetEigenpair(nep,i,&lambda,NULL,x,NULL));
     163          15 :       PetscCall(FixSign(x));
     164             :       /*
     165             :          Compute residual norm and error
     166             :       */
     167          15 :       PetscCall(NEPComputeError(nep,i,NEP_ERROR_RELATIVE,&norm));
     168          15 :       PetscCall(CheckSolution(lambda,x,&error,&ctx));
     169             : 
     170             : #if defined(PETSC_USE_COMPLEX)
     171             :       re = PetscRealPart(lambda);
     172             :       im = PetscImaginaryPart(lambda);
     173             : #else
     174          15 :       re = lambda;
     175          15 :       im = 0.0;
     176             : #endif
     177          15 :       if (im!=0.0) PetscCall(PetscPrintf(PETSC_COMM_WORLD," %9f%+9fi %12g     %12g\n",(double)re,(double)im,(double)norm,(double)error));
     178          15 :       else PetscCall(PetscPrintf(PETSC_COMM_WORLD,"   %12f         %12g     %12g\n",(double)re,(double)norm,(double)error));
     179          15 :       if (draw_sol) {
     180           0 :         PetscCall(PetscViewerDrawSetPause(PETSC_VIEWER_DRAW_WORLD,-1));
     181          15 :         PetscCall(VecView(x,PETSC_VIEWER_DRAW_WORLD));
     182             :       }
     183             :     }
     184           5 :     PetscCall(PetscPrintf(PETSC_COMM_WORLD,"\n"));
     185             :   }
     186             : 
     187           5 :   PetscCall(NEPDestroy(&nep));
     188           5 :   PetscCall(MatDestroy(&F));
     189           5 :   PetscCall(MatDestroy(&J));
     190           5 :   PetscCall(VecDestroy(&x));
     191           5 :   PetscCall(SlepcFinalize());
     192             :   return 0;
     193             : }
     194             : 
     195             : /* ------------------------------------------------------------------- */
     196             : /*
     197             :    FormInitialGuess - Computes initial guess.
     198             : 
     199             :    Input/Output Parameter:
     200             : .  x - the solution vector
     201             : */
     202           5 : PetscErrorCode FormInitialGuess(Vec x)
     203             : {
     204           5 :   PetscFunctionBeginUser;
     205           5 :   PetscCall(VecSet(x,1.0));
     206           5 :   PetscFunctionReturn(PETSC_SUCCESS);
     207             : }
     208             : 
     209             : /* ------------------------------------------------------------------- */
     210             : /*
     211             :    FormFunction - Computes Function matrix  T(lambda)
     212             : 
     213             :    Input Parameters:
     214             : .  nep    - the NEP context
     215             : .  lambda - the scalar argument
     216             : .  ctx    - optional user-defined context, as set by NEPSetFunction()
     217             : 
     218             :    Output Parameters:
     219             : .  fun - Function matrix
     220             : .  B   - optionally different preconditioning matrix
     221             : */
     222         415 : PetscErrorCode FormFunction(NEP nep,PetscScalar lambda,Mat fun,Mat B,void *ctx)
     223             : {
     224         415 :   ApplicationCtx *user = (ApplicationCtx*)ctx;
     225         415 :   PetscScalar    A[3],c,d;
     226         415 :   PetscReal      h;
     227         415 :   PetscInt       i,n,j[3],Istart,Iend;
     228         415 :   PetscBool      FirstBlock=PETSC_FALSE,LastBlock=PETSC_FALSE;
     229             : 
     230         415 :   PetscFunctionBeginUser;
     231             :   /*
     232             :      Compute Function entries and insert into matrix
     233             :   */
     234         415 :   PetscCall(MatGetSize(fun,&n,NULL));
     235         415 :   PetscCall(MatGetOwnershipRange(fun,&Istart,&Iend));
     236         415 :   if (Istart==0) FirstBlock=PETSC_TRUE;
     237         415 :   if (Iend==n) LastBlock=PETSC_TRUE;
     238         415 :   h = user->h;
     239         415 :   c = user->kappa/(lambda-user->kappa);
     240         415 :   d = n;
     241             : 
     242             :   /*
     243             :      Interior grid points
     244             :   */
     245       62049 :   for (i=(FirstBlock? Istart+1: Istart);i<(LastBlock? Iend-1: Iend);i++) {
     246       61634 :     j[0] = i-1; j[1] = i; j[2] = i+1;
     247       61634 :     A[0] = A[2] = -d-lambda*h/6.0; A[1] = 2.0*(d-lambda*h/3.0);
     248       61634 :     PetscCall(MatSetValues(fun,1,&i,3,j,A,INSERT_VALUES));
     249             :   }
     250             : 
     251             :   /*
     252             :      Boundary points
     253             :   */
     254         415 :   if (FirstBlock) {
     255         415 :     i = 0;
     256         415 :     j[0] = 0; j[1] = 1;
     257         415 :     A[0] = 2.0*(d-lambda*h/3.0); A[1] = -d-lambda*h/6.0;
     258         415 :     PetscCall(MatSetValues(fun,1,&i,2,j,A,INSERT_VALUES));
     259             :   }
     260             : 
     261         415 :   if (LastBlock) {
     262         415 :     i = n-1;
     263         415 :     j[0] = n-2; j[1] = n-1;
     264         415 :     A[0] = -d-lambda*h/6.0; A[1] = d-lambda*h/3.0+lambda*c;
     265         415 :     PetscCall(MatSetValues(fun,1,&i,2,j,A,INSERT_VALUES));
     266             :   }
     267             : 
     268             :   /*
     269             :      Assemble matrix
     270             :   */
     271         415 :   PetscCall(MatAssemblyBegin(B,MAT_FINAL_ASSEMBLY));
     272         415 :   PetscCall(MatAssemblyEnd(B,MAT_FINAL_ASSEMBLY));
     273         415 :   if (fun != B) {
     274           0 :     PetscCall(MatAssemblyBegin(fun,MAT_FINAL_ASSEMBLY));
     275           0 :     PetscCall(MatAssemblyEnd(fun,MAT_FINAL_ASSEMBLY));
     276             :   }
     277         415 :   PetscFunctionReturn(PETSC_SUCCESS);
     278             : }
     279             : 
     280             : /* ------------------------------------------------------------------- */
     281             : /*
     282             :    FormJacobian - Computes Jacobian matrix  T'(lambda)
     283             : 
     284             :    Input Parameters:
     285             : .  nep    - the NEP context
     286             : .  lambda - the scalar argument
     287             : .  ctx    - optional user-defined context, as set by NEPSetJacobian()
     288             : 
     289             :    Output Parameters:
     290             : .  jac - Jacobian matrix
     291             : */
     292          79 : PetscErrorCode FormJacobian(NEP nep,PetscScalar lambda,Mat jac,void *ctx)
     293             : {
     294          79 :   ApplicationCtx *user = (ApplicationCtx*)ctx;
     295          79 :   PetscScalar    A[3],c;
     296          79 :   PetscReal      h;
     297          79 :   PetscInt       i,n,j[3],Istart,Iend;
     298          79 :   PetscBool      FirstBlock=PETSC_FALSE,LastBlock=PETSC_FALSE;
     299             : 
     300          79 :   PetscFunctionBeginUser;
     301             :   /*
     302             :      Compute Jacobian entries and insert into matrix
     303             :   */
     304          79 :   PetscCall(MatGetSize(jac,&n,NULL));
     305          79 :   PetscCall(MatGetOwnershipRange(jac,&Istart,&Iend));
     306          79 :   if (Istart==0) FirstBlock=PETSC_TRUE;
     307          79 :   if (Iend==n) LastBlock=PETSC_TRUE;
     308          79 :   h = user->h;
     309          79 :   c = user->kappa/(lambda-user->kappa);
     310             : 
     311             :   /*
     312             :      Interior grid points
     313             :   */
     314       18737 :   for (i=(FirstBlock? Istart+1: Istart);i<(LastBlock? Iend-1: Iend);i++) {
     315       18658 :     j[0] = i-1; j[1] = i; j[2] = i+1;
     316       18658 :     A[0] = A[2] = -h/6.0; A[1] = -2.0*h/3.0;
     317       18658 :     PetscCall(MatSetValues(jac,1,&i,3,j,A,INSERT_VALUES));
     318             :   }
     319             : 
     320             :   /*
     321             :      Boundary points
     322             :   */
     323          79 :   if (FirstBlock) {
     324          79 :     i = 0;
     325          79 :     j[0] = 0; j[1] = 1;
     326          79 :     A[0] = -2.0*h/3.0; A[1] = -h/6.0;
     327          79 :     PetscCall(MatSetValues(jac,1,&i,2,j,A,INSERT_VALUES));
     328             :   }
     329             : 
     330          79 :   if (LastBlock) {
     331          79 :     i = n-1;
     332          79 :     j[0] = n-2; j[1] = n-1;
     333          79 :     A[0] = -h/6.0; A[1] = -h/3.0-c*c;
     334          79 :     PetscCall(MatSetValues(jac,1,&i,2,j,A,INSERT_VALUES));
     335             :   }
     336             : 
     337             :   /*
     338             :      Assemble matrix
     339             :   */
     340          79 :   PetscCall(MatAssemblyBegin(jac,MAT_FINAL_ASSEMBLY));
     341          79 :   PetscCall(MatAssemblyEnd(jac,MAT_FINAL_ASSEMBLY));
     342          79 :   PetscFunctionReturn(PETSC_SUCCESS);
     343             : }
     344             : 
     345             : /* ------------------------------------------------------------------- */
     346             : /*
     347             :    CheckSolution - Given a computed solution (lambda,x) check if it
     348             :    satisfies the analytic solution.
     349             : 
     350             :    Input Parameters:
     351             : +  lambda - the computed eigenvalue
     352             : -  y      - the computed eigenvector
     353             : 
     354             :    Output Parameter:
     355             : .  error - norm of difference between the computed and exact eigenvector
     356             : */
     357          15 : PetscErrorCode CheckSolution(PetscScalar lambda,Vec y,PetscReal *error,void *ctx)
     358             : {
     359          15 :   PetscScalar    *uu;
     360          15 :   PetscInt       i,n,Istart,Iend;
     361          15 :   PetscReal      nu,x;
     362          15 :   Vec            u;
     363          15 :   ApplicationCtx *user = (ApplicationCtx*)ctx;
     364             : 
     365          15 :   PetscFunctionBeginUser;
     366          15 :   nu = PetscSqrtReal(PetscRealPart(lambda));
     367          15 :   PetscCall(VecDuplicate(y,&u));
     368          15 :   PetscCall(VecGetSize(u,&n));
     369          15 :   PetscCall(VecGetOwnershipRange(y,&Istart,&Iend));
     370          15 :   PetscCall(VecGetArray(u,&uu));
     371        2191 :   for (i=Istart;i<Iend;i++) {
     372        2176 :     x = (i+1)*user->h;
     373        2176 :     uu[i-Istart] = PetscSinReal(nu*x);
     374             :   }
     375          15 :   PetscCall(VecRestoreArray(u,&uu));
     376          15 :   PetscCall(VecNormalize(u,NULL));
     377          15 :   PetscCall(VecAXPY(u,-1.0,y));
     378          15 :   PetscCall(VecNorm(u,NORM_2,error));
     379          15 :   PetscCall(VecDestroy(&u));
     380          15 :   PetscFunctionReturn(PETSC_SUCCESS);
     381             : }
     382             : 
     383             : /* ------------------------------------------------------------------- */
     384             : /*
     385             :    FixSign - Force the eigenfunction to be real and positive, since
     386             :    some eigensolvers may return the eigenvector multiplied by a
     387             :    complex number of modulus one.
     388             : 
     389             :    Input/Output Parameter:
     390             : .  x - the computed vector
     391             : */
     392          15 : PetscErrorCode FixSign(Vec x)
     393             : {
     394          15 :   PetscMPIInt       rank;
     395          15 :   PetscScalar       sign=0.0;
     396          15 :   const PetscScalar *xx;
     397             : 
     398          15 :   PetscFunctionBeginUser;
     399          15 :   PetscCallMPI(MPI_Comm_rank(PETSC_COMM_WORLD,&rank));
     400          15 :   if (!rank) {
     401          15 :     PetscCall(VecGetArrayRead(x,&xx));
     402          15 :     sign = *xx/PetscAbsScalar(*xx);
     403          15 :     PetscCall(VecRestoreArrayRead(x,&xx));
     404             :   }
     405          30 :   PetscCallMPI(MPI_Bcast(&sign,1,MPIU_SCALAR,0,PETSC_COMM_WORLD));
     406          15 :   PetscCall(VecScale(x,1.0/sign));
     407          15 :   PetscFunctionReturn(PETSC_SUCCESS);
     408             : }
     409             : 
     410             : /*TEST
     411             : 
     412             :    build:
     413             :       requires: !single
     414             : 
     415             :    test:
     416             :       suffix: 1
     417             :       args: -nep_target 4
     418             :       filter: sed -e "s/[0-9]\.[0-9]*e-\([0-9]*\)/removed/g" -e "s/ Number of NEP iterations = \([0-9]*\)/ Number of NEP iterations = /"
     419             :       requires: !single
     420             : 
     421             :    testset:
     422             :       args: -nep_type nleigs -nep_target 10 -nep_nev 4
     423             :       test:
     424             :          suffix: 2
     425             :          filter: sed -e "s/[0-9]\.[0-9]*e-\([0-9]*\)/removed/g" -e "s/0\.\([0-9]*\)/removed/g" -e "s/ Number of NEP iterations = \([0-9]*\)/ Number of NEP iterations = /"
     426             :          args: -rg_interval_endpoints 4,200
     427             :          requires: !single !complex
     428             :       test:
     429             :          suffix: 2_complex
     430             :          filter: sed -e "s/[+-]0.[0-9]*i//" -e "s/[0-9]\.[0-9]*e-\([0-9]*\)/removed/g" -e "s/0\.\([0-9]*\)/removed/g" -e "s/ Number of NEP iterations = \([0-9]*\)/ Number of NEP iterations = /"
     431             :          output_file: output/ex20_2.out
     432             :          args: -rg_interval_endpoints 4,200,-.1,.1 -nep_target_real
     433             :          requires: !single complex
     434             : 
     435             :    testset:
     436             :       args: -nep_type nleigs -nep_target 10 -nep_nev 4 -nep_ncv 18 -nep_two_sided {{0 1}} -nep_nleigs_full_basis
     437             :       test:
     438             :          suffix: 3
     439             :          filter: sed -e "s/[0-9]\.[0-9]*e-\([0-9]*\)/removed/g" -e "s/0\.\([0-9]*\)/removed/g" -e "s/ Number of NEP iterations = \([0-9]*\)/ Number of NEP iterations = /"
     440             :          output_file: output/ex20_2.out
     441             :          args: -rg_interval_endpoints 4,200
     442             :          requires: !single !complex
     443             :       test:
     444             :          suffix: 3_complex
     445             :          filter: sed -e "s/[+-]0.[0-9]*i//" -e "s/[0-9]\.[0-9]*e-\([0-9]*\)/removed/g" -e "s/0\.\([0-9]*\)/removed/g" -e "s/ Number of NEP iterations = \([0-9]*\)/ Number of NEP iterations = /"
     446             :          output_file: output/ex20_2.out
     447             :          args: -rg_interval_endpoints 4,200,-.1,.1
     448             :          requires: !single complex
     449             : 
     450             :    test:
     451             :       suffix: 4
     452             :       args: -n 256 -nep_nev 2 -nep_target 10
     453             :       filter: sed -e "s/[+-]0\.0*i//g" -e "s/[0-9]\.[0-9]*e-\([0-9]*\)/removed/g" -e "s/ Number of NEP iterations = \([0-9]*\)/ Number of NEP iterations = /"
     454             :       requires: !single
     455             : 
     456             : TEST*/

Generated by: LCOV version 1.14