LCOV - code coverage report
Current view: top level - nep/tests - test6.c (source / functions) Hit Total Coverage
Test: SLEPc Lines: 94 98 95.9 %
Date: 2024-11-21 00:34:55 Functions: 1 1 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       3             :    SLEPc - Scalable Library for Eigenvalue Problem Computations
       4             :    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
       5             : 
       6             :    This file is part of SLEPc.
       7             :    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
       8             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       9             : */
      10             : 
      11             : static char help[] = "Test the NArnoldi solver with a user-provided KSP.\n\n"
      12             :   "This is based on ex22.\n"
      13             :   "The command line options are:\n"
      14             :   "  -n <n>, where <n> = number of grid subdivisions.\n"
      15             :   "  -tau <tau>, where <tau> is the delay parameter.\n"
      16             :   "  -initv ... set an initial vector.\n\n";
      17             : 
      18             : /*
      19             :    Solve parabolic partial differential equation with time delay tau
      20             : 
      21             :             u_t = u_xx + a*u(t) + b*u(t-tau)
      22             :             u(0,t) = u(pi,t) = 0
      23             : 
      24             :    with a = 20 and b(x) = -4.1+x*(1-exp(x-pi)).
      25             : 
      26             :    Discretization leads to a DDE of dimension n
      27             : 
      28             :             -u' = A*u(t) + B*u(t-tau)
      29             : 
      30             :    which results in the nonlinear eigenproblem
      31             : 
      32             :             (-lambda*I + A + exp(-tau*lambda)*B)*u = 0
      33             : */
      34             : 
      35             : #include <slepcnep.h>
      36             : 
      37           1 : int main(int argc,char **argv)
      38             : {
      39           1 :   NEP            nep;
      40           1 :   KSP            ksp;
      41           1 :   PC             pc;
      42           1 :   Mat            Id,A,B,mats[3];
      43           1 :   FN             f1,f2,f3,funs[3];
      44           1 :   Vec            v0;
      45           1 :   PetscScalar    coeffs[2],b,*pv;
      46           1 :   PetscInt       n=128,nev,Istart,Iend,i,lag;
      47           1 :   PetscReal      tau=0.001,h,a=20,xi;
      48           1 :   PetscBool      terse,initv=PETSC_FALSE;
      49           1 :   const char     *prefix;
      50             : 
      51           1 :   PetscFunctionBeginUser;
      52           1 :   PetscCall(SlepcInitialize(&argc,&argv,NULL,help));
      53           1 :   PetscCall(PetscOptionsGetInt(NULL,NULL,"-n",&n,NULL));
      54           1 :   PetscCall(PetscOptionsGetReal(NULL,NULL,"-tau",&tau,NULL));
      55           1 :   PetscCall(PetscOptionsGetBool(NULL,NULL,"-initv",&initv,NULL));
      56           1 :   PetscCall(PetscPrintf(PETSC_COMM_WORLD,"\n1-D Delay Eigenproblem, n=%" PetscInt_FMT ", tau=%g\n\n",n,(double)tau));
      57           1 :   h = PETSC_PI/(PetscReal)(n+1);
      58             : 
      59             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      60             :       Create a standalone KSP with appropriate settings
      61             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
      62             : 
      63           1 :   PetscCall(KSPCreate(PETSC_COMM_WORLD,&ksp));
      64           1 :   PetscCall(KSPSetType(ksp,KSPBCGS));
      65           1 :   PetscCall(KSPGetPC(ksp,&pc));
      66           1 :   PetscCall(PCSetType(pc,PCBJACOBI));
      67           1 :   PetscCall(KSPSetFromOptions(ksp));
      68             : 
      69             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      70             :      Create nonlinear eigensolver context
      71             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
      72             : 
      73           1 :   PetscCall(NEPCreate(PETSC_COMM_WORLD,&nep));
      74             : 
      75             :   /* Identity matrix */
      76           1 :   PetscCall(MatCreateConstantDiagonal(PETSC_COMM_WORLD,PETSC_DECIDE,PETSC_DECIDE,n,n,1.0,&Id));
      77           1 :   PetscCall(MatSetOption(Id,MAT_HERMITIAN,PETSC_TRUE));
      78             : 
      79             :   /* A = 1/h^2*tridiag(1,-2,1) + a*I */
      80           1 :   PetscCall(MatCreate(PETSC_COMM_WORLD,&A));
      81           1 :   PetscCall(MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,n,n));
      82           1 :   PetscCall(MatSetFromOptions(A));
      83           1 :   PetscCall(MatGetOwnershipRange(A,&Istart,&Iend));
      84         129 :   for (i=Istart;i<Iend;i++) {
      85         128 :     if (i>0) PetscCall(MatSetValue(A,i,i-1,1.0/(h*h),INSERT_VALUES));
      86         128 :     if (i<n-1) PetscCall(MatSetValue(A,i,i+1,1.0/(h*h),INSERT_VALUES));
      87         128 :     PetscCall(MatSetValue(A,i,i,-2.0/(h*h)+a,INSERT_VALUES));
      88             :   }
      89           1 :   PetscCall(MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY));
      90           1 :   PetscCall(MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY));
      91           1 :   PetscCall(MatSetOption(A,MAT_HERMITIAN,PETSC_TRUE));
      92             : 
      93             :   /* B = diag(b(xi)) */
      94           1 :   PetscCall(MatCreate(PETSC_COMM_WORLD,&B));
      95           1 :   PetscCall(MatSetSizes(B,PETSC_DECIDE,PETSC_DECIDE,n,n));
      96           1 :   PetscCall(MatSetFromOptions(B));
      97           1 :   PetscCall(MatGetOwnershipRange(B,&Istart,&Iend));
      98         129 :   for (i=Istart;i<Iend;i++) {
      99         128 :     xi = (i+1)*h;
     100         128 :     b = -4.1+xi*(1.0-PetscExpReal(xi-PETSC_PI));
     101         128 :     PetscCall(MatSetValues(B,1,&i,1,&i,&b,INSERT_VALUES));
     102             :   }
     103           1 :   PetscCall(MatAssemblyBegin(B,MAT_FINAL_ASSEMBLY));
     104           1 :   PetscCall(MatAssemblyEnd(B,MAT_FINAL_ASSEMBLY));
     105           1 :   PetscCall(MatSetOption(B,MAT_HERMITIAN,PETSC_TRUE));
     106             : 
     107             :   /* Functions: f1=-lambda, f2=1.0, f3=exp(-tau*lambda) */
     108           1 :   PetscCall(FNCreate(PETSC_COMM_WORLD,&f1));
     109           1 :   PetscCall(FNSetType(f1,FNRATIONAL));
     110           1 :   coeffs[0] = -1.0; coeffs[1] = 0.0;
     111           1 :   PetscCall(FNRationalSetNumerator(f1,2,coeffs));
     112             : 
     113           1 :   PetscCall(FNCreate(PETSC_COMM_WORLD,&f2));
     114           1 :   PetscCall(FNSetType(f2,FNRATIONAL));
     115           1 :   coeffs[0] = 1.0;
     116           1 :   PetscCall(FNRationalSetNumerator(f2,1,coeffs));
     117             : 
     118           1 :   PetscCall(FNCreate(PETSC_COMM_WORLD,&f3));
     119           1 :   PetscCall(FNSetType(f3,FNEXP));
     120           1 :   PetscCall(FNSetScale(f3,-tau,1.0));
     121             : 
     122             :   /* Set the split operator */
     123           1 :   mats[0] = A;  funs[0] = f2;
     124           1 :   mats[1] = Id; funs[1] = f1;
     125           1 :   mats[2] = B;  funs[2] = f3;
     126           1 :   PetscCall(NEPSetSplitOperator(nep,3,mats,funs,SUBSET_NONZERO_PATTERN));
     127             : 
     128             :   /* Customize nonlinear solver; set runtime options */
     129           1 :   PetscCall(NEPSetOptionsPrefix(nep,"check_"));
     130           1 :   PetscCall(NEPAppendOptionsPrefix(nep,"myprefix_"));
     131           1 :   PetscCall(NEPGetOptionsPrefix(nep,&prefix));
     132           1 :   PetscCall(PetscPrintf(PETSC_COMM_WORLD,"NEP prefix is currently: %s\n\n",prefix));
     133           1 :   PetscCall(NEPSetType(nep,NEPNARNOLDI));
     134           1 :   PetscCall(NEPNArnoldiSetKSP(nep,ksp));
     135           1 :   if (initv) { /* initial vector */
     136           1 :     PetscCall(MatCreateVecs(A,&v0,NULL));
     137           1 :     PetscCall(VecGetArray(v0,&pv));
     138         129 :     for (i=Istart;i<Iend;i++) pv[i-Istart] = PetscSinReal((4.0*PETSC_PI*i)/n);
     139           1 :     PetscCall(VecRestoreArray(v0,&pv));
     140           1 :     PetscCall(NEPSetInitialSpace(nep,1,&v0));
     141           1 :     PetscCall(VecDestroy(&v0));
     142             :   }
     143           1 :   PetscCall(NEPSetFromOptions(nep));
     144             : 
     145             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     146             :                       Solve the eigensystem
     147             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
     148             : 
     149           1 :   PetscCall(NEPSolve(nep));
     150           1 :   PetscCall(NEPGetDimensions(nep,&nev,NULL,NULL));
     151           1 :   PetscCall(PetscPrintf(PETSC_COMM_WORLD," Number of requested eigenvalues: %" PetscInt_FMT "\n",nev));
     152           1 :   PetscCall(NEPNArnoldiGetLagPreconditioner(nep,&lag));
     153           1 :   PetscCall(PetscPrintf(PETSC_COMM_WORLD," N-Arnoldi lag parameter: %" PetscInt_FMT "\n",lag));
     154             : 
     155             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     156             :                     Display solution and clean up
     157             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
     158             : 
     159             :   /* show detailed info unless -terse option is given by user */
     160           1 :   PetscCall(PetscOptionsHasName(NULL,NULL,"-terse",&terse));
     161           1 :   if (terse) PetscCall(NEPErrorView(nep,NEP_ERROR_RELATIVE,NULL));
     162             :   else {
     163           0 :     PetscCall(PetscViewerPushFormat(PETSC_VIEWER_STDOUT_WORLD,PETSC_VIEWER_ASCII_INFO_DETAIL));
     164           0 :     PetscCall(NEPConvergedReasonView(nep,PETSC_VIEWER_STDOUT_WORLD));
     165           0 :     PetscCall(NEPErrorView(nep,NEP_ERROR_RELATIVE,PETSC_VIEWER_STDOUT_WORLD));
     166           0 :     PetscCall(PetscViewerPopFormat(PETSC_VIEWER_STDOUT_WORLD));
     167             :   }
     168           1 :   PetscCall(NEPDestroy(&nep));
     169           1 :   PetscCall(KSPDestroy(&ksp));
     170           1 :   PetscCall(MatDestroy(&Id));
     171           1 :   PetscCall(MatDestroy(&A));
     172           1 :   PetscCall(MatDestroy(&B));
     173           1 :   PetscCall(FNDestroy(&f1));
     174           1 :   PetscCall(FNDestroy(&f2));
     175           1 :   PetscCall(FNDestroy(&f3));
     176           1 :   PetscCall(SlepcFinalize());
     177             :   return 0;
     178             : }
     179             : 
     180             : /*TEST
     181             : 
     182             :    test:
     183             :       suffix: 1
     184             :       args: -check_myprefix_nep_view -check_myprefix_nep_monitor_conv -initv -terse
     185             :       filter: grep -v "tolerance" | sed -e "s/[0-9]\.[0-9]*e[+-]\([0-9]*\)/removed/g" -e "s/+0i//g"
     186             :       requires: double
     187             : 
     188             : TEST*/

Generated by: LCOV version 1.14