Line data Source code
1 : /*
2 : - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3 : SLEPc - Scalable Library for Eigenvalue Problem Computations
4 : Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
5 :
6 : This file is part of SLEPc.
7 : SLEPc is distributed under a 2-clause BSD license (see LICENSE).
8 : - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9 : */
10 :
11 : static char help[] = "Test NEP interface functions.\n\n";
12 :
13 : #include <slepcnep.h>
14 :
15 1 : int main(int argc,char **argv)
16 : {
17 1 : Mat A[3],B; /* problem matrices */
18 1 : FN f[3],g; /* problem functions */
19 1 : NEP nep; /* eigenproblem solver context */
20 1 : DS ds;
21 1 : RG rg;
22 1 : PetscReal tol;
23 1 : PetscScalar coeffs[2],target;
24 1 : PetscInt n=20,i,its,nev,ncv,mpd,Istart,Iend,nterm;
25 1 : PetscBool twoside;
26 1 : NEPWhich which;
27 1 : NEPConvergedReason reason;
28 1 : NEPType type;
29 1 : NEPRefine refine;
30 1 : NEPRefineScheme rscheme;
31 1 : NEPConv conv;
32 1 : NEPStop stop;
33 1 : NEPProblemType ptype;
34 1 : MatStructure mstr;
35 1 : PetscViewerAndFormat *vf;
36 :
37 1 : PetscFunctionBeginUser;
38 1 : PetscCall(SlepcInitialize(&argc,&argv,NULL,help));
39 1 : PetscCall(PetscPrintf(PETSC_COMM_WORLD,"\nDiagonal Nonlinear Eigenproblem, n=%" PetscInt_FMT "\n\n",n));
40 :
41 : /*
42 : Matrices
43 : */
44 1 : PetscCall(MatCreate(PETSC_COMM_WORLD,&A[0]));
45 1 : PetscCall(MatSetSizes(A[0],PETSC_DECIDE,PETSC_DECIDE,n,n));
46 1 : PetscCall(MatSetFromOptions(A[0]));
47 1 : PetscCall(MatGetOwnershipRange(A[0],&Istart,&Iend));
48 21 : for (i=Istart;i<Iend;i++) PetscCall(MatSetValue(A[0],i,i,i+1,INSERT_VALUES));
49 1 : PetscCall(MatAssemblyBegin(A[0],MAT_FINAL_ASSEMBLY));
50 1 : PetscCall(MatAssemblyEnd(A[0],MAT_FINAL_ASSEMBLY));
51 :
52 1 : PetscCall(MatCreate(PETSC_COMM_WORLD,&A[1]));
53 1 : PetscCall(MatSetSizes(A[1],PETSC_DECIDE,PETSC_DECIDE,n,n));
54 1 : PetscCall(MatSetFromOptions(A[1]));
55 1 : PetscCall(MatGetOwnershipRange(A[1],&Istart,&Iend));
56 21 : for (i=Istart;i<Iend;i++) PetscCall(MatSetValue(A[1],i,i,1.0,INSERT_VALUES));
57 1 : PetscCall(MatAssemblyBegin(A[1],MAT_FINAL_ASSEMBLY));
58 1 : PetscCall(MatAssemblyEnd(A[1],MAT_FINAL_ASSEMBLY));
59 :
60 1 : PetscCall(MatCreate(PETSC_COMM_WORLD,&A[2]));
61 1 : PetscCall(MatSetSizes(A[2],PETSC_DECIDE,PETSC_DECIDE,n,n));
62 1 : PetscCall(MatSetFromOptions(A[2]));
63 1 : PetscCall(MatGetOwnershipRange(A[1],&Istart,&Iend));
64 21 : for (i=Istart;i<Iend;i++) PetscCall(MatSetValue(A[2],i,i,n/(PetscReal)(i+1),INSERT_VALUES));
65 1 : PetscCall(MatAssemblyBegin(A[2],MAT_FINAL_ASSEMBLY));
66 1 : PetscCall(MatAssemblyEnd(A[2],MAT_FINAL_ASSEMBLY));
67 :
68 : /*
69 : Functions: f0=-lambda, f1=1.0, f2=sqrt(lambda)
70 : */
71 1 : PetscCall(FNCreate(PETSC_COMM_WORLD,&f[0]));
72 1 : PetscCall(FNSetType(f[0],FNRATIONAL));
73 1 : coeffs[0] = -1.0; coeffs[1] = 0.0;
74 1 : PetscCall(FNRationalSetNumerator(f[0],2,coeffs));
75 :
76 1 : PetscCall(FNCreate(PETSC_COMM_WORLD,&f[1]));
77 1 : PetscCall(FNSetType(f[1],FNRATIONAL));
78 1 : coeffs[0] = 1.0;
79 1 : PetscCall(FNRationalSetNumerator(f[1],1,coeffs));
80 :
81 1 : PetscCall(FNCreate(PETSC_COMM_WORLD,&f[2]));
82 1 : PetscCall(FNSetType(f[2],FNSQRT));
83 :
84 : /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
85 : Create eigensolver and test interface functions
86 : - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
87 1 : PetscCall(NEPCreate(PETSC_COMM_WORLD,&nep));
88 1 : PetscCall(NEPSetSplitOperator(nep,3,A,f,SAME_NONZERO_PATTERN));
89 1 : PetscCall(NEPGetSplitOperatorInfo(nep,&nterm,&mstr));
90 1 : PetscCall(PetscPrintf(PETSC_COMM_WORLD," Nonlinear function with %" PetscInt_FMT " terms, with %s nonzero pattern\n",nterm,MatStructures[mstr]));
91 1 : PetscCall(NEPGetSplitOperatorTerm(nep,0,&B,&g));
92 1 : PetscCall(MatView(B,NULL));
93 1 : PetscCall(FNView(g,NULL));
94 :
95 1 : PetscCall(NEPSetType(nep,NEPRII));
96 1 : PetscCall(NEPGetType(nep,&type));
97 1 : PetscCall(PetscPrintf(PETSC_COMM_WORLD," Type set to %s\n",type));
98 1 : PetscCall(NEPGetTwoSided(nep,&twoside));
99 2 : PetscCall(PetscPrintf(PETSC_COMM_WORLD," Two-sided flag = %s\n",twoside?"true":"false"));
100 :
101 1 : PetscCall(NEPGetProblemType(nep,&ptype));
102 1 : PetscCall(PetscPrintf(PETSC_COMM_WORLD," Problem type before changing = %d",(int)ptype));
103 1 : PetscCall(NEPSetProblemType(nep,NEP_RATIONAL));
104 1 : PetscCall(NEPGetProblemType(nep,&ptype));
105 1 : PetscCall(PetscPrintf(PETSC_COMM_WORLD," ... changed to %d.\n",(int)ptype));
106 :
107 1 : PetscCall(NEPSetRefine(nep,NEP_REFINE_SIMPLE,1,1e-9,2,NEP_REFINE_SCHEME_EXPLICIT));
108 1 : PetscCall(NEPGetRefine(nep,&refine,NULL,&tol,&its,&rscheme));
109 1 : PetscCall(PetscPrintf(PETSC_COMM_WORLD," Refinement: %s, tol=%g, its=%" PetscInt_FMT ", scheme=%s\n",NEPRefineTypes[refine],(double)tol,its,NEPRefineSchemes[rscheme]));
110 :
111 1 : PetscCall(NEPSetTarget(nep,1.1));
112 1 : PetscCall(NEPGetTarget(nep,&target));
113 1 : PetscCall(NEPSetWhichEigenpairs(nep,NEP_TARGET_MAGNITUDE));
114 1 : PetscCall(NEPGetWhichEigenpairs(nep,&which));
115 1 : PetscCall(PetscPrintf(PETSC_COMM_WORLD," Which = %d, target = %g\n",(int)which,(double)PetscRealPart(target)));
116 :
117 1 : PetscCall(NEPSetDimensions(nep,1,12,PETSC_CURRENT));
118 1 : PetscCall(NEPGetDimensions(nep,&nev,&ncv,&mpd));
119 1 : PetscCall(PetscPrintf(PETSC_COMM_WORLD," Dimensions: nev=%" PetscInt_FMT ", ncv=%" PetscInt_FMT ", mpd=%" PetscInt_FMT "\n",nev,ncv,mpd));
120 :
121 1 : PetscCall(NEPSetTolerances(nep,1.0e-6,200));
122 1 : PetscCall(NEPGetTolerances(nep,&tol,&its));
123 1 : PetscCall(PetscPrintf(PETSC_COMM_WORLD," Tolerance = %.6f, max_its = %" PetscInt_FMT "\n",(double)tol,its));
124 :
125 1 : PetscCall(NEPSetConvergenceTest(nep,NEP_CONV_ABS));
126 1 : PetscCall(NEPGetConvergenceTest(nep,&conv));
127 1 : PetscCall(NEPSetStoppingTest(nep,NEP_STOP_BASIC));
128 1 : PetscCall(NEPGetStoppingTest(nep,&stop));
129 1 : PetscCall(PetscPrintf(PETSC_COMM_WORLD," Convergence test = %d, stopping test = %d\n",(int)conv,(int)stop));
130 :
131 1 : PetscCall(PetscViewerAndFormatCreate(PETSC_VIEWER_STDOUT_WORLD,PETSC_VIEWER_DEFAULT,&vf));
132 1 : PetscCall(NEPMonitorSet(nep,(PetscErrorCode (*)(NEP,PetscInt,PetscInt,PetscScalar*,PetscScalar*,PetscReal*,PetscInt,void*))NEPMonitorFirst,vf,(PetscCtxDestroyFn*)PetscViewerAndFormatDestroy));
133 1 : PetscCall(NEPMonitorCancel(nep));
134 :
135 1 : PetscCall(NEPGetDS(nep,&ds));
136 1 : PetscCall(DSView(ds,NULL));
137 1 : PetscCall(NEPSetFromOptions(nep));
138 :
139 1 : PetscCall(NEPGetRG(nep,&rg));
140 1 : PetscCall(RGView(rg,NULL));
141 :
142 1 : PetscCall(NEPSolve(nep));
143 1 : PetscCall(NEPGetConvergedReason(nep,&reason));
144 1 : PetscCall(PetscPrintf(PETSC_COMM_WORLD," Finished - converged reason = %d\n",(int)reason));
145 :
146 : /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
147 : Display solution and clean up
148 : - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
149 1 : PetscCall(NEPErrorView(nep,NEP_ERROR_RELATIVE,NULL));
150 1 : PetscCall(NEPDestroy(&nep));
151 1 : PetscCall(MatDestroy(&A[0]));
152 1 : PetscCall(MatDestroy(&A[1]));
153 1 : PetscCall(MatDestroy(&A[2]));
154 1 : PetscCall(FNDestroy(&f[0]));
155 1 : PetscCall(FNDestroy(&f[1]));
156 1 : PetscCall(FNDestroy(&f[2]));
157 1 : PetscCall(SlepcFinalize());
158 : return 0;
159 : }
160 :
161 : /*TEST
162 :
163 : test:
164 : suffix: 1
165 : args: -nep_view
166 : filter: grep -v tolerance
167 :
168 : TEST*/
|