LCOV - code coverage report
Current view: top level - nep/tests - test10.c (source / functions) Hit Total Coverage
Test: SLEPc Lines: 157 159 98.7 %
Date: 2024-11-23 00:34:26 Functions: 4 4 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       3             :    SLEPc - Scalable Library for Eigenvalue Problem Computations
       4             :    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
       5             : 
       6             :    This file is part of SLEPc.
       7             :    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
       8             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       9             : */
      10             : 
      11             : static char help[] = "Tests multiple calls to NEPSolve() with different matrix size.\n\n"
      12             :   "The command line options are:\n"
      13             :   "  -n <n>, where <n> = number of grid subdivisions.\n"
      14             :   "  -tau <tau>, where <tau> is the delay parameter.\n"
      15             :   "  -split <0/1>, to select the split form in the problem definition (enabled by default).\n";
      16             : 
      17             : /* Based on ex22.c (delay) */
      18             : 
      19             : #include <slepcnep.h>
      20             : 
      21             : /*
      22             :    User-defined application context
      23             : */
      24             : typedef struct {
      25             :   PetscScalar tau;
      26             :   PetscReal   a;
      27             : } ApplicationCtx;
      28             : 
      29             : /*
      30             :    Create problem matrices in split form
      31             : */
      32          28 : PetscErrorCode BuildSplitMatrices(PetscInt n,PetscReal a,Mat *Id,Mat *A,Mat *B)
      33             : {
      34          28 :   PetscInt       i,Istart,Iend;
      35          28 :   PetscReal      h,xi;
      36          28 :   PetscScalar    b;
      37             : 
      38          28 :   PetscFunctionBeginUser;
      39          28 :   h = PETSC_PI/(PetscReal)(n+1);
      40             : 
      41             :   /* Identity matrix */
      42          28 :   PetscCall(MatCreateConstantDiagonal(PETSC_COMM_WORLD,PETSC_DECIDE,PETSC_DECIDE,n,n,1.0,Id));
      43          28 :   PetscCall(MatSetOption(*Id,MAT_HERMITIAN,PETSC_TRUE));
      44             : 
      45             :   /* A = 1/h^2*tridiag(1,-2,1) + a*I */
      46          28 :   PetscCall(MatCreate(PETSC_COMM_WORLD,A));
      47          28 :   PetscCall(MatSetSizes(*A,PETSC_DECIDE,PETSC_DECIDE,n,n));
      48          28 :   PetscCall(MatSetFromOptions(*A));
      49          28 :   PetscCall(MatGetOwnershipRange(*A,&Istart,&Iend));
      50        3100 :   for (i=Istart;i<Iend;i++) {
      51        3072 :     if (i>0) PetscCall(MatSetValue(*A,i,i-1,1.0/(h*h),INSERT_VALUES));
      52        3072 :     if (i<n-1) PetscCall(MatSetValue(*A,i,i+1,1.0/(h*h),INSERT_VALUES));
      53        3072 :     PetscCall(MatSetValue(*A,i,i,-2.0/(h*h)+a,INSERT_VALUES));
      54             :   }
      55          28 :   PetscCall(MatAssemblyBegin(*A,MAT_FINAL_ASSEMBLY));
      56          28 :   PetscCall(MatAssemblyEnd(*A,MAT_FINAL_ASSEMBLY));
      57          28 :   PetscCall(MatSetOption(*A,MAT_HERMITIAN,PETSC_TRUE));
      58             : 
      59             :   /* B = diag(b(xi)) */
      60          28 :   PetscCall(MatCreate(PETSC_COMM_WORLD,B));
      61          28 :   PetscCall(MatSetSizes(*B,PETSC_DECIDE,PETSC_DECIDE,n,n));
      62          28 :   PetscCall(MatSetFromOptions(*B));
      63          28 :   PetscCall(MatGetOwnershipRange(*B,&Istart,&Iend));
      64        3100 :   for (i=Istart;i<Iend;i++) {
      65        3072 :     xi = (i+1)*h;
      66        3072 :     b = -4.1+xi*(1.0-PetscExpReal(xi-PETSC_PI));
      67        3072 :     PetscCall(MatSetValue(*B,i,i,b,INSERT_VALUES));
      68             :   }
      69          28 :   PetscCall(MatAssemblyBegin(*B,MAT_FINAL_ASSEMBLY));
      70          28 :   PetscCall(MatAssemblyEnd(*B,MAT_FINAL_ASSEMBLY));
      71          28 :   PetscCall(MatSetOption(*B,MAT_HERMITIAN,PETSC_TRUE));
      72          28 :   PetscFunctionReturn(PETSC_SUCCESS);
      73             : }
      74             : 
      75             : /*
      76             :    Compute Function matrix  T(lambda)
      77             : */
      78         362 : PetscErrorCode FormFunction(NEP nep,PetscScalar lambda,Mat fun,Mat B,void *ctx)
      79             : {
      80         362 :   ApplicationCtx *user = (ApplicationCtx*)ctx;
      81         362 :   PetscInt       i,n,Istart,Iend;
      82         362 :   PetscReal      h,xi;
      83         362 :   PetscScalar    b;
      84             : 
      85         362 :   PetscFunctionBeginUser;
      86         362 :   PetscCall(MatGetSize(fun,&n,NULL));
      87         362 :   h = PETSC_PI/(PetscReal)(n+1);
      88         362 :   PetscCall(MatGetOwnershipRange(fun,&Istart,&Iend));
      89       55914 :   for (i=Istart;i<Iend;i++) {
      90       55552 :     if (i>0) PetscCall(MatSetValue(fun,i,i-1,1.0/(h*h),INSERT_VALUES));
      91       55552 :     if (i<n-1) PetscCall(MatSetValue(fun,i,i+1,1.0/(h*h),INSERT_VALUES));
      92       55552 :     xi = (i+1)*h;
      93       55552 :     b = -4.1+xi*(1.0-PetscExpReal(xi-PETSC_PI));
      94       55552 :     PetscCall(MatSetValue(fun,i,i,-lambda-2.0/(h*h)+user->a+PetscExpScalar(-user->tau*lambda)*b,INSERT_VALUES));
      95             :   }
      96         362 :   PetscCall(MatAssemblyBegin(B,MAT_FINAL_ASSEMBLY));
      97         362 :   PetscCall(MatAssemblyEnd(B,MAT_FINAL_ASSEMBLY));
      98         362 :   if (fun != B) {
      99           0 :     PetscCall(MatAssemblyBegin(fun,MAT_FINAL_ASSEMBLY));
     100           0 :     PetscCall(MatAssemblyEnd(fun,MAT_FINAL_ASSEMBLY));
     101             :   }
     102         362 :   PetscFunctionReturn(PETSC_SUCCESS);
     103             : }
     104             : 
     105             : /*
     106             :    Compute Jacobian matrix  T'(lambda)
     107             : */
     108         116 : PetscErrorCode FormJacobian(NEP nep,PetscScalar lambda,Mat jac,void *ctx)
     109             : {
     110         116 :   ApplicationCtx *user = (ApplicationCtx*)ctx;
     111         116 :   PetscInt       i,n,Istart,Iend;
     112         116 :   PetscReal      h,xi;
     113         116 :   PetscScalar    b;
     114             : 
     115         116 :   PetscFunctionBeginUser;
     116         116 :   PetscCall(MatGetSize(jac,&n,NULL));
     117         116 :   h = PETSC_PI/(PetscReal)(n+1);
     118         116 :   PetscCall(MatGetOwnershipRange(jac,&Istart,&Iend));
     119       11764 :   for (i=Istart;i<Iend;i++) {
     120       11648 :     xi = (i+1)*h;
     121       11648 :     b = -4.1+xi*(1.0-PetscExpReal(xi-PETSC_PI));
     122       11648 :     PetscCall(MatSetValue(jac,i,i,-1.0-user->tau*PetscExpScalar(-user->tau*lambda)*b,INSERT_VALUES));
     123             :   }
     124         116 :   PetscCall(MatAssemblyBegin(jac,MAT_FINAL_ASSEMBLY));
     125         116 :   PetscCall(MatAssemblyEnd(jac,MAT_FINAL_ASSEMBLY));
     126         116 :   PetscFunctionReturn(PETSC_SUCCESS);
     127             : }
     128             : 
     129          19 : int main(int argc,char **argv)
     130             : {
     131          19 :   NEP            nep;             /* nonlinear eigensolver context */
     132          19 :   Mat            Id,A,B,J,F;      /* problem matrices */
     133          19 :   FN             f1,f2,f3;        /* functions to define the nonlinear operator */
     134          19 :   ApplicationCtx ctx;             /* user-defined context */
     135          19 :   Mat            mats[3];
     136          19 :   FN             funs[3];
     137          19 :   PetscScalar    coeffs[2];
     138          19 :   PetscInt       n=128;
     139          19 :   PetscReal      tau=0.001,a=20;
     140          19 :   PetscBool      split=PETSC_TRUE;
     141             : 
     142          19 :   PetscFunctionBeginUser;
     143          19 :   PetscCall(SlepcInitialize(&argc,&argv,NULL,help));
     144          19 :   PetscCall(PetscOptionsGetInt(NULL,NULL,"-n",&n,NULL));
     145          19 :   PetscCall(PetscOptionsGetReal(NULL,NULL,"-tau",&tau,NULL));
     146          19 :   PetscCall(PetscOptionsGetBool(NULL,NULL,"-split",&split,NULL));
     147          19 :   PetscCall(PetscPrintf(PETSC_COMM_WORLD,"\n1-D Delay Eigenproblem, n=%" PetscInt_FMT ", tau=%g\n\n",n,(double)tau));
     148             : 
     149             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     150             :               Create nonlinear eigensolver and set options
     151             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
     152             : 
     153          19 :   PetscCall(NEPCreate(PETSC_COMM_WORLD,&nep));
     154          19 :   PetscCall(NEPSetTolerances(nep,1e-9,PETSC_CURRENT));
     155             : 
     156             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     157             :                       First solve
     158             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
     159             : 
     160          19 :   if (split) {
     161          14 :     PetscCall(BuildSplitMatrices(n,a,&Id,&A,&B));
     162             :     /* f1=-lambda */
     163          14 :     PetscCall(FNCreate(PETSC_COMM_WORLD,&f1));
     164          14 :     PetscCall(FNSetType(f1,FNRATIONAL));
     165          14 :     coeffs[0] = -1.0; coeffs[1] = 0.0;
     166          14 :     PetscCall(FNRationalSetNumerator(f1,2,coeffs));
     167             :     /* f2=1.0 */
     168          14 :     PetscCall(FNCreate(PETSC_COMM_WORLD,&f2));
     169          14 :     PetscCall(FNSetType(f2,FNRATIONAL));
     170          14 :     coeffs[0] = 1.0;
     171          14 :     PetscCall(FNRationalSetNumerator(f2,1,coeffs));
     172             :     /* f3=exp(-tau*lambda) */
     173          14 :     PetscCall(FNCreate(PETSC_COMM_WORLD,&f3));
     174          14 :     PetscCall(FNSetType(f3,FNEXP));
     175          14 :     PetscCall(FNSetScale(f3,-tau,1.0));
     176          14 :     mats[0] = A;  funs[0] = f2;
     177          14 :     mats[1] = Id; funs[1] = f1;
     178          14 :     mats[2] = B;  funs[2] = f3;
     179          14 :     PetscCall(NEPSetSplitOperator(nep,3,mats,funs,SUBSET_NONZERO_PATTERN));
     180             :   } else {
     181             :     /* callback form  */
     182           5 :     ctx.tau = tau;
     183           5 :     ctx.a   = a;
     184           5 :     PetscCall(MatCreate(PETSC_COMM_WORLD,&F));
     185           5 :     PetscCall(MatSetSizes(F,PETSC_DECIDE,PETSC_DECIDE,n,n));
     186           5 :     PetscCall(MatSetFromOptions(F));
     187           5 :     PetscCall(MatSeqAIJSetPreallocation(F,3,NULL));
     188           5 :     PetscCall(MatMPIAIJSetPreallocation(F,3,NULL,1,NULL));
     189           5 :     PetscCall(NEPSetFunction(nep,F,F,FormFunction,&ctx));
     190           5 :     PetscCall(MatCreate(PETSC_COMM_WORLD,&J));
     191           5 :     PetscCall(MatSetSizes(J,PETSC_DECIDE,PETSC_DECIDE,n,n));
     192           5 :     PetscCall(MatSetFromOptions(J));
     193           5 :     PetscCall(MatSeqAIJSetPreallocation(J,3,NULL));
     194           5 :     PetscCall(MatMPIAIJSetPreallocation(F,3,NULL,1,NULL));
     195           5 :     PetscCall(NEPSetJacobian(nep,J,FormJacobian,&ctx));
     196             :   }
     197             : 
     198             :   /* Set solver parameters at runtime */
     199          19 :   PetscCall(NEPSetFromOptions(nep));
     200             : 
     201             :   /* Solve the eigensystem */
     202          19 :   PetscCall(NEPSolve(nep));
     203          19 :   PetscCall(NEPErrorView(nep,NEP_ERROR_RELATIVE,NULL));
     204             : 
     205             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     206             :                Second solve, with problem matrices of size 2*n
     207             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
     208             : 
     209          19 :   n *= 2;
     210          19 :   PetscCall(PetscPrintf(PETSC_COMM_WORLD,"\n1-D Delay Eigenproblem, n=%" PetscInt_FMT ", tau=%g\n\n",n,(double)tau));
     211          19 :   if (split) {
     212          14 :     PetscCall(MatDestroy(&Id));
     213          14 :     PetscCall(MatDestroy(&A));
     214          14 :     PetscCall(MatDestroy(&B));
     215          14 :     PetscCall(BuildSplitMatrices(n,a,&Id,&A,&B));
     216          14 :     mats[0] = A;
     217          14 :     mats[1] = Id;
     218          14 :     mats[2] = B;
     219          14 :     PetscCall(NEPSetSplitOperator(nep,3,mats,funs,SUBSET_NONZERO_PATTERN));
     220             :   } else {
     221             :     /* callback form  */
     222           5 :     PetscCall(MatDestroy(&F));
     223           5 :     PetscCall(MatDestroy(&J));
     224           5 :     PetscCall(MatCreate(PETSC_COMM_WORLD,&F));
     225           5 :     PetscCall(MatSetSizes(F,PETSC_DECIDE,PETSC_DECIDE,n,n));
     226           5 :     PetscCall(MatSetFromOptions(F));
     227           5 :     PetscCall(MatSeqAIJSetPreallocation(F,3,NULL));
     228           5 :     PetscCall(MatMPIAIJSetPreallocation(F,3,NULL,1,NULL));
     229           5 :     PetscCall(NEPSetFunction(nep,F,F,FormFunction,&ctx));
     230           5 :     PetscCall(MatCreate(PETSC_COMM_WORLD,&J));
     231           5 :     PetscCall(MatSetSizes(J,PETSC_DECIDE,PETSC_DECIDE,n,n));
     232           5 :     PetscCall(MatSetFromOptions(J));
     233           5 :     PetscCall(MatSeqAIJSetPreallocation(J,3,NULL));
     234           5 :     PetscCall(MatMPIAIJSetPreallocation(F,3,NULL,1,NULL));
     235           5 :     PetscCall(NEPSetJacobian(nep,J,FormJacobian,&ctx));
     236             :   }
     237             : 
     238             :   /* Solve the eigensystem */
     239          19 :   PetscCall(NEPSolve(nep));
     240          19 :   PetscCall(NEPErrorView(nep,NEP_ERROR_RELATIVE,NULL));
     241             : 
     242          19 :   PetscCall(NEPDestroy(&nep));
     243          19 :   if (split) {
     244          14 :     PetscCall(MatDestroy(&Id));
     245          14 :     PetscCall(MatDestroy(&A));
     246          14 :     PetscCall(MatDestroy(&B));
     247          14 :     PetscCall(FNDestroy(&f1));
     248          14 :     PetscCall(FNDestroy(&f2));
     249          14 :     PetscCall(FNDestroy(&f3));
     250             :   } else {
     251           5 :     PetscCall(MatDestroy(&F));
     252           5 :     PetscCall(MatDestroy(&J));
     253             :   }
     254          19 :   PetscCall(SlepcFinalize());
     255             :   return 0;
     256             : }
     257             : 
     258             : /*TEST
     259             : 
     260             :    testset:
     261             :       nsize: 2
     262             :       requires: !single
     263             :       output_file: output/test10_1.out
     264             :       test:
     265             :          suffix: 1
     266             :          args: -nep_type narnoldi -nep_target 0.55
     267             :       test:
     268             :          suffix: 1_rii
     269             :          args: -nep_type rii -nep_target 0.55 -nep_rii_hermitian -split {{0 1}}
     270             :       test:
     271             :          suffix: 1_narnoldi
     272             :          args: -nep_type narnoldi -nep_target 0.55 -nep_narnoldi_lag_preconditioner 2
     273             :       test:
     274             :          suffix: 1_slp
     275             :          args: -nep_type slp -nep_slp_st_pc_type redundant -split {{0 1}}
     276             :       test:
     277             :          suffix: 1_interpol
     278             :          args: -nep_type interpol -rg_type interval -rg_interval_endpoints .5,1,-.1,.1 -nep_target .7 -nep_interpol_st_pc_type redundant
     279             :       test:
     280             :          suffix: 1_narnoldi_sync
     281             :          args: -nep_type narnoldi -ds_parallel synchronized
     282             : 
     283             :    testset:
     284             :       args: -nep_nev 2 -rg_type interval -rg_interval_endpoints .5,15,-.1,.1 -nep_target .7
     285             :       requires: !single
     286             :       output_file: output/test10_2.out
     287             :       filter: sed -e "s/[+-]0\.0*i//g"
     288             :       test:
     289             :          suffix: 2_interpol
     290             :          args: -nep_type interpol -nep_interpol_pep_type jd -nep_interpol_st_pc_type sor
     291             :       test:
     292             :          suffix: 2_nleigs
     293             :          args: -nep_type nleigs -split {{0 1}}
     294             :          requires: complex
     295             :       test:
     296             :          suffix: 2_nleigs_real
     297             :          args: -nep_type nleigs -rg_interval_endpoints .5,15 -split {{0 1}}
     298             :          requires: !complex
     299             : 
     300             :    test:
     301             :       suffix: 3
     302             :       requires: complex !single
     303             :       args: -nep_type ciss -rg_type ellipse -rg_ellipse_center 10 -rg_ellipse_radius 9.5 -rg_ellipse_vscale 0.1 -split {{0 1}}
     304             :       timeoutfactor: 2
     305             : 
     306             : TEST*/

Generated by: LCOV version 1.14