LCOV - code coverage report
Current view: top level - nep/interface - nepsolve.c (source / functions) Hit Total Coverage
Test: SLEPc Lines: 286 291 98.3 %
Date: 2024-12-18 00:42:09 Functions: 16 16 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       3             :    SLEPc - Scalable Library for Eigenvalue Problem Computations
       4             :    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
       5             : 
       6             :    This file is part of SLEPc.
       7             :    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
       8             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       9             : */
      10             : /*
      11             :    NEP routines related to the solution process
      12             : 
      13             :    References:
      14             : 
      15             :        [1] C. Campos and J.E. Roman, "NEP: a module for the parallel solution
      16             :            of nonlinear eigenvalue problems in SLEPc", ACM Trans. Math. Soft.
      17             :            47(3), 23:1--23:29, 2021.
      18             : */
      19             : 
      20             : #include <slepc/private/nepimpl.h>       /*I "slepcnep.h" I*/
      21             : #include <slepc/private/bvimpl.h>
      22             : #include <petscdraw.h>
      23             : 
      24             : static PetscBool  cited = PETSC_FALSE;
      25             : static const char citation[] =
      26             :   "@Article{slepc-nep,\n"
      27             :   "   author = \"C. Campos and J. E. Roman\",\n"
      28             :   "   title = \"{NEP}: a module for the parallel solution of nonlinear eigenvalue problems in {SLEPc}\",\n"
      29             :   "   journal = \"{ACM} Trans. Math. Software\",\n"
      30             :   "   volume = \"47\",\n"
      31             :   "   number = \"3\",\n"
      32             :   "   pages = \"23:1--23:29\",\n"
      33             :   "   year = \"2021\",\n"
      34             :   "   doi = \"10.1145/3447544\"\n"
      35             :   "}\n";
      36             : 
      37         571 : PetscErrorCode NEPComputeVectors(NEP nep)
      38             : {
      39         571 :   PetscFunctionBegin;
      40         571 :   NEPCheckSolved(nep,1);
      41         571 :   if (nep->state==NEP_STATE_SOLVED) PetscTryTypeMethod(nep,computevectors);
      42         571 :   nep->state = NEP_STATE_EIGENVECTORS;
      43         571 :   PetscFunctionReturn(PETSC_SUCCESS);
      44             : }
      45             : 
      46             : /*@
      47             :    NEPSolve - Solves the nonlinear eigensystem.
      48             : 
      49             :    Collective
      50             : 
      51             :    Input Parameter:
      52             : .  nep - eigensolver context obtained from NEPCreate()
      53             : 
      54             :    Options Database Keys:
      55             : +  -nep_view - print information about the solver used
      56             : .  -nep_view_matk - view the split form matrix Ak (replace k by an integer from 0 to nt-1)
      57             : .  -nep_view_fnk - view the split form function fk (replace k by an integer from 0 to nt-1)
      58             : .  -nep_view_vectors - view the computed eigenvectors
      59             : .  -nep_view_values - view the computed eigenvalues
      60             : .  -nep_converged_reason - print reason for convergence, and number of iterations
      61             : .  -nep_error_absolute - print absolute errors of each eigenpair
      62             : .  -nep_error_relative - print relative errors of each eigenpair
      63             : -  -nep_error_backward - print backward errors of each eigenpair
      64             : 
      65             :    Notes:
      66             :    All the command-line options listed above admit an optional argument specifying
      67             :    the viewer type and options. For instance, use '-nep_view_vectors binary:myvecs.bin'
      68             :    to save the eigenvectors to a binary file, '-nep_view_values draw' to draw the computed
      69             :    eigenvalues graphically, or '-nep_error_relative :myerr.m:ascii_matlab' to save
      70             :    the errors in a file that can be executed in Matlab.
      71             : 
      72             :    Level: beginner
      73             : 
      74             : .seealso: NEPCreate(), NEPSetUp(), NEPDestroy(), NEPSetTolerances()
      75             : @*/
      76         120 : PetscErrorCode NEPSolve(NEP nep)
      77             : {
      78         120 :   PetscInt       i;
      79         120 :   char           str[16];
      80             : 
      81         120 :   PetscFunctionBegin;
      82         120 :   PetscValidHeaderSpecific(nep,NEP_CLASSID,1);
      83         120 :   if (nep->state>=NEP_STATE_SOLVED) PetscFunctionReturn(PETSC_SUCCESS);
      84         120 :   PetscCall(PetscCitationsRegister(citation,&cited));
      85         120 :   PetscCall(PetscLogEventBegin(NEP_Solve,nep,0,0,0));
      86             : 
      87             :   /* call setup */
      88         120 :   PetscCall(NEPSetUp(nep));
      89         120 :   nep->nconv = 0;
      90         120 :   nep->its = 0;
      91        1522 :   for (i=0;i<nep->ncv;i++) {
      92        1402 :     nep->eigr[i]   = 0.0;
      93        1402 :     nep->eigi[i]   = 0.0;
      94        1402 :     nep->errest[i] = 0.0;
      95        1402 :     nep->perm[i]   = i;
      96             :   }
      97         120 :   PetscCall(NEPViewFromOptions(nep,NULL,"-nep_view_pre"));
      98         120 :   PetscCall(RGViewFromOptions(nep->rg,NULL,"-rg_view"));
      99             : 
     100             :   /* call solver */
     101         120 :   PetscUseTypeMethod(nep,solve);
     102         120 :   PetscCheck(nep->reason,PetscObjectComm((PetscObject)nep),PETSC_ERR_PLIB,"Internal error, solver returned without setting converged reason");
     103         120 :   nep->state = NEP_STATE_SOLVED;
     104             : 
     105             :   /* Only the first nconv columns contain useful information */
     106         120 :   PetscCall(BVSetActiveColumns(nep->V,0,nep->nconv));
     107         120 :   if (nep->twosided) PetscCall(BVSetActiveColumns(nep->W,0,nep->nconv));
     108             : 
     109         120 :   if (nep->refine==NEP_REFINE_SIMPLE && nep->rits>0 && nep->nconv>0) {
     110          13 :     PetscCall(NEPComputeVectors(nep));
     111          13 :     PetscCall(NEPNewtonRefinementSimple(nep,&nep->rits,nep->rtol,nep->nconv));
     112          13 :     nep->state = NEP_STATE_EIGENVECTORS;
     113             :   }
     114             : 
     115             :   /* sort eigenvalues according to nep->which parameter */
     116         120 :   PetscCall(SlepcSortEigenvalues(nep->sc,nep->nconv,nep->eigr,nep->eigi,nep->perm));
     117         120 :   PetscCall(PetscLogEventEnd(NEP_Solve,nep,0,0,0));
     118             : 
     119             :   /* various viewers */
     120         120 :   PetscCall(NEPViewFromOptions(nep,NULL,"-nep_view"));
     121         120 :   PetscCall(NEPConvergedReasonViewFromOptions(nep));
     122         120 :   PetscCall(NEPErrorViewFromOptions(nep));
     123         120 :   PetscCall(NEPValuesViewFromOptions(nep));
     124         120 :   PetscCall(NEPVectorsViewFromOptions(nep));
     125         120 :   if (nep->fui==NEP_USER_INTERFACE_SPLIT) {
     126         328 :     for (i=0;i<nep->nt;i++) {
     127         244 :       PetscCall(PetscSNPrintf(str,sizeof(str),"-nep_view_mat%" PetscInt_FMT,i));
     128         244 :       PetscCall(MatViewFromOptions(nep->A[i],(PetscObject)nep,str));
     129         244 :       PetscCall(PetscSNPrintf(str,sizeof(str),"-nep_view_fn%" PetscInt_FMT,i));
     130         244 :       PetscCall(FNViewFromOptions(nep->f[i],(PetscObject)nep,str));
     131             :     }
     132             :   }
     133             : 
     134             :   /* Remove the initial subspace */
     135         120 :   nep->nini = 0;
     136             : 
     137             :   /* Reset resolvent information */
     138         120 :   PetscCall(MatDestroy(&nep->resolvent));
     139         120 :   PetscFunctionReturn(PETSC_SUCCESS);
     140             : }
     141             : 
     142             : /*@
     143             :    NEPProjectOperator - Computes the projection of the nonlinear operator.
     144             : 
     145             :    Collective
     146             : 
     147             :    Input Parameters:
     148             : +  nep - the nonlinear eigensolver context
     149             : .  j0  - initial index
     150             : -  j1  - final index
     151             : 
     152             :    Notes:
     153             :    This is available for split operator only.
     154             : 
     155             :    The nonlinear operator T(lambda) is projected onto span(V), where V is
     156             :    an orthonormal basis built internally by the solver. The projected
     157             :    operator is equal to sum_i V'*A_i*V*f_i(lambda), so this function
     158             :    computes all matrices Ei = V'*A_i*V, and stores them in the extra
     159             :    matrices inside DS. Only rows/columns in the range [j0,j1-1] are computed,
     160             :    the previous ones are assumed to be available already.
     161             : 
     162             :    Level: developer
     163             : 
     164             : .seealso: NEPSetSplitOperator()
     165             : @*/
     166           1 : PetscErrorCode NEPProjectOperator(NEP nep,PetscInt j0,PetscInt j1)
     167             : {
     168           1 :   PetscInt       k;
     169           1 :   Mat            G;
     170             : 
     171           1 :   PetscFunctionBegin;
     172           1 :   PetscValidHeaderSpecific(nep,NEP_CLASSID,1);
     173           3 :   PetscValidLogicalCollectiveInt(nep,j0,2);
     174           3 :   PetscValidLogicalCollectiveInt(nep,j1,3);
     175           1 :   NEPCheckProblem(nep,1);
     176           1 :   NEPCheckSplit(nep,1);
     177           1 :   PetscCall(BVSetActiveColumns(nep->V,j0,j1));
     178           4 :   for (k=0;k<nep->nt;k++) {
     179           3 :     PetscCall(DSGetMat(nep->ds,DSMatExtra[k],&G));
     180           3 :     PetscCall(BVMatProject(nep->V,nep->A[k],nep->V,G));
     181           3 :     PetscCall(DSRestoreMat(nep->ds,DSMatExtra[k],&G));
     182             :   }
     183           1 :   PetscFunctionReturn(PETSC_SUCCESS);
     184             : }
     185             : 
     186             : /*@
     187             :    NEPApplyFunction - Applies the nonlinear function T(lambda) to a given vector.
     188             : 
     189             :    Collective
     190             : 
     191             :    Input Parameters:
     192             : +  nep    - the nonlinear eigensolver context
     193             : .  lambda - scalar argument
     194             : .  x      - vector to be multiplied against
     195             : -  v      - workspace vector (used only in the case of split form)
     196             : 
     197             :    Output Parameters:
     198             : +  y   - result vector
     199             : .  A   - (optional) Function matrix, for callback interface only
     200             : -  B   - (unused) preconditioning matrix
     201             : 
     202             :    Note:
     203             :    If the nonlinear operator is represented in split form, the result
     204             :    y = T(lambda)*x is computed without building T(lambda) explicitly. In
     205             :    that case, parameters A and B are not used. Otherwise, the matrix
     206             :    T(lambda) is built and the effect is the same as a call to
     207             :    NEPComputeFunction() followed by a MatMult().
     208             : 
     209             :    Level: developer
     210             : 
     211             : .seealso: NEPSetSplitOperator(), NEPComputeFunction(), NEPApplyAdjoint()
     212             : @*/
     213         499 : PetscErrorCode NEPApplyFunction(NEP nep,PetscScalar lambda,Vec x,Vec v,Vec y,Mat A,Mat B)
     214             : {
     215         499 :   PetscInt       i;
     216         499 :   PetscScalar    alpha;
     217             : 
     218         499 :   PetscFunctionBegin;
     219         499 :   PetscValidHeaderSpecific(nep,NEP_CLASSID,1);
     220        1497 :   PetscValidLogicalCollectiveScalar(nep,lambda,2);
     221         499 :   PetscValidHeaderSpecific(x,VEC_CLASSID,3);
     222         499 :   if (v) PetscValidHeaderSpecific(v,VEC_CLASSID,4);
     223         499 :   PetscValidHeaderSpecific(y,VEC_CLASSID,5);
     224         499 :   if (A) PetscValidHeaderSpecific(A,MAT_CLASSID,6);
     225         499 :   if (B) PetscValidHeaderSpecific(B,MAT_CLASSID,7);
     226             : 
     227         499 :   if (nep->fui==NEP_USER_INTERFACE_SPLIT) {
     228         435 :     PetscCall(VecSet(y,0.0));
     229        1716 :     for (i=0;i<nep->nt;i++) {
     230        1281 :       PetscCall(FNEvaluateFunction(nep->f[i],lambda,&alpha));
     231        1281 :       PetscCall(MatMult(nep->A[i],x,v));
     232        1281 :       PetscCall(VecAXPY(y,alpha,v));
     233             :     }
     234             :   } else {
     235          64 :     if (!A) A = nep->function;
     236          64 :     PetscCall(NEPComputeFunction(nep,lambda,A,A));
     237          64 :     PetscCall(MatMult(A,x,y));
     238             :   }
     239         499 :   PetscFunctionReturn(PETSC_SUCCESS);
     240             : }
     241             : 
     242             : /*@
     243             :    NEPApplyAdjoint - Applies the adjoint nonlinear function T(lambda)^* to a given vector.
     244             : 
     245             :    Collective
     246             : 
     247             :    Input Parameters:
     248             : +  nep    - the nonlinear eigensolver context
     249             : .  lambda - scalar argument
     250             : .  x      - vector to be multiplied against
     251             : -  v      - workspace vector (used only in the case of split form)
     252             : 
     253             :    Output Parameters:
     254             : +  y   - result vector
     255             : .  A   - (optional) Function matrix, for callback interface only
     256             : -  B   - (unused) preconditioning matrix
     257             : 
     258             :    Level: developer
     259             : 
     260             : .seealso: NEPSetSplitOperator(), NEPComputeFunction(), NEPApplyFunction()
     261             : @*/
     262          21 : PetscErrorCode NEPApplyAdjoint(NEP nep,PetscScalar lambda,Vec x,Vec v,Vec y,Mat A,Mat B)
     263             : {
     264          21 :   PetscInt       i;
     265          21 :   PetscScalar    alpha;
     266          21 :   Vec            w;
     267             : 
     268          21 :   PetscFunctionBegin;
     269          21 :   PetscValidHeaderSpecific(nep,NEP_CLASSID,1);
     270          63 :   PetscValidLogicalCollectiveScalar(nep,lambda,2);
     271          21 :   PetscValidHeaderSpecific(x,VEC_CLASSID,3);
     272          21 :   if (v) PetscValidHeaderSpecific(v,VEC_CLASSID,4);
     273          21 :   PetscValidHeaderSpecific(y,VEC_CLASSID,5);
     274          21 :   if (A) PetscValidHeaderSpecific(A,MAT_CLASSID,6);
     275          21 :   if (B) PetscValidHeaderSpecific(B,MAT_CLASSID,7);
     276             : 
     277          21 :   PetscCall(VecDuplicate(x,&w));
     278          21 :   PetscCall(VecCopy(x,w));
     279          21 :   PetscCall(VecConjugate(w));
     280          21 :   if (nep->fui==NEP_USER_INTERFACE_SPLIT) {
     281          13 :     PetscCall(VecSet(y,0.0));
     282          52 :     for (i=0;i<nep->nt;i++) {
     283          39 :       PetscCall(FNEvaluateFunction(nep->f[i],lambda,&alpha));
     284          39 :       PetscCall(MatMultTranspose(nep->A[i],w,v));
     285          39 :       PetscCall(VecAXPY(y,alpha,v));
     286             :     }
     287             :   } else {
     288           8 :     if (!A) A = nep->function;
     289           8 :     PetscCall(NEPComputeFunction(nep,lambda,A,A));
     290           8 :     PetscCall(MatMultTranspose(A,w,y));
     291             :   }
     292          21 :   PetscCall(VecDestroy(&w));
     293          21 :   PetscCall(VecConjugate(y));
     294          21 :   PetscFunctionReturn(PETSC_SUCCESS);
     295             : }
     296             : 
     297             : /*@
     298             :    NEPApplyJacobian - Applies the nonlinear Jacobian T'(lambda) to a given vector.
     299             : 
     300             :    Collective
     301             : 
     302             :    Input Parameters:
     303             : +  nep    - the nonlinear eigensolver context
     304             : .  lambda - scalar argument
     305             : .  x      - vector to be multiplied against
     306             : -  v      - workspace vector (used only in the case of split form)
     307             : 
     308             :    Output Parameters:
     309             : +  y   - result vector
     310             : -  A   - (optional) Jacobian matrix, for callback interface only
     311             : 
     312             :    Note:
     313             :    If the nonlinear operator is represented in split form, the result
     314             :    y = T'(lambda)*x is computed without building T'(lambda) explicitly. In
     315             :    that case, parameter A is not used. Otherwise, the matrix
     316             :    T'(lambda) is built and the effect is the same as a call to
     317             :    NEPComputeJacobian() followed by a MatMult().
     318             : 
     319             :    Level: developer
     320             : 
     321             : .seealso: NEPSetSplitOperator(), NEPComputeJacobian()
     322             : @*/
     323          32 : PetscErrorCode NEPApplyJacobian(NEP nep,PetscScalar lambda,Vec x,Vec v,Vec y,Mat A)
     324             : {
     325          32 :   PetscInt       i;
     326          32 :   PetscScalar    alpha;
     327             : 
     328          32 :   PetscFunctionBegin;
     329          32 :   PetscValidHeaderSpecific(nep,NEP_CLASSID,1);
     330          96 :   PetscValidLogicalCollectiveScalar(nep,lambda,2);
     331          32 :   PetscValidHeaderSpecific(x,VEC_CLASSID,3);
     332          32 :   if (v) PetscValidHeaderSpecific(v,VEC_CLASSID,4);
     333          32 :   PetscValidHeaderSpecific(y,VEC_CLASSID,5);
     334          32 :   if (A) PetscValidHeaderSpecific(A,MAT_CLASSID,6);
     335             : 
     336          32 :   if (nep->fui==NEP_USER_INTERFACE_SPLIT) {
     337          32 :     PetscCall(VecSet(y,0.0));
     338         128 :     for (i=0;i<nep->nt;i++) {
     339          96 :       PetscCall(FNEvaluateDerivative(nep->f[i],lambda,&alpha));
     340          96 :       PetscCall(MatMult(nep->A[i],x,v));
     341          96 :       PetscCall(VecAXPY(y,alpha,v));
     342             :     }
     343             :   } else {
     344           0 :     if (!A) A = nep->jacobian;
     345           0 :     PetscCall(NEPComputeJacobian(nep,lambda,A));
     346           0 :     PetscCall(MatMult(A,x,y));
     347             :   }
     348          32 :   PetscFunctionReturn(PETSC_SUCCESS);
     349             : }
     350             : 
     351             : /*@
     352             :    NEPGetIterationNumber - Gets the current iteration number. If the
     353             :    call to NEPSolve() is complete, then it returns the number of iterations
     354             :    carried out by the solution method.
     355             : 
     356             :    Not Collective
     357             : 
     358             :    Input Parameter:
     359             : .  nep - the nonlinear eigensolver context
     360             : 
     361             :    Output Parameter:
     362             : .  its - number of iterations
     363             : 
     364             :    Note:
     365             :    During the i-th iteration this call returns i-1. If NEPSolve() is
     366             :    complete, then parameter "its" contains either the iteration number at
     367             :    which convergence was successfully reached, or failure was detected.
     368             :    Call NEPGetConvergedReason() to determine if the solver converged or
     369             :    failed and why.
     370             : 
     371             :    Level: intermediate
     372             : 
     373             : .seealso: NEPGetConvergedReason(), NEPSetTolerances()
     374             : @*/
     375           8 : PetscErrorCode NEPGetIterationNumber(NEP nep,PetscInt *its)
     376             : {
     377           8 :   PetscFunctionBegin;
     378           8 :   PetscValidHeaderSpecific(nep,NEP_CLASSID,1);
     379           8 :   PetscAssertPointer(its,2);
     380           8 :   *its = nep->its;
     381           8 :   PetscFunctionReturn(PETSC_SUCCESS);
     382             : }
     383             : 
     384             : /*@
     385             :    NEPGetConverged - Gets the number of converged eigenpairs.
     386             : 
     387             :    Not Collective
     388             : 
     389             :    Input Parameter:
     390             : .  nep - the nonlinear eigensolver context
     391             : 
     392             :    Output Parameter:
     393             : .  nconv - number of converged eigenpairs
     394             : 
     395             :    Note:
     396             :    This function should be called after NEPSolve() has finished.
     397             : 
     398             :    Level: beginner
     399             : 
     400             : .seealso: NEPSetDimensions(), NEPSolve(), NEPGetEigenpair()
     401             : @*/
     402           9 : PetscErrorCode NEPGetConverged(NEP nep,PetscInt *nconv)
     403             : {
     404           9 :   PetscFunctionBegin;
     405           9 :   PetscValidHeaderSpecific(nep,NEP_CLASSID,1);
     406           9 :   PetscAssertPointer(nconv,2);
     407           9 :   NEPCheckSolved(nep,1);
     408           9 :   *nconv = nep->nconv;
     409           9 :   PetscFunctionReturn(PETSC_SUCCESS);
     410             : }
     411             : 
     412             : /*@
     413             :    NEPGetConvergedReason - Gets the reason why the NEPSolve() iteration was
     414             :    stopped.
     415             : 
     416             :    Not Collective
     417             : 
     418             :    Input Parameter:
     419             : .  nep - the nonlinear eigensolver context
     420             : 
     421             :    Output Parameter:
     422             : .  reason - negative value indicates diverged, positive value converged
     423             : 
     424             :    Options Database Key:
     425             : .  -nep_converged_reason - print the reason to a viewer
     426             : 
     427             :    Notes:
     428             :    Possible values for reason are
     429             : +  NEP_CONVERGED_TOL - converged up to tolerance
     430             : .  NEP_CONVERGED_USER - converged due to a user-defined condition
     431             : .  NEP_DIVERGED_ITS - required more than max_it iterations to reach convergence
     432             : .  NEP_DIVERGED_BREAKDOWN - generic breakdown in method
     433             : .  NEP_DIVERGED_LINEAR_SOLVE - inner linear solve failed
     434             : -  NEP_DIVERGED_SUBSPACE_EXHAUSTED - run out of space for the basis in an
     435             :    unrestarted solver
     436             : 
     437             :    Can only be called after the call to NEPSolve() is complete.
     438             : 
     439             :    Level: intermediate
     440             : 
     441             : .seealso: NEPSetTolerances(), NEPSolve(), NEPConvergedReason
     442             : @*/
     443           1 : PetscErrorCode NEPGetConvergedReason(NEP nep,NEPConvergedReason *reason)
     444             : {
     445           1 :   PetscFunctionBegin;
     446           1 :   PetscValidHeaderSpecific(nep,NEP_CLASSID,1);
     447           1 :   PetscAssertPointer(reason,2);
     448           1 :   NEPCheckSolved(nep,1);
     449           1 :   *reason = nep->reason;
     450           1 :   PetscFunctionReturn(PETSC_SUCCESS);
     451             : }
     452             : 
     453             : /*@
     454             :    NEPGetEigenpair - Gets the i-th solution of the eigenproblem as computed by
     455             :    NEPSolve(). The solution consists in both the eigenvalue and the eigenvector.
     456             : 
     457             :    Collective
     458             : 
     459             :    Input Parameters:
     460             : +  nep - nonlinear eigensolver context
     461             : -  i   - index of the solution
     462             : 
     463             :    Output Parameters:
     464             : +  eigr - real part of eigenvalue
     465             : .  eigi - imaginary part of eigenvalue
     466             : .  Vr   - real part of eigenvector
     467             : -  Vi   - imaginary part of eigenvector
     468             : 
     469             :    Notes:
     470             :    It is allowed to pass NULL for Vr and Vi, if the eigenvector is not
     471             :    required. Otherwise, the caller must provide valid Vec objects, i.e.,
     472             :    they must be created by the calling program with e.g. MatCreateVecs().
     473             : 
     474             :    If the eigenvalue is real, then eigi and Vi are set to zero. If PETSc is
     475             :    configured with complex scalars the eigenvalue is stored
     476             :    directly in eigr (eigi is set to zero) and the eigenvector in Vr (Vi is
     477             :    set to zero). In any case, the user can pass NULL in Vr or Vi if one of
     478             :    them is not required.
     479             : 
     480             :    The index i should be a value between 0 and nconv-1 (see NEPGetConverged()).
     481             :    Eigenpairs are indexed according to the ordering criterion established
     482             :    with NEPSetWhichEigenpairs().
     483             : 
     484             :    Level: beginner
     485             : 
     486             : .seealso: NEPSolve(), NEPGetConverged(), NEPSetWhichEigenpairs(), NEPGetLeftEigenvector()
     487             : @*/
     488         530 : PetscErrorCode NEPGetEigenpair(NEP nep,PetscInt i,PetscScalar *eigr,PetscScalar *eigi,Vec Vr,Vec Vi)
     489             : {
     490         530 :   PetscInt       k;
     491             : 
     492         530 :   PetscFunctionBegin;
     493         530 :   PetscValidHeaderSpecific(nep,NEP_CLASSID,1);
     494        1590 :   PetscValidLogicalCollectiveInt(nep,i,2);
     495         530 :   if (Vr) { PetscValidHeaderSpecific(Vr,VEC_CLASSID,5); PetscCheckSameComm(nep,1,Vr,5); }
     496         530 :   if (Vi) { PetscValidHeaderSpecific(Vi,VEC_CLASSID,6); PetscCheckSameComm(nep,1,Vi,6); }
     497         530 :   NEPCheckSolved(nep,1);
     498         530 :   PetscCheck(i>=0,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"The index cannot be negative");
     499         530 :   PetscCheck(i<nep->nconv,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"The index can be nconv-1 at most, see NEPGetConverged()");
     500             : 
     501         530 :   PetscCall(NEPComputeVectors(nep));
     502         530 :   k = nep->perm[i];
     503             : 
     504             :   /* eigenvalue */
     505             : #if defined(PETSC_USE_COMPLEX)
     506             :   if (eigr) *eigr = nep->eigr[k];
     507             :   if (eigi) *eigi = 0;
     508             : #else
     509         530 :   if (eigr) *eigr = nep->eigr[k];
     510         530 :   if (eigi) *eigi = nep->eigi[k];
     511             : #endif
     512             : 
     513             :   /* eigenvector */
     514         530 :   PetscCall(BV_GetEigenvector(nep->V,k,nep->eigi[k],Vr,Vi));
     515         530 :   PetscFunctionReturn(PETSC_SUCCESS);
     516             : }
     517             : 
     518             : /*@
     519             :    NEPGetLeftEigenvector - Gets the i-th left eigenvector as computed by NEPSolve().
     520             : 
     521             :    Collective
     522             : 
     523             :    Input Parameters:
     524             : +  nep - eigensolver context
     525             : -  i   - index of the solution
     526             : 
     527             :    Output Parameters:
     528             : +  Wr   - real part of left eigenvector
     529             : -  Wi   - imaginary part of left eigenvector
     530             : 
     531             :    Notes:
     532             :    The caller must provide valid Vec objects, i.e., they must be created
     533             :    by the calling program with e.g. MatCreateVecs().
     534             : 
     535             :    If the corresponding eigenvalue is real, then Wi is set to zero. If PETSc is
     536             :    configured with complex scalars the eigenvector is stored directly in Wr
     537             :    (Wi is set to zero). In any case, the user can pass NULL in Wr or Wi if one of
     538             :    them is not required.
     539             : 
     540             :    The index i should be a value between 0 and nconv-1 (see NEPGetConverged()).
     541             :    Eigensolutions are indexed according to the ordering criterion established
     542             :    with NEPSetWhichEigenpairs().
     543             : 
     544             :    Left eigenvectors are available only if the twosided flag was set, see
     545             :    NEPSetTwoSided().
     546             : 
     547             :    Level: intermediate
     548             : 
     549             : .seealso: NEPGetEigenpair(), NEPGetConverged(), NEPSetWhichEigenpairs(), NEPSetTwoSided()
     550             : @*/
     551          21 : PetscErrorCode NEPGetLeftEigenvector(NEP nep,PetscInt i,Vec Wr,Vec Wi)
     552             : {
     553          21 :   PetscInt       k;
     554             : 
     555          21 :   PetscFunctionBegin;
     556          21 :   PetscValidHeaderSpecific(nep,NEP_CLASSID,1);
     557          63 :   PetscValidLogicalCollectiveInt(nep,i,2);
     558          21 :   if (Wr) { PetscValidHeaderSpecific(Wr,VEC_CLASSID,3); PetscCheckSameComm(nep,1,Wr,3); }
     559          21 :   if (Wi) { PetscValidHeaderSpecific(Wi,VEC_CLASSID,4); PetscCheckSameComm(nep,1,Wi,4); }
     560          21 :   NEPCheckSolved(nep,1);
     561          21 :   PetscCheck(nep->twosided,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_WRONGSTATE,"Must request left vectors with NEPSetTwoSided");
     562          21 :   PetscCheck(i>=0,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"The index cannot be negative");
     563          21 :   PetscCheck(i<nep->nconv,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"The index can be nconv-1 at most, see NEPGetConverged()");
     564          21 :   PetscCall(NEPComputeVectors(nep));
     565          21 :   k = nep->perm[i];
     566          21 :   PetscCall(BV_GetEigenvector(nep->W,k,nep->eigi[k],Wr,Wi));
     567          21 :   PetscFunctionReturn(PETSC_SUCCESS);
     568             : }
     569             : 
     570             : /*@
     571             :    NEPGetErrorEstimate - Returns the error estimate associated to the i-th
     572             :    computed eigenpair.
     573             : 
     574             :    Not Collective
     575             : 
     576             :    Input Parameters:
     577             : +  nep - nonlinear eigensolver context
     578             : -  i   - index of eigenpair
     579             : 
     580             :    Output Parameter:
     581             : .  errest - the error estimate
     582             : 
     583             :    Notes:
     584             :    This is the error estimate used internally by the eigensolver. The actual
     585             :    error bound can be computed with NEPComputeError().
     586             : 
     587             :    Level: advanced
     588             : 
     589             : .seealso: NEPComputeError()
     590             : @*/
     591           3 : PetscErrorCode NEPGetErrorEstimate(NEP nep,PetscInt i,PetscReal *errest)
     592             : {
     593           3 :   PetscFunctionBegin;
     594           3 :   PetscValidHeaderSpecific(nep,NEP_CLASSID,1);
     595           3 :   PetscAssertPointer(errest,3);
     596           3 :   NEPCheckSolved(nep,1);
     597           3 :   PetscCheck(i>=0,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"The index cannot be negative");
     598           3 :   PetscCheck(i<nep->nconv,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"The index can be nconv-1 at most, see NEPGetConverged()");
     599           3 :   *errest = nep->errest[nep->perm[i]];
     600           3 :   PetscFunctionReturn(PETSC_SUCCESS);
     601             : }
     602             : 
     603             : /*
     604             :    NEPComputeResidualNorm_Private - Computes the norm of the residual vector
     605             :    associated with an eigenpair.
     606             : 
     607             :    Input Parameters:
     608             :      adj    - whether the adjoint T^* must be used instead of T
     609             :      lambda - eigenvalue
     610             :      x      - eigenvector
     611             :      w      - array of work vectors (two vectors in split form, one vector otherwise)
     612             : */
     613         512 : PetscErrorCode NEPComputeResidualNorm_Private(NEP nep,PetscBool adj,PetscScalar lambda,Vec x,Vec *w,PetscReal *norm)
     614             : {
     615         512 :   Vec            y,z=NULL;
     616             : 
     617         512 :   PetscFunctionBegin;
     618         512 :   y = w[0];
     619         512 :   if (nep->fui==NEP_USER_INTERFACE_SPLIT) z = w[1];
     620         512 :   if (adj) PetscCall(NEPApplyAdjoint(nep,lambda,x,z,y,NULL,NULL));
     621         499 :   else PetscCall(NEPApplyFunction(nep,lambda,x,z,y,NULL,NULL));
     622         512 :   PetscCall(VecNorm(y,NORM_2,norm));
     623         512 :   PetscFunctionReturn(PETSC_SUCCESS);
     624             : }
     625             : 
     626             : /*@
     627             :    NEPComputeError - Computes the error (based on the residual norm) associated
     628             :    with the i-th computed eigenpair.
     629             : 
     630             :    Collective
     631             : 
     632             :    Input Parameters:
     633             : +  nep  - the nonlinear eigensolver context
     634             : .  i    - the solution index
     635             : -  type - the type of error to compute
     636             : 
     637             :    Output Parameter:
     638             : .  error - the error
     639             : 
     640             :    Notes:
     641             :    The error can be computed in various ways, all of them based on the residual
     642             :    norm computed as ||T(lambda)x||_2 where lambda is the eigenvalue and x is the
     643             :    eigenvector.
     644             : 
     645             :    Level: beginner
     646             : 
     647             : .seealso: NEPErrorType, NEPSolve(), NEPGetErrorEstimate()
     648             : @*/
     649         499 : PetscErrorCode NEPComputeError(NEP nep,PetscInt i,NEPErrorType type,PetscReal *error)
     650             : {
     651         499 :   Vec            xr,xi=NULL;
     652         499 :   PetscInt       j,nwork,issplit=0;
     653         499 :   PetscScalar    kr,ki,s;
     654         499 :   PetscReal      er,z=0.0,errorl,nrm;
     655         499 :   PetscBool      flg;
     656             : 
     657         499 :   PetscFunctionBegin;
     658         499 :   PetscValidHeaderSpecific(nep,NEP_CLASSID,1);
     659        1497 :   PetscValidLogicalCollectiveInt(nep,i,2);
     660        1497 :   PetscValidLogicalCollectiveEnum(nep,type,3);
     661         499 :   PetscAssertPointer(error,4);
     662         499 :   NEPCheckSolved(nep,1);
     663             : 
     664             :   /* allocate work vectors */
     665             : #if defined(PETSC_USE_COMPLEX)
     666             :   nwork = 2;
     667             : #else
     668         499 :   nwork = 3;
     669             : #endif
     670         499 :   if (nep->fui==NEP_USER_INTERFACE_SPLIT) {
     671         435 :     issplit = 1;
     672         435 :     nwork++;  /* need an extra work vector for NEPComputeResidualNorm_Private */
     673             :   }
     674         499 :   PetscCall(NEPSetWorkVecs(nep,nwork));
     675         499 :   xr = nep->work[issplit+1];
     676             : #if !defined(PETSC_USE_COMPLEX)
     677         499 :   xi = nep->work[issplit+2];
     678             : #endif
     679             : 
     680             :   /* compute residual norms */
     681         499 :   PetscCall(NEPGetEigenpair(nep,i,&kr,&ki,xr,xi));
     682             : #if !defined(PETSC_USE_COMPLEX)
     683         499 :   PetscCheck(ki==0.0,PetscObjectComm((PetscObject)nep),PETSC_ERR_SUP,"Not implemented for complex eigenvalues with real scalars");
     684             : #endif
     685         499 :   PetscCall(NEPComputeResidualNorm_Private(nep,PETSC_FALSE,kr,xr,nep->work,error));
     686         499 :   PetscCall(VecNorm(xr,NORM_2,&er));
     687             : 
     688             :   /* if two-sided, compute left residual norm and take the maximum */
     689         499 :   if (nep->twosided) {
     690          13 :     PetscCall(NEPGetLeftEigenvector(nep,i,xr,xi));
     691          13 :     PetscCall(NEPComputeResidualNorm_Private(nep,PETSC_TRUE,kr,xr,nep->work,&errorl));
     692          18 :     *error = PetscMax(*error,errorl);
     693             :   }
     694             : 
     695             :   /* compute error */
     696         499 :   switch (type) {
     697             :     case NEP_ERROR_ABSOLUTE:
     698             :       break;
     699         470 :     case NEP_ERROR_RELATIVE:
     700         470 :       *error /= PetscAbsScalar(kr)*er;
     701         470 :       break;
     702          28 :     case NEP_ERROR_BACKWARD:
     703          28 :       if (nep->fui!=NEP_USER_INTERFACE_SPLIT) {
     704           6 :         PetscCall(NEPComputeFunction(nep,kr,nep->function,nep->function));
     705           6 :         PetscCall(MatHasOperation(nep->function,MATOP_NORM,&flg));
     706           6 :         PetscCheck(flg,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_WRONG,"The computation of backward errors requires a matrix norm operation");
     707           6 :         PetscCall(MatNorm(nep->function,NORM_INFINITY,&nrm));
     708           6 :         *error /= nrm*er;
     709           6 :         break;
     710             :       }
     711             :       /* initialization of matrix norms */
     712          22 :       if (!nep->nrma[0]) {
     713          24 :         for (j=0;j<nep->nt;j++) {
     714          17 :           PetscCall(MatHasOperation(nep->A[j],MATOP_NORM,&flg));
     715          17 :           PetscCheck(flg,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_WRONG,"The computation of backward errors requires a matrix norm operation");
     716          17 :           PetscCall(MatNorm(nep->A[j],NORM_INFINITY,&nep->nrma[j]));
     717             :         }
     718             :       }
     719          73 :       for (j=0;j<nep->nt;j++) {
     720          51 :         PetscCall(FNEvaluateFunction(nep->f[j],kr,&s));
     721          51 :         z = z + nep->nrma[j]*PetscAbsScalar(s);
     722             :       }
     723          22 :       *error /= z*er;
     724          22 :       break;
     725           0 :     default:
     726           0 :       SETERRQ(PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"Invalid error type");
     727             :   }
     728         499 :   PetscFunctionReturn(PETSC_SUCCESS);
     729             : }
     730             : 
     731             : /*@
     732             :    NEPComputeFunction - Computes the function matrix T(lambda) that has been
     733             :    set with NEPSetFunction().
     734             : 
     735             :    Collective
     736             : 
     737             :    Input Parameters:
     738             : +  nep    - the NEP context
     739             : -  lambda - the scalar argument
     740             : 
     741             :    Output Parameters:
     742             : +  A   - Function matrix
     743             : -  B   - optional preconditioning matrix
     744             : 
     745             :    Notes:
     746             :    NEPComputeFunction() is typically used within nonlinear eigensolvers
     747             :    implementations, so most users would not generally call this routine
     748             :    themselves.
     749             : 
     750             :    Level: developer
     751             : 
     752             : .seealso: NEPSetFunction(), NEPGetFunction()
     753             : @*/
     754        2245 : PetscErrorCode NEPComputeFunction(NEP nep,PetscScalar lambda,Mat A,Mat B)
     755             : {
     756        2245 :   PetscInt       i;
     757        2245 :   PetscScalar    alpha;
     758             : 
     759        2245 :   PetscFunctionBegin;
     760        2245 :   PetscValidHeaderSpecific(nep,NEP_CLASSID,1);
     761        2245 :   NEPCheckProblem(nep,1);
     762        2245 :   switch (nep->fui) {
     763        1299 :   case NEP_USER_INTERFACE_CALLBACK:
     764        1299 :     PetscCheck(nep->computefunction,PetscObjectComm((PetscObject)nep),PETSC_ERR_USER,"Must call NEPSetFunction() first");
     765        1299 :     PetscCall(PetscLogEventBegin(NEP_FunctionEval,nep,A,B,0));
     766        1299 :     PetscCallBack("NEP user Function function",(*nep->computefunction)(nep,lambda,A,B,nep->functionctx));
     767        1299 :     PetscCall(PetscLogEventEnd(NEP_FunctionEval,nep,A,B,0));
     768             :     break;
     769         946 :   case NEP_USER_INTERFACE_SPLIT:
     770         946 :     PetscCall(MatZeroEntries(A));
     771         946 :     if (A != B) PetscCall(MatZeroEntries(B));
     772        3778 :     for (i=0;i<nep->nt;i++) {
     773        2832 :       PetscCall(FNEvaluateFunction(nep->f[i],lambda,&alpha));
     774        2832 :       PetscCall(MatAXPY(A,alpha,nep->A[i],nep->mstr));
     775        2832 :       if (A != B) PetscCall(MatAXPY(B,alpha,nep->P[i],nep->mstrp));
     776             :     }
     777             :     break;
     778             :   }
     779        2245 :   PetscFunctionReturn(PETSC_SUCCESS);
     780             : }
     781             : 
     782             : /*@
     783             :    NEPComputeJacobian - Computes the Jacobian matrix T'(lambda) that has been
     784             :    set with NEPSetJacobian().
     785             : 
     786             :    Collective
     787             : 
     788             :    Input Parameters:
     789             : +  nep    - the NEP context
     790             : -  lambda - the scalar argument
     791             : 
     792             :    Output Parameters:
     793             : .  A   - Jacobian matrix
     794             : 
     795             :    Notes:
     796             :    Most users should not need to explicitly call this routine, as it
     797             :    is used internally within the nonlinear eigensolvers.
     798             : 
     799             :    Level: developer
     800             : 
     801             : .seealso: NEPSetJacobian(), NEPGetJacobian()
     802             : @*/
     803         923 : PetscErrorCode NEPComputeJacobian(NEP nep,PetscScalar lambda,Mat A)
     804             : {
     805         923 :   PetscInt       i;
     806         923 :   PetscScalar    alpha;
     807             : 
     808         923 :   PetscFunctionBegin;
     809         923 :   PetscValidHeaderSpecific(nep,NEP_CLASSID,1);
     810         923 :   NEPCheckProblem(nep,1);
     811         923 :   switch (nep->fui) {
     812         322 :   case NEP_USER_INTERFACE_CALLBACK:
     813         322 :     PetscCheck(nep->computejacobian,PetscObjectComm((PetscObject)nep),PETSC_ERR_USER,"Must call NEPSetJacobian() first");
     814         322 :     PetscCall(PetscLogEventBegin(NEP_JacobianEval,nep,A,0,0));
     815         322 :     PetscCallBack("NEP user Jacobian function",(*nep->computejacobian)(nep,lambda,A,nep->jacobianctx));
     816         322 :     PetscCall(PetscLogEventEnd(NEP_JacobianEval,nep,A,0,0));
     817             :     break;
     818         601 :   case NEP_USER_INTERFACE_SPLIT:
     819         601 :     PetscCall(MatZeroEntries(A));
     820        2400 :     for (i=0;i<nep->nt;i++) {
     821        1799 :       PetscCall(FNEvaluateDerivative(nep->f[i],lambda,&alpha));
     822        1799 :       PetscCall(MatAXPY(A,alpha,nep->A[i],nep->mstr));
     823             :     }
     824             :     break;
     825             :   }
     826         923 :   PetscFunctionReturn(PETSC_SUCCESS);
     827             : }

Generated by: LCOV version 1.14