LCOV - code coverage report
Current view: top level - nep/interface - nepopts.c (source / functions) Hit Total Coverage
Test: SLEPc Lines: 370 391 94.6 %
Date: 2024-12-18 00:42:09 Functions: 26 26 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       3             :    SLEPc - Scalable Library for Eigenvalue Problem Computations
       4             :    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
       5             : 
       6             :    This file is part of SLEPc.
       7             :    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
       8             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       9             : */
      10             : /*
      11             :    NEP routines related to options that can be set via the command-line
      12             :    or procedurally
      13             : */
      14             : 
      15             : #include <slepc/private/nepimpl.h>       /*I "slepcnep.h" I*/
      16             : #include <petscdraw.h>
      17             : 
      18             : /*@C
      19             :    NEPMonitorSetFromOptions - Sets a monitor function and viewer appropriate for the type
      20             :    indicated by the user.
      21             : 
      22             :    Collective
      23             : 
      24             :    Input Parameters:
      25             : +  nep      - the nonlinear eigensolver context
      26             : .  opt      - the command line option for this monitor
      27             : .  name     - the monitor type one is seeking
      28             : .  ctx      - an optional user context for the monitor, or NULL
      29             : -  trackall - whether this monitor tracks all eigenvalues or not
      30             : 
      31             :    Level: developer
      32             : 
      33             : .seealso: NEPMonitorSet(), NEPSetTrackAll()
      34             : @*/
      35         306 : PetscErrorCode NEPMonitorSetFromOptions(NEP nep,const char opt[],const char name[],void *ctx,PetscBool trackall)
      36             : {
      37         306 :   PetscErrorCode       (*mfunc)(NEP,PetscInt,PetscInt,PetscScalar*,PetscScalar*,PetscReal*,PetscInt,void*);
      38         306 :   PetscErrorCode       (*cfunc)(PetscViewer,PetscViewerFormat,void*,PetscViewerAndFormat**);
      39         306 :   PetscErrorCode       (*dfunc)(PetscViewerAndFormat**);
      40         306 :   PetscViewerAndFormat *vf;
      41         306 :   PetscViewer          viewer;
      42         306 :   PetscViewerFormat    format;
      43         306 :   PetscViewerType      vtype;
      44         306 :   char                 key[PETSC_MAX_PATH_LEN];
      45         306 :   PetscBool            flg;
      46             : 
      47         306 :   PetscFunctionBegin;
      48         306 :   PetscCall(PetscOptionsCreateViewer(PetscObjectComm((PetscObject)nep),((PetscObject)nep)->options,((PetscObject)nep)->prefix,opt,&viewer,&format,&flg));
      49         306 :   if (!flg) PetscFunctionReturn(PETSC_SUCCESS);
      50             : 
      51           3 :   PetscCall(PetscViewerGetType(viewer,&vtype));
      52           3 :   PetscCall(SlepcMonitorMakeKey_Internal(name,vtype,format,key));
      53           3 :   PetscCall(PetscFunctionListFind(NEPMonitorList,key,&mfunc));
      54           3 :   PetscCheck(mfunc,PetscObjectComm((PetscObject)nep),PETSC_ERR_SUP,"Specified viewer and format not supported");
      55           3 :   PetscCall(PetscFunctionListFind(NEPMonitorCreateList,key,&cfunc));
      56           3 :   PetscCall(PetscFunctionListFind(NEPMonitorDestroyList,key,&dfunc));
      57           3 :   if (!cfunc) cfunc = PetscViewerAndFormatCreate_Internal;
      58           3 :   if (!dfunc) dfunc = PetscViewerAndFormatDestroy;
      59             : 
      60           3 :   PetscCall((*cfunc)(viewer,format,ctx,&vf));
      61           3 :   PetscCall(PetscViewerDestroy(&viewer));
      62           3 :   PetscCall(NEPMonitorSet(nep,mfunc,vf,(PetscCtxDestroyFn*)dfunc));
      63           3 :   if (trackall) PetscCall(NEPSetTrackAll(nep,PETSC_TRUE));
      64           3 :   PetscFunctionReturn(PETSC_SUCCESS);
      65             : }
      66             : 
      67             : /*@
      68             :    NEPSetFromOptions - Sets NEP options from the options database.
      69             :    This routine must be called before NEPSetUp() if the user is to be
      70             :    allowed to set the solver type.
      71             : 
      72             :    Collective
      73             : 
      74             :    Input Parameters:
      75             : .  nep - the nonlinear eigensolver context
      76             : 
      77             :    Notes:
      78             :    To see all options, run your program with the -help option.
      79             : 
      80             :    Level: beginner
      81             : 
      82             : .seealso: NEPSetOptionsPrefix()
      83             : @*/
      84         102 : PetscErrorCode NEPSetFromOptions(NEP nep)
      85             : {
      86         102 :   char            type[256];
      87         102 :   PetscBool       set,flg,flg1,flg2,flg3,flg4,flg5,bval;
      88         102 :   PetscReal       r;
      89         102 :   PetscScalar     s;
      90         102 :   PetscInt        i,j,k;
      91         102 :   NEPRefine       refine;
      92         102 :   NEPRefineScheme scheme;
      93             : 
      94         102 :   PetscFunctionBegin;
      95         102 :   PetscValidHeaderSpecific(nep,NEP_CLASSID,1);
      96         102 :   PetscCall(NEPRegisterAll());
      97         306 :   PetscObjectOptionsBegin((PetscObject)nep);
      98         130 :     PetscCall(PetscOptionsFList("-nep_type","Nonlinear eigensolver method","NEPSetType",NEPList,(char*)(((PetscObject)nep)->type_name?((PetscObject)nep)->type_name:NEPRII),type,sizeof(type),&flg));
      99         102 :     if (flg) PetscCall(NEPSetType(nep,type));
     100          24 :     else if (!((PetscObject)nep)->type_name) PetscCall(NEPSetType(nep,NEPRII));
     101             : 
     102         102 :     PetscCall(PetscOptionsBoolGroupBegin("-nep_general","General nonlinear eigenvalue problem","NEPSetProblemType",&flg));
     103         102 :     if (flg) PetscCall(NEPSetProblemType(nep,NEP_GENERAL));
     104         102 :     PetscCall(PetscOptionsBoolGroupEnd("-nep_rational","Rational eigenvalue problem","NEPSetProblemType",&flg));
     105         102 :     if (flg) PetscCall(NEPSetProblemType(nep,NEP_RATIONAL));
     106             : 
     107         102 :     refine = nep->refine;
     108         102 :     PetscCall(PetscOptionsEnum("-nep_refine","Iterative refinement method","NEPSetRefine",NEPRefineTypes,(PetscEnum)refine,(PetscEnum*)&refine,&flg1));
     109         102 :     i = nep->npart;
     110         102 :     PetscCall(PetscOptionsInt("-nep_refine_partitions","Number of partitions of the communicator for iterative refinement","NEPSetRefine",nep->npart,&i,&flg2));
     111         102 :     r = nep->rtol;
     112         103 :     PetscCall(PetscOptionsReal("-nep_refine_tol","Tolerance for iterative refinement","NEPSetRefine",nep->rtol==(PetscReal)PETSC_DETERMINE?SLEPC_DEFAULT_TOL/1000:nep->rtol,&r,&flg3));
     113         102 :     j = nep->rits;
     114         102 :     PetscCall(PetscOptionsInt("-nep_refine_its","Maximum number of iterations for iterative refinement","NEPSetRefine",nep->rits,&j,&flg4));
     115         102 :     scheme = nep->scheme;
     116         102 :     PetscCall(PetscOptionsEnum("-nep_refine_scheme","Scheme used for linear systems within iterative refinement","NEPSetRefine",NEPRefineSchemes,(PetscEnum)scheme,(PetscEnum*)&scheme,&flg5));
     117         102 :     if (flg1 || flg2 || flg3 || flg4 || flg5) PetscCall(NEPSetRefine(nep,refine,i,r,j,scheme));
     118             : 
     119         102 :     i = nep->max_it;
     120         102 :     PetscCall(PetscOptionsInt("-nep_max_it","Maximum number of iterations","NEPSetTolerances",nep->max_it,&i,&flg1));
     121         102 :     r = nep->tol;
     122         164 :     PetscCall(PetscOptionsReal("-nep_tol","Tolerance","NEPSetTolerances",SlepcDefaultTol(nep->tol),&r,&flg2));
     123         102 :     if (flg1 || flg2) PetscCall(NEPSetTolerances(nep,r,i));
     124             : 
     125         102 :     PetscCall(PetscOptionsBoolGroupBegin("-nep_conv_rel","Relative error convergence test","NEPSetConvergenceTest",&flg));
     126         102 :     if (flg) PetscCall(NEPSetConvergenceTest(nep,NEP_CONV_REL));
     127         102 :     PetscCall(PetscOptionsBoolGroup("-nep_conv_norm","Convergence test relative to the matrix norms","NEPSetConvergenceTest",&flg));
     128         102 :     if (flg) PetscCall(NEPSetConvergenceTest(nep,NEP_CONV_NORM));
     129         102 :     PetscCall(PetscOptionsBoolGroup("-nep_conv_abs","Absolute error convergence test","NEPSetConvergenceTest",&flg));
     130         102 :     if (flg) PetscCall(NEPSetConvergenceTest(nep,NEP_CONV_ABS));
     131         102 :     PetscCall(PetscOptionsBoolGroupEnd("-nep_conv_user","User-defined convergence test","NEPSetConvergenceTest",&flg));
     132         102 :     if (flg) PetscCall(NEPSetConvergenceTest(nep,NEP_CONV_USER));
     133             : 
     134         102 :     PetscCall(PetscOptionsBoolGroupBegin("-nep_stop_basic","Stop iteration if all eigenvalues converged or max_it reached","NEPSetStoppingTest",&flg));
     135         102 :     if (flg) PetscCall(NEPSetStoppingTest(nep,NEP_STOP_BASIC));
     136         102 :     PetscCall(PetscOptionsBoolGroupEnd("-nep_stop_user","User-defined stopping test","NEPSetStoppingTest",&flg));
     137         102 :     if (flg) PetscCall(NEPSetStoppingTest(nep,NEP_STOP_USER));
     138             : 
     139         102 :     i = nep->nev;
     140         102 :     PetscCall(PetscOptionsInt("-nep_nev","Number of eigenvalues to compute","NEPSetDimensions",nep->nev,&i,&flg1));
     141         102 :     j = nep->ncv;
     142         102 :     PetscCall(PetscOptionsInt("-nep_ncv","Number of basis vectors","NEPSetDimensions",nep->ncv,&j,&flg2));
     143         102 :     k = nep->mpd;
     144         102 :     PetscCall(PetscOptionsInt("-nep_mpd","Maximum dimension of projected problem","NEPSetDimensions",nep->mpd,&k,&flg3));
     145         102 :     if (flg1 || flg2 || flg3) PetscCall(NEPSetDimensions(nep,i,j,k));
     146             : 
     147         102 :     PetscCall(PetscOptionsBoolGroupBegin("-nep_largest_magnitude","Compute largest eigenvalues in magnitude","NEPSetWhichEigenpairs",&flg));
     148         102 :     if (flg) PetscCall(NEPSetWhichEigenpairs(nep,NEP_LARGEST_MAGNITUDE));
     149         102 :     PetscCall(PetscOptionsBoolGroup("-nep_smallest_magnitude","Compute smallest eigenvalues in magnitude","NEPSetWhichEigenpairs",&flg));
     150         102 :     if (flg) PetscCall(NEPSetWhichEigenpairs(nep,NEP_SMALLEST_MAGNITUDE));
     151         102 :     PetscCall(PetscOptionsBoolGroup("-nep_largest_real","Compute eigenvalues with largest real parts","NEPSetWhichEigenpairs",&flg));
     152         102 :     if (flg) PetscCall(NEPSetWhichEigenpairs(nep,NEP_LARGEST_REAL));
     153         102 :     PetscCall(PetscOptionsBoolGroup("-nep_smallest_real","Compute eigenvalues with smallest real parts","NEPSetWhichEigenpairs",&flg));
     154         102 :     if (flg) PetscCall(NEPSetWhichEigenpairs(nep,NEP_SMALLEST_REAL));
     155         102 :     PetscCall(PetscOptionsBoolGroup("-nep_largest_imaginary","Compute eigenvalues with largest imaginary parts","NEPSetWhichEigenpairs",&flg));
     156         102 :     if (flg) PetscCall(NEPSetWhichEigenpairs(nep,NEP_LARGEST_IMAGINARY));
     157         102 :     PetscCall(PetscOptionsBoolGroup("-nep_smallest_imaginary","Compute eigenvalues with smallest imaginary parts","NEPSetWhichEigenpairs",&flg));
     158         102 :     if (flg) PetscCall(NEPSetWhichEigenpairs(nep,NEP_SMALLEST_IMAGINARY));
     159         102 :     PetscCall(PetscOptionsBoolGroup("-nep_target_magnitude","Compute eigenvalues closest to target","NEPSetWhichEigenpairs",&flg));
     160         102 :     if (flg) PetscCall(NEPSetWhichEigenpairs(nep,NEP_TARGET_MAGNITUDE));
     161         102 :     PetscCall(PetscOptionsBoolGroup("-nep_target_real","Compute eigenvalues with real parts closest to target","NEPSetWhichEigenpairs",&flg));
     162         102 :     if (flg) PetscCall(NEPSetWhichEigenpairs(nep,NEP_TARGET_REAL));
     163         102 :     PetscCall(PetscOptionsBoolGroup("-nep_target_imaginary","Compute eigenvalues with imaginary parts closest to target","NEPSetWhichEigenpairs",&flg));
     164         102 :     if (flg) PetscCall(NEPSetWhichEigenpairs(nep,NEP_TARGET_IMAGINARY));
     165         102 :     PetscCall(PetscOptionsBoolGroupEnd("-nep_all","Compute all eigenvalues in a region","NEPSetWhichEigenpairs",&flg));
     166         102 :     if (flg) PetscCall(NEPSetWhichEigenpairs(nep,NEP_ALL));
     167             : 
     168         102 :     PetscCall(PetscOptionsScalar("-nep_target","Value of the target","NEPSetTarget",nep->target,&s,&flg));
     169         102 :     if (flg) {
     170          69 :       if (nep->which!=NEP_TARGET_REAL && nep->which!=NEP_TARGET_IMAGINARY) PetscCall(NEPSetWhichEigenpairs(nep,NEP_TARGET_MAGNITUDE));
     171          69 :       PetscCall(NEPSetTarget(nep,s));
     172             :     }
     173             : 
     174         102 :     PetscCall(PetscOptionsBool("-nep_two_sided","Use two-sided variant (to compute left eigenvectors)","NEPSetTwoSided",nep->twosided,&bval,&flg));
     175         102 :     if (flg) PetscCall(NEPSetTwoSided(nep,bval));
     176             : 
     177             :     /* -----------------------------------------------------------------------*/
     178             :     /*
     179             :       Cancels all monitors hardwired into code before call to NEPSetFromOptions()
     180             :     */
     181         102 :     PetscCall(PetscOptionsBool("-nep_monitor_cancel","Remove any hardwired monitor routines","NEPMonitorCancel",PETSC_FALSE,&flg,&set));
     182         102 :     if (set && flg) PetscCall(NEPMonitorCancel(nep));
     183         102 :     PetscCall(NEPMonitorSetFromOptions(nep,"-nep_monitor","first_approximation",NULL,PETSC_FALSE));
     184         102 :     PetscCall(NEPMonitorSetFromOptions(nep,"-nep_monitor_all","all_approximations",NULL,PETSC_TRUE));
     185         102 :     PetscCall(NEPMonitorSetFromOptions(nep,"-nep_monitor_conv","convergence_history",NULL,PETSC_FALSE));
     186             : 
     187             :     /* -----------------------------------------------------------------------*/
     188         102 :     PetscCall(PetscOptionsName("-nep_view","Print detailed information on solver used","NEPView",&set));
     189         102 :     PetscCall(PetscOptionsName("-nep_view_vectors","View computed eigenvectors","NEPVectorsView",&set));
     190         102 :     PetscCall(PetscOptionsName("-nep_view_values","View computed eigenvalues","NEPValuesView",&set));
     191         102 :     PetscCall(PetscOptionsName("-nep_converged_reason","Print reason for convergence, and number of iterations","NEPConvergedReasonView",&set));
     192         102 :     PetscCall(PetscOptionsName("-nep_error_absolute","Print absolute errors of each eigenpair","NEPErrorView",&set));
     193         102 :     PetscCall(PetscOptionsName("-nep_error_relative","Print relative errors of each eigenpair","NEPErrorView",&set));
     194             : 
     195         102 :     PetscTryTypeMethod(nep,setfromoptions,PetscOptionsObject);
     196         102 :     PetscCall(PetscObjectProcessOptionsHandlers((PetscObject)nep,PetscOptionsObject));
     197         102 :   PetscOptionsEnd();
     198             : 
     199         102 :   if (!nep->V) PetscCall(NEPGetBV(nep,&nep->V));
     200         102 :   PetscCall(BVSetFromOptions(nep->V));
     201         102 :   if (!nep->rg) PetscCall(NEPGetRG(nep,&nep->rg));
     202         102 :   PetscCall(RGSetFromOptions(nep->rg));
     203         102 :   if (nep->useds) {
     204          79 :     if (!nep->ds) PetscCall(NEPGetDS(nep,&nep->ds));
     205          79 :     PetscCall(NEPSetDSType(nep));
     206          79 :     PetscCall(DSSetFromOptions(nep->ds));
     207             :   }
     208         102 :   if (!nep->refineksp) PetscCall(NEPRefineGetKSP(nep,&nep->refineksp));
     209         102 :   PetscCall(KSPSetFromOptions(nep->refineksp));
     210         307 :   if (nep->fui==NEP_USER_INTERFACE_SPLIT) for (i=0;i<nep->nt;i++) PetscCall(FNSetFromOptions(nep->f[i]));
     211         102 :   PetscFunctionReturn(PETSC_SUCCESS);
     212             : }
     213             : 
     214             : /*@
     215             :    NEPGetTolerances - Gets the tolerance and maximum iteration count used
     216             :    by the NEP convergence tests.
     217             : 
     218             :    Not Collective
     219             : 
     220             :    Input Parameter:
     221             : .  nep - the nonlinear eigensolver context
     222             : 
     223             :    Output Parameters:
     224             : +  tol - the convergence tolerance
     225             : -  maxits - maximum number of iterations
     226             : 
     227             :    Notes:
     228             :    The user can specify NULL for any parameter that is not needed.
     229             : 
     230             :    Level: intermediate
     231             : 
     232             : .seealso: NEPSetTolerances()
     233             : @*/
     234           7 : PetscErrorCode NEPGetTolerances(NEP nep,PetscReal *tol,PetscInt *maxits)
     235             : {
     236           7 :   PetscFunctionBegin;
     237           7 :   PetscValidHeaderSpecific(nep,NEP_CLASSID,1);
     238           7 :   if (tol)    *tol    = nep->tol;
     239           7 :   if (maxits) *maxits = nep->max_it;
     240           7 :   PetscFunctionReturn(PETSC_SUCCESS);
     241             : }
     242             : 
     243             : /*@
     244             :    NEPSetTolerances - Sets the tolerance and maximum iteration count used
     245             :    by the NEP convergence tests.
     246             : 
     247             :    Logically Collective
     248             : 
     249             :    Input Parameters:
     250             : +  nep    - the nonlinear eigensolver context
     251             : .  tol    - the convergence tolerance
     252             : -  maxits - maximum number of iterations to use
     253             : 
     254             :    Options Database Keys:
     255             : +  -nep_tol <tol> - Sets the convergence tolerance
     256             : -  -nep_max_it <maxits> - Sets the maximum number of iterations allowed
     257             : 
     258             :    Notes:
     259             :    Use PETSC_CURRENT to retain the current value of any of the parameters.
     260             :    Use PETSC_DETERMINE for either argument to assign a default value computed
     261             :    internally (may be different in each solver).
     262             :    For maxits use PETSC_UMLIMITED to indicate there is no upper bound on this value.
     263             : 
     264             :    Level: intermediate
     265             : 
     266             : .seealso: NEPGetTolerances()
     267             : @*/
     268          56 : PetscErrorCode NEPSetTolerances(NEP nep,PetscReal tol,PetscInt maxits)
     269             : {
     270          56 :   PetscFunctionBegin;
     271          56 :   PetscValidHeaderSpecific(nep,NEP_CLASSID,1);
     272         168 :   PetscValidLogicalCollectiveReal(nep,tol,2);
     273         168 :   PetscValidLogicalCollectiveInt(nep,maxits,3);
     274          56 :   if (tol == (PetscReal)PETSC_DETERMINE) {
     275           0 :     nep->tol   = PETSC_DETERMINE;
     276           0 :     nep->state = NEP_STATE_INITIAL;
     277          56 :   } else if (tol != (PetscReal)PETSC_CURRENT) {
     278          55 :     PetscCheck(tol>0.0,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of tol. Must be > 0");
     279          55 :     nep->tol = tol;
     280             :   }
     281          56 :   if (maxits == PETSC_DETERMINE) {
     282          15 :     nep->max_it = PETSC_DETERMINE;
     283          15 :     nep->state  = NEP_STATE_INITIAL;
     284          41 :   } else if (maxits == PETSC_UNLIMITED) {
     285           0 :     nep->max_it = PETSC_INT_MAX;
     286          41 :   } else if (maxits != PETSC_CURRENT) {
     287           2 :     PetscCheck(maxits>0,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of maxits. Must be > 0");
     288           2 :     nep->max_it = maxits;
     289             :   }
     290          56 :   PetscFunctionReturn(PETSC_SUCCESS);
     291             : }
     292             : 
     293             : /*@
     294             :    NEPGetDimensions - Gets the number of eigenvalues to compute
     295             :    and the dimension of the subspace.
     296             : 
     297             :    Not Collective
     298             : 
     299             :    Input Parameter:
     300             : .  nep - the nonlinear eigensolver context
     301             : 
     302             :    Output Parameters:
     303             : +  nev - number of eigenvalues to compute
     304             : .  ncv - the maximum dimension of the subspace to be used by the solver
     305             : -  mpd - the maximum dimension allowed for the projected problem
     306             : 
     307             :    Notes:
     308             :    The user can specify NULL for any parameter that is not needed.
     309             : 
     310             :    Level: intermediate
     311             : 
     312             : .seealso: NEPSetDimensions()
     313             : @*/
     314          39 : PetscErrorCode NEPGetDimensions(NEP nep,PetscInt *nev,PetscInt *ncv,PetscInt *mpd)
     315             : {
     316          39 :   PetscFunctionBegin;
     317          39 :   PetscValidHeaderSpecific(nep,NEP_CLASSID,1);
     318          39 :   if (nev) *nev = nep->nev;
     319          39 :   if (ncv) *ncv = nep->ncv;
     320          39 :   if (mpd) *mpd = nep->mpd;
     321          39 :   PetscFunctionReturn(PETSC_SUCCESS);
     322             : }
     323             : 
     324             : /*@
     325             :    NEPSetDimensions - Sets the number of eigenvalues to compute
     326             :    and the dimension of the subspace.
     327             : 
     328             :    Logically Collective
     329             : 
     330             :    Input Parameters:
     331             : +  nep - the nonlinear eigensolver context
     332             : .  nev - number of eigenvalues to compute
     333             : .  ncv - the maximum dimension of the subspace to be used by the solver
     334             : -  mpd - the maximum dimension allowed for the projected problem
     335             : 
     336             :    Options Database Keys:
     337             : +  -nep_nev <nev> - Sets the number of eigenvalues
     338             : .  -nep_ncv <ncv> - Sets the dimension of the subspace
     339             : -  -nep_mpd <mpd> - Sets the maximum projected dimension
     340             : 
     341             :    Notes:
     342             :    Use PETSC_DETERMINE for ncv and mpd to assign a reasonably good value, which is
     343             :    dependent on the solution method. For any of the arguments, use PETSC_CURRENT
     344             :    to preserve the current value.
     345             : 
     346             :    The parameters ncv and mpd are intimately related, so that the user is advised
     347             :    to set one of them at most. Normal usage is that
     348             :    (a) in cases where nev is small, the user sets ncv (a reasonable default is 2*nev); and
     349             :    (b) in cases where nev is large, the user sets mpd.
     350             : 
     351             :    The value of ncv should always be between nev and (nev+mpd), typically
     352             :    ncv=nev+mpd. If nev is not too large, mpd=nev is a reasonable choice, otherwise
     353             :    a smaller value should be used.
     354             : 
     355             :    Level: intermediate
     356             : 
     357             : .seealso: NEPGetDimensions()
     358             : @*/
     359          85 : PetscErrorCode NEPSetDimensions(NEP nep,PetscInt nev,PetscInt ncv,PetscInt mpd)
     360             : {
     361          85 :   PetscFunctionBegin;
     362          85 :   PetscValidHeaderSpecific(nep,NEP_CLASSID,1);
     363         255 :   PetscValidLogicalCollectiveInt(nep,nev,2);
     364         255 :   PetscValidLogicalCollectiveInt(nep,ncv,3);
     365         255 :   PetscValidLogicalCollectiveInt(nep,mpd,4);
     366          85 :   if (nev != PETSC_CURRENT) {
     367          85 :     PetscCheck(nev>0,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of nev. Must be > 0");
     368          85 :     nep->nev = nev;
     369             :   }
     370          85 :   if (ncv == PETSC_DETERMINE) {
     371          78 :     nep->ncv = PETSC_DETERMINE;
     372           7 :   } else if (ncv != PETSC_CURRENT) {
     373           7 :     PetscCheck(ncv>0,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of ncv. Must be > 0");
     374           7 :     nep->ncv = ncv;
     375             :   }
     376          85 :   if (mpd == PETSC_DETERMINE) {
     377          83 :     nep->mpd = PETSC_DETERMINE;
     378           2 :   } else if (mpd != PETSC_CURRENT) {
     379           1 :     PetscCheck(mpd>0,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of mpd. Must be > 0");
     380           1 :     nep->mpd = mpd;
     381             :   }
     382          85 :   nep->state = NEP_STATE_INITIAL;
     383          85 :   PetscFunctionReturn(PETSC_SUCCESS);
     384             : }
     385             : 
     386             : /*@
     387             :     NEPSetWhichEigenpairs - Specifies which portion of the spectrum is
     388             :     to be sought.
     389             : 
     390             :     Logically Collective
     391             : 
     392             :     Input Parameters:
     393             : +   nep   - eigensolver context obtained from NEPCreate()
     394             : -   which - the portion of the spectrum to be sought
     395             : 
     396             :     Options Database Keys:
     397             : +   -nep_largest_magnitude - Sets largest eigenvalues in magnitude
     398             : .   -nep_smallest_magnitude - Sets smallest eigenvalues in magnitude
     399             : .   -nep_largest_real - Sets largest real parts
     400             : .   -nep_smallest_real - Sets smallest real parts
     401             : .   -nep_largest_imaginary - Sets largest imaginary parts
     402             : .   -nep_smallest_imaginary - Sets smallest imaginary parts
     403             : .   -nep_target_magnitude - Sets eigenvalues closest to target
     404             : .   -nep_target_real - Sets real parts closest to target
     405             : .   -nep_target_imaginary - Sets imaginary parts closest to target
     406             : -   -nep_all - Sets all eigenvalues in a region
     407             : 
     408             :     Notes:
     409             :     The parameter 'which' can have one of these values
     410             : 
     411             : +     NEP_LARGEST_MAGNITUDE - largest eigenvalues in magnitude (default)
     412             : .     NEP_SMALLEST_MAGNITUDE - smallest eigenvalues in magnitude
     413             : .     NEP_LARGEST_REAL - largest real parts
     414             : .     NEP_SMALLEST_REAL - smallest real parts
     415             : .     NEP_LARGEST_IMAGINARY - largest imaginary parts
     416             : .     NEP_SMALLEST_IMAGINARY - smallest imaginary parts
     417             : .     NEP_TARGET_MAGNITUDE - eigenvalues closest to the target (in magnitude)
     418             : .     NEP_TARGET_REAL - eigenvalues with real part closest to target
     419             : .     NEP_TARGET_IMAGINARY - eigenvalues with imaginary part closest to target
     420             : .     NEP_ALL - all eigenvalues contained in a given region
     421             : -     NEP_WHICH_USER - user defined ordering set with NEPSetEigenvalueComparison()
     422             : 
     423             :     Not all eigensolvers implemented in NEP account for all the possible values
     424             :     stated above. If SLEPc is compiled for real numbers NEP_LARGEST_IMAGINARY
     425             :     and NEP_SMALLEST_IMAGINARY use the absolute value of the imaginary part
     426             :     for eigenvalue selection.
     427             : 
     428             :     The target is a scalar value provided with NEPSetTarget().
     429             : 
     430             :     NEP_ALL is intended for use in the context of the CISS solver for
     431             :     computing all eigenvalues in a region.
     432             : 
     433             :     Level: intermediate
     434             : 
     435             : .seealso: NEPGetWhichEigenpairs(), NEPSetTarget(), NEPSetEigenvalueComparison(), NEPWhich
     436             : @*/
     437          74 : PetscErrorCode NEPSetWhichEigenpairs(NEP nep,NEPWhich which)
     438             : {
     439          74 :   PetscFunctionBegin;
     440          74 :   PetscValidHeaderSpecific(nep,NEP_CLASSID,1);
     441         222 :   PetscValidLogicalCollectiveEnum(nep,which,2);
     442          74 :   switch (which) {
     443          74 :     case NEP_LARGEST_MAGNITUDE:
     444             :     case NEP_SMALLEST_MAGNITUDE:
     445             :     case NEP_LARGEST_REAL:
     446             :     case NEP_SMALLEST_REAL:
     447             :     case NEP_LARGEST_IMAGINARY:
     448             :     case NEP_SMALLEST_IMAGINARY:
     449             :     case NEP_TARGET_MAGNITUDE:
     450             :     case NEP_TARGET_REAL:
     451             : #if defined(PETSC_USE_COMPLEX)
     452             :     case NEP_TARGET_IMAGINARY:
     453             : #endif
     454             :     case NEP_ALL:
     455             :     case NEP_WHICH_USER:
     456          74 :       if (nep->which != which) {
     457          72 :         nep->state = NEP_STATE_INITIAL;
     458          72 :         nep->which = which;
     459             :       }
     460          74 :       break;
     461             : #if !defined(PETSC_USE_COMPLEX)
     462           0 :     case NEP_TARGET_IMAGINARY:
     463           0 :       SETERRQ(PetscObjectComm((PetscObject)nep),PETSC_ERR_SUP,"NEP_TARGET_IMAGINARY can be used only with complex scalars");
     464             : #endif
     465           0 :     default:
     466           0 :       SETERRQ(PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"Invalid 'which' value");
     467             :   }
     468          74 :   PetscFunctionReturn(PETSC_SUCCESS);
     469             : }
     470             : 
     471             : /*@
     472             :     NEPGetWhichEigenpairs - Returns which portion of the spectrum is to be
     473             :     sought.
     474             : 
     475             :     Not Collective
     476             : 
     477             :     Input Parameter:
     478             : .   nep - eigensolver context obtained from NEPCreate()
     479             : 
     480             :     Output Parameter:
     481             : .   which - the portion of the spectrum to be sought
     482             : 
     483             :     Notes:
     484             :     See NEPSetWhichEigenpairs() for possible values of 'which'.
     485             : 
     486             :     Level: intermediate
     487             : 
     488             : .seealso: NEPSetWhichEigenpairs(), NEPWhich
     489             : @*/
     490           1 : PetscErrorCode NEPGetWhichEigenpairs(NEP nep,NEPWhich *which)
     491             : {
     492           1 :   PetscFunctionBegin;
     493           1 :   PetscValidHeaderSpecific(nep,NEP_CLASSID,1);
     494           1 :   PetscAssertPointer(which,2);
     495           1 :   *which = nep->which;
     496           1 :   PetscFunctionReturn(PETSC_SUCCESS);
     497             : }
     498             : 
     499             : /*@C
     500             :    NEPSetEigenvalueComparison - Specifies the eigenvalue comparison function
     501             :    when NEPSetWhichEigenpairs() is set to NEP_WHICH_USER.
     502             : 
     503             :    Logically Collective
     504             : 
     505             :    Input Parameters:
     506             : +  nep  - eigensolver context obtained from NEPCreate()
     507             : .  comp - a pointer to the comparison function
     508             : -  ctx  - a context pointer (the last parameter to the comparison function)
     509             : 
     510             :    Calling sequence of comp:
     511             : $  PetscErrorCode comp(PetscScalar ar,PetscScalar ai,PetscScalar br,PetscScalar bi,PetscInt *res,void *ctx)
     512             : +   ar     - real part of the 1st eigenvalue
     513             : .   ai     - imaginary part of the 1st eigenvalue
     514             : .   br     - real part of the 2nd eigenvalue
     515             : .   bi     - imaginary part of the 2nd eigenvalue
     516             : .   res    - result of comparison
     517             : -   ctx    - optional context, as set by NEPSetEigenvalueComparison()
     518             : 
     519             :    Note:
     520             :    The returning parameter 'res' can be
     521             : +  negative - if the 1st eigenvalue is preferred to the 2st one
     522             : .  zero     - if both eigenvalues are equally preferred
     523             : -  positive - if the 2st eigenvalue is preferred to the 1st one
     524             : 
     525             :    Level: advanced
     526             : 
     527             : .seealso: NEPSetWhichEigenpairs(), NEPWhich
     528             : @*/
     529           1 : PetscErrorCode NEPSetEigenvalueComparison(NEP nep,PetscErrorCode (*comp)(PetscScalar ar,PetscScalar ai,PetscScalar br,PetscScalar bi,PetscInt *res,void *ctx),void* ctx)
     530             : {
     531           1 :   PetscFunctionBegin;
     532           1 :   PetscValidHeaderSpecific(nep,NEP_CLASSID,1);
     533           1 :   nep->sc->comparison    = comp;
     534           1 :   nep->sc->comparisonctx = ctx;
     535           1 :   nep->which             = NEP_WHICH_USER;
     536           1 :   PetscFunctionReturn(PETSC_SUCCESS);
     537             : }
     538             : 
     539             : /*@
     540             :    NEPSetProblemType - Specifies the type of the nonlinear eigenvalue problem.
     541             : 
     542             :    Logically Collective
     543             : 
     544             :    Input Parameters:
     545             : +  nep  - the nonlinear eigensolver context
     546             : -  type - a known type of nonlinear eigenvalue problem
     547             : 
     548             :    Options Database Keys:
     549             : +  -nep_general - general problem with no particular structure
     550             : -  -nep_rational - a rational eigenvalue problem defined in split form with all f_i rational
     551             : 
     552             :    Notes:
     553             :    Allowed values for the problem type are general (NEP_GENERAL), and rational
     554             :    (NEP_RATIONAL).
     555             : 
     556             :    This function is used to provide a hint to the NEP solver to exploit certain
     557             :    properties of the nonlinear eigenproblem. This hint may be used or not,
     558             :    depending on the solver. By default, no particular structure is assumed.
     559             : 
     560             :    Level: intermediate
     561             : 
     562             : .seealso: NEPSetType(), NEPGetProblemType(), NEPProblemType
     563             : @*/
     564         103 : PetscErrorCode NEPSetProblemType(NEP nep,NEPProblemType type)
     565             : {
     566         103 :   PetscFunctionBegin;
     567         103 :   PetscValidHeaderSpecific(nep,NEP_CLASSID,1);
     568         309 :   PetscValidLogicalCollectiveEnum(nep,type,2);
     569         103 :   PetscCheck(type==NEP_GENERAL || type==NEP_RATIONAL,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_WRONG,"Unknown eigenvalue problem type");
     570         103 :   if (type != nep->problem_type) {
     571         103 :     nep->problem_type = type;
     572         103 :     nep->state = NEP_STATE_INITIAL;
     573             :   }
     574         103 :   PetscFunctionReturn(PETSC_SUCCESS);
     575             : }
     576             : 
     577             : /*@
     578             :    NEPGetProblemType - Gets the problem type from the NEP object.
     579             : 
     580             :    Not Collective
     581             : 
     582             :    Input Parameter:
     583             : .  nep - the nonlinear eigensolver context
     584             : 
     585             :    Output Parameter:
     586             : .  type - the problem type
     587             : 
     588             :    Level: intermediate
     589             : 
     590             : .seealso: NEPSetProblemType(), NEPProblemType
     591             : @*/
     592           2 : PetscErrorCode NEPGetProblemType(NEP nep,NEPProblemType *type)
     593             : {
     594           2 :   PetscFunctionBegin;
     595           2 :   PetscValidHeaderSpecific(nep,NEP_CLASSID,1);
     596           2 :   PetscAssertPointer(type,2);
     597           2 :   *type = nep->problem_type;
     598           2 :   PetscFunctionReturn(PETSC_SUCCESS);
     599             : }
     600             : 
     601             : /*@
     602             :    NEPSetTwoSided - Sets the solver to use a two-sided variant so that left
     603             :    eigenvectors are also computed.
     604             : 
     605             :    Logically Collective
     606             : 
     607             :    Input Parameters:
     608             : +  nep      - the eigensolver context
     609             : -  twosided - whether the two-sided variant is to be used or not
     610             : 
     611             :    Options Database Keys:
     612             : .  -nep_two_sided <boolean> - Sets/resets the twosided flag
     613             : 
     614             :    Notes:
     615             :    If the user sets twosided=PETSC_TRUE then the solver uses a variant of
     616             :    the algorithm that computes both right and left eigenvectors. This is
     617             :    usually much more costly. This option is not available in all solvers.
     618             : 
     619             :    When using two-sided solvers, the problem matrices must have both the
     620             :    MatMult and MatMultTranspose operations defined.
     621             : 
     622             :    Level: advanced
     623             : 
     624             : .seealso: NEPGetTwoSided(), NEPGetLeftEigenvector()
     625             : @*/
     626          10 : PetscErrorCode NEPSetTwoSided(NEP nep,PetscBool twosided)
     627             : {
     628          10 :   PetscFunctionBegin;
     629          10 :   PetscValidHeaderSpecific(nep,NEP_CLASSID,1);
     630          30 :   PetscValidLogicalCollectiveBool(nep,twosided,2);
     631          10 :   if (twosided!=nep->twosided) {
     632           7 :     nep->twosided = twosided;
     633           7 :     nep->state    = NEP_STATE_INITIAL;
     634             :   }
     635          10 :   PetscFunctionReturn(PETSC_SUCCESS);
     636             : }
     637             : 
     638             : /*@
     639             :    NEPGetTwoSided - Returns the flag indicating whether a two-sided variant
     640             :    of the algorithm is being used or not.
     641             : 
     642             :    Not Collective
     643             : 
     644             :    Input Parameter:
     645             : .  nep - the eigensolver context
     646             : 
     647             :    Output Parameter:
     648             : .  twosided - the returned flag
     649             : 
     650             :    Level: advanced
     651             : 
     652             : .seealso: NEPSetTwoSided()
     653             : @*/
     654           3 : PetscErrorCode NEPGetTwoSided(NEP nep,PetscBool *twosided)
     655             : {
     656           3 :   PetscFunctionBegin;
     657           3 :   PetscValidHeaderSpecific(nep,NEP_CLASSID,1);
     658           3 :   PetscAssertPointer(twosided,2);
     659           3 :   *twosided = nep->twosided;
     660           3 :   PetscFunctionReturn(PETSC_SUCCESS);
     661             : }
     662             : 
     663             : /*@C
     664             :    NEPSetConvergenceTestFunction - Sets a function to compute the error estimate
     665             :    used in the convergence test.
     666             : 
     667             :    Logically Collective
     668             : 
     669             :    Input Parameters:
     670             : +  nep     - nonlinear eigensolver context obtained from NEPCreate()
     671             : .  conv    - convergence test function, see NEPConvergenceTestFn for the calling sequence
     672             : .  ctx     - context for private data for the convergence routine (may be NULL)
     673             : -  destroy - a routine for destroying the context (may be NULL), see PetscCtxDestroyFn for the calling sequence
     674             : 
     675             :    Note:
     676             :    If the error estimate returned by the convergence test function is less than
     677             :    the tolerance, then the eigenvalue is accepted as converged.
     678             : 
     679             :    Level: advanced
     680             : 
     681             : .seealso: NEPSetConvergenceTest(), NEPSetTolerances()
     682             : @*/
     683           1 : PetscErrorCode NEPSetConvergenceTestFunction(NEP nep,NEPConvergenceTestFn *conv,void* ctx,PetscCtxDestroyFn *destroy)
     684             : {
     685           1 :   PetscFunctionBegin;
     686           1 :   PetscValidHeaderSpecific(nep,NEP_CLASSID,1);
     687           1 :   if (nep->convergeddestroy) PetscCall((*nep->convergeddestroy)(&nep->convergedctx));
     688           1 :   nep->convergeduser    = conv;
     689           1 :   nep->convergeddestroy = destroy;
     690           1 :   nep->convergedctx     = ctx;
     691           1 :   if (conv == NEPConvergedRelative) nep->conv = NEP_CONV_REL;
     692           1 :   else if (conv == NEPConvergedNorm) nep->conv = NEP_CONV_NORM;
     693           1 :   else if (conv == NEPConvergedAbsolute) nep->conv = NEP_CONV_ABS;
     694             :   else {
     695           1 :     nep->conv      = NEP_CONV_USER;
     696           1 :     nep->converged = nep->convergeduser;
     697             :   }
     698           1 :   PetscFunctionReturn(PETSC_SUCCESS);
     699             : }
     700             : 
     701             : /*@
     702             :    NEPSetConvergenceTest - Specifies how to compute the error estimate
     703             :    used in the convergence test.
     704             : 
     705             :    Logically Collective
     706             : 
     707             :    Input Parameters:
     708             : +  nep  - nonlinear eigensolver context obtained from NEPCreate()
     709             : -  conv - the type of convergence test
     710             : 
     711             :    Options Database Keys:
     712             : +  -nep_conv_abs  - Sets the absolute convergence test
     713             : .  -nep_conv_rel  - Sets the convergence test relative to the eigenvalue
     714             : -  -nep_conv_user - Selects the user-defined convergence test
     715             : 
     716             :    Note:
     717             :    The parameter 'conv' can have one of these values
     718             : +     NEP_CONV_ABS  - absolute error ||r||
     719             : .     NEP_CONV_REL  - error relative to the eigenvalue l, ||r||/|l|
     720             : .     NEP_CONV_NORM - error relative matrix norms, ||r||/sum_i(|f_i(l)|*||A_i||)
     721             : -     NEP_CONV_USER - function set by NEPSetConvergenceTestFunction()
     722             : 
     723             :    Level: intermediate
     724             : 
     725             : .seealso: NEPGetConvergenceTest(), NEPSetConvergenceTestFunction(), NEPSetStoppingTest(), NEPConv
     726             : @*/
     727           2 : PetscErrorCode NEPSetConvergenceTest(NEP nep,NEPConv conv)
     728             : {
     729           2 :   PetscFunctionBegin;
     730           2 :   PetscValidHeaderSpecific(nep,NEP_CLASSID,1);
     731           6 :   PetscValidLogicalCollectiveEnum(nep,conv,2);
     732           2 :   switch (conv) {
     733           1 :     case NEP_CONV_ABS:  nep->converged = NEPConvergedAbsolute; break;
     734           0 :     case NEP_CONV_REL:  nep->converged = NEPConvergedRelative; break;
     735           1 :     case NEP_CONV_NORM: nep->converged = NEPConvergedNorm; break;
     736           0 :     case NEP_CONV_USER:
     737           0 :       PetscCheck(nep->convergeduser,PetscObjectComm((PetscObject)nep),PETSC_ERR_ORDER,"Must call NEPSetConvergenceTestFunction() first");
     738           0 :       nep->converged = nep->convergeduser;
     739           0 :       break;
     740           0 :     default:
     741           0 :       SETERRQ(PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"Invalid 'conv' value");
     742             :   }
     743           2 :   nep->conv = conv;
     744           2 :   PetscFunctionReturn(PETSC_SUCCESS);
     745             : }
     746             : 
     747             : /*@
     748             :    NEPGetConvergenceTest - Gets the method used to compute the error estimate
     749             :    used in the convergence test.
     750             : 
     751             :    Not Collective
     752             : 
     753             :    Input Parameters:
     754             : .  nep   - nonlinear eigensolver context obtained from NEPCreate()
     755             : 
     756             :    Output Parameters:
     757             : .  conv  - the type of convergence test
     758             : 
     759             :    Level: intermediate
     760             : 
     761             : .seealso: NEPSetConvergenceTest(), NEPConv
     762             : @*/
     763           1 : PetscErrorCode NEPGetConvergenceTest(NEP nep,NEPConv *conv)
     764             : {
     765           1 :   PetscFunctionBegin;
     766           1 :   PetscValidHeaderSpecific(nep,NEP_CLASSID,1);
     767           1 :   PetscAssertPointer(conv,2);
     768           1 :   *conv = nep->conv;
     769           1 :   PetscFunctionReturn(PETSC_SUCCESS);
     770             : }
     771             : 
     772             : /*@C
     773             :    NEPSetStoppingTestFunction - Sets a function to decide when to stop the outer
     774             :    iteration of the eigensolver.
     775             : 
     776             :    Logically Collective
     777             : 
     778             :    Input Parameters:
     779             : +  nep     - nonlinear eigensolver context obtained from NEPCreate()
     780             : .  stop    - the stopping test function, see NEPStoppingTestFn for the calling sequence
     781             : .  ctx     - context for private data for the stopping routine (may be NULL)
     782             : -  destroy - a routine for destroying the context (may be NULL), see PetscCtxDestroyFn for the calling sequence
     783             : 
     784             :    Note:
     785             :    Normal usage is to first call the default routine NEPStoppingBasic() and then
     786             :    set reason to NEP_CONVERGED_USER if some user-defined conditions have been
     787             :    met. To let the eigensolver continue iterating, the result must be left as
     788             :    NEP_CONVERGED_ITERATING.
     789             : 
     790             :    Level: advanced
     791             : 
     792             : .seealso: NEPSetStoppingTest(), NEPStoppingBasic()
     793             : @*/
     794           1 : PetscErrorCode NEPSetStoppingTestFunction(NEP nep,NEPStoppingTestFn *stop,void* ctx,PetscCtxDestroyFn *destroy)
     795             : {
     796           1 :   PetscFunctionBegin;
     797           1 :   PetscValidHeaderSpecific(nep,NEP_CLASSID,1);
     798           1 :   if (nep->stoppingdestroy) PetscCall((*nep->stoppingdestroy)(&nep->stoppingctx));
     799           1 :   nep->stoppinguser    = stop;
     800           1 :   nep->stoppingdestroy = destroy;
     801           1 :   nep->stoppingctx     = ctx;
     802           1 :   if (stop == NEPStoppingBasic) nep->stop = NEP_STOP_BASIC;
     803             :   else {
     804           1 :     nep->stop     = NEP_STOP_USER;
     805           1 :     nep->stopping = nep->stoppinguser;
     806             :   }
     807           1 :   PetscFunctionReturn(PETSC_SUCCESS);
     808             : }
     809             : 
     810             : /*@
     811             :    NEPSetStoppingTest - Specifies how to decide the termination of the outer
     812             :    loop of the eigensolver.
     813             : 
     814             :    Logically Collective
     815             : 
     816             :    Input Parameters:
     817             : +  nep  - nonlinear eigensolver context obtained from NEPCreate()
     818             : -  stop - the type of stopping test
     819             : 
     820             :    Options Database Keys:
     821             : +  -nep_stop_basic - Sets the default stopping test
     822             : -  -nep_stop_user  - Selects the user-defined stopping test
     823             : 
     824             :    Note:
     825             :    The parameter 'stop' can have one of these values
     826             : +     NEP_STOP_BASIC - default stopping test
     827             : -     NEP_STOP_USER  - function set by NEPSetStoppingTestFunction()
     828             : 
     829             :    Level: advanced
     830             : 
     831             : .seealso: NEPGetStoppingTest(), NEPSetStoppingTestFunction(), NEPSetConvergenceTest(), NEPStop
     832             : @*/
     833           1 : PetscErrorCode NEPSetStoppingTest(NEP nep,NEPStop stop)
     834             : {
     835           1 :   PetscFunctionBegin;
     836           1 :   PetscValidHeaderSpecific(nep,NEP_CLASSID,1);
     837           3 :   PetscValidLogicalCollectiveEnum(nep,stop,2);
     838           1 :   switch (stop) {
     839           1 :     case NEP_STOP_BASIC: nep->stopping = NEPStoppingBasic; break;
     840           0 :     case NEP_STOP_USER:
     841           0 :       PetscCheck(nep->stoppinguser,PetscObjectComm((PetscObject)nep),PETSC_ERR_ORDER,"Must call NEPSetStoppingTestFunction() first");
     842           0 :       nep->stopping = nep->stoppinguser;
     843           0 :       break;
     844           0 :     default:
     845           0 :       SETERRQ(PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"Invalid 'stop' value");
     846             :   }
     847           1 :   nep->stop = stop;
     848           1 :   PetscFunctionReturn(PETSC_SUCCESS);
     849             : }
     850             : 
     851             : /*@
     852             :    NEPGetStoppingTest - Gets the method used to decide the termination of the outer
     853             :    loop of the eigensolver.
     854             : 
     855             :    Not Collective
     856             : 
     857             :    Input Parameters:
     858             : .  nep   - nonlinear eigensolver context obtained from NEPCreate()
     859             : 
     860             :    Output Parameters:
     861             : .  stop  - the type of stopping test
     862             : 
     863             :    Level: advanced
     864             : 
     865             : .seealso: NEPSetStoppingTest(), NEPStop
     866             : @*/
     867           1 : PetscErrorCode NEPGetStoppingTest(NEP nep,NEPStop *stop)
     868             : {
     869           1 :   PetscFunctionBegin;
     870           1 :   PetscValidHeaderSpecific(nep,NEP_CLASSID,1);
     871           1 :   PetscAssertPointer(stop,2);
     872           1 :   *stop = nep->stop;
     873           1 :   PetscFunctionReturn(PETSC_SUCCESS);
     874             : }
     875             : 
     876             : /*@
     877             :    NEPSetTrackAll - Specifies if the solver must compute the residual of all
     878             :    approximate eigenpairs or not.
     879             : 
     880             :    Logically Collective
     881             : 
     882             :    Input Parameters:
     883             : +  nep      - the eigensolver context
     884             : -  trackall - whether compute all residuals or not
     885             : 
     886             :    Notes:
     887             :    If the user sets trackall=PETSC_TRUE then the solver explicitly computes
     888             :    the residual for each eigenpair approximation. Computing the residual is
     889             :    usually an expensive operation and solvers commonly compute the associated
     890             :    residual to the first unconverged eigenpair.
     891             : 
     892             :    The option '-nep_monitor_all' automatically activates this option.
     893             : 
     894             :    Level: developer
     895             : 
     896             : .seealso: NEPGetTrackAll()
     897             : @*/
     898           1 : PetscErrorCode NEPSetTrackAll(NEP nep,PetscBool trackall)
     899             : {
     900           1 :   PetscFunctionBegin;
     901           1 :   PetscValidHeaderSpecific(nep,NEP_CLASSID,1);
     902           3 :   PetscValidLogicalCollectiveBool(nep,trackall,2);
     903           1 :   nep->trackall = trackall;
     904           1 :   PetscFunctionReturn(PETSC_SUCCESS);
     905             : }
     906             : 
     907             : /*@
     908             :    NEPGetTrackAll - Returns the flag indicating whether all residual norms must
     909             :    be computed or not.
     910             : 
     911             :    Not Collective
     912             : 
     913             :    Input Parameter:
     914             : .  nep - the eigensolver context
     915             : 
     916             :    Output Parameter:
     917             : .  trackall - the returned flag
     918             : 
     919             :    Level: developer
     920             : 
     921             : .seealso: NEPSetTrackAll()
     922             : @*/
     923          26 : PetscErrorCode NEPGetTrackAll(NEP nep,PetscBool *trackall)
     924             : {
     925          26 :   PetscFunctionBegin;
     926          26 :   PetscValidHeaderSpecific(nep,NEP_CLASSID,1);
     927          26 :   PetscAssertPointer(trackall,2);
     928          26 :   *trackall = nep->trackall;
     929          26 :   PetscFunctionReturn(PETSC_SUCCESS);
     930             : }
     931             : 
     932             : /*@
     933             :    NEPSetRefine - Specifies the refinement type (and options) to be used
     934             :    after the solve.
     935             : 
     936             :    Logically Collective
     937             : 
     938             :    Input Parameters:
     939             : +  nep    - the nonlinear eigensolver context
     940             : .  refine - refinement type
     941             : .  npart  - number of partitions of the communicator
     942             : .  tol    - the convergence tolerance
     943             : .  its    - maximum number of refinement iterations
     944             : -  scheme - which scheme to be used for solving the involved linear systems
     945             : 
     946             :    Options Database Keys:
     947             : +  -nep_refine <type> - refinement type, one of <none,simple,multiple>
     948             : .  -nep_refine_partitions <n> - the number of partitions
     949             : .  -nep_refine_tol <tol> - the tolerance
     950             : .  -nep_refine_its <its> - number of iterations
     951             : -  -nep_refine_scheme - to set the scheme for the linear solves
     952             : 
     953             :    Notes:
     954             :    By default, iterative refinement is disabled, since it may be very
     955             :    costly. There are two possible refinement strategies, simple and multiple.
     956             :    The simple approach performs iterative refinement on each of the
     957             :    converged eigenpairs individually, whereas the multiple strategy works
     958             :    with the invariant pair as a whole, refining all eigenpairs simultaneously.
     959             :    The latter may be required for the case of multiple eigenvalues.
     960             : 
     961             :    In some cases, especially when using direct solvers within the
     962             :    iterative refinement method, it may be helpful for improved scalability
     963             :    to split the communicator in several partitions. The npart parameter
     964             :    indicates how many partitions to use (defaults to 1).
     965             : 
     966             :    The tol and its parameters specify the stopping criterion. In the simple
     967             :    method, refinement continues until the residual of each eigenpair is
     968             :    below the tolerance (tol defaults to the NEP tol, but may be set to a
     969             :    different value). In contrast, the multiple method simply performs its
     970             :    refinement iterations (just one by default).
     971             : 
     972             :    The scheme argument is used to change the way in which linear systems are
     973             :    solved. Possible choices are explicit, mixed block elimination (MBE),
     974             :    and Schur complement.
     975             : 
     976             :    Use PETSC_CURRENT to retain the current value of npart, tol or its. Use
     977             :    PETSC_DETERMINE to assign a default value.
     978             : 
     979             :    Level: intermediate
     980             : 
     981             : .seealso: NEPGetRefine()
     982             : @*/
     983          13 : PetscErrorCode NEPSetRefine(NEP nep,NEPRefine refine,PetscInt npart,PetscReal tol,PetscInt its,NEPRefineScheme scheme)
     984             : {
     985          13 :   PetscMPIInt    size;
     986             : 
     987          13 :   PetscFunctionBegin;
     988          13 :   PetscValidHeaderSpecific(nep,NEP_CLASSID,1);
     989          39 :   PetscValidLogicalCollectiveEnum(nep,refine,2);
     990          39 :   PetscValidLogicalCollectiveInt(nep,npart,3);
     991          39 :   PetscValidLogicalCollectiveReal(nep,tol,4);
     992          39 :   PetscValidLogicalCollectiveInt(nep,its,5);
     993          39 :   PetscValidLogicalCollectiveEnum(nep,scheme,6);
     994          13 :   nep->refine = refine;
     995          13 :   if (refine) {  /* process parameters only if not REFINE_NONE */
     996          13 :     if (npart!=nep->npart) {
     997           8 :       PetscCall(PetscSubcommDestroy(&nep->refinesubc));
     998           8 :       PetscCall(KSPDestroy(&nep->refineksp));
     999             :     }
    1000          13 :     if (npart == PETSC_DETERMINE) {
    1001           0 :       nep->npart = 1;
    1002          13 :     } else if (npart != PETSC_CURRENT) {
    1003          13 :       PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)nep),&size));
    1004          13 :       PetscCheck(npart>0 && npart<=size,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of npart");
    1005          13 :       nep->npart = npart;
    1006             :     }
    1007          13 :     if (tol == (PetscReal)PETSC_DETERMINE) {
    1008          12 :       nep->rtol = PETSC_DETERMINE;
    1009           1 :     } else if (tol != (PetscReal)PETSC_CURRENT) {
    1010           1 :       PetscCheck(tol>0.0,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of tol. Must be > 0");
    1011           1 :       nep->rtol = tol;
    1012             :     }
    1013          13 :     if (its==PETSC_DETERMINE) {
    1014          11 :       nep->rits = PETSC_DETERMINE;
    1015           2 :     } else if (its != PETSC_CURRENT) {
    1016           2 :       PetscCheck(its>=0,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of its. Must be >= 0");
    1017           2 :       nep->rits = its;
    1018             :     }
    1019          13 :     nep->scheme = scheme;
    1020             :   }
    1021          13 :   nep->state = NEP_STATE_INITIAL;
    1022          13 :   PetscFunctionReturn(PETSC_SUCCESS);
    1023             : }
    1024             : 
    1025             : /*@
    1026             :    NEPGetRefine - Gets the refinement strategy used by the NEP object, and the
    1027             :    associated parameters.
    1028             : 
    1029             :    Not Collective
    1030             : 
    1031             :    Input Parameter:
    1032             : .  nep - the nonlinear eigensolver context
    1033             : 
    1034             :    Output Parameters:
    1035             : +  refine - refinement type
    1036             : .  npart  - number of partitions of the communicator
    1037             : .  tol    - the convergence tolerance
    1038             : .  its    - maximum number of refinement iterations
    1039             : -  scheme - the scheme used for solving linear systems
    1040             : 
    1041             :    Level: intermediate
    1042             : 
    1043             :    Note:
    1044             :    The user can specify NULL for any parameter that is not needed.
    1045             : 
    1046             : .seealso: NEPSetRefine()
    1047             : @*/
    1048           1 : PetscErrorCode NEPGetRefine(NEP nep,NEPRefine *refine,PetscInt *npart,PetscReal *tol,PetscInt *its,NEPRefineScheme *scheme)
    1049             : {
    1050           1 :   PetscFunctionBegin;
    1051           1 :   PetscValidHeaderSpecific(nep,NEP_CLASSID,1);
    1052           1 :   if (refine) *refine = nep->refine;
    1053           1 :   if (npart)  *npart  = nep->npart;
    1054           1 :   if (tol)    *tol    = nep->rtol;
    1055           1 :   if (its)    *its    = nep->rits;
    1056           1 :   if (scheme) *scheme = nep->scheme;
    1057           1 :   PetscFunctionReturn(PETSC_SUCCESS);
    1058             : }
    1059             : 
    1060             : /*@
    1061             :    NEPSetOptionsPrefix - Sets the prefix used for searching for all
    1062             :    NEP options in the database.
    1063             : 
    1064             :    Logically Collective
    1065             : 
    1066             :    Input Parameters:
    1067             : +  nep - the nonlinear eigensolver context
    1068             : -  prefix - the prefix string to prepend to all NEP option requests
    1069             : 
    1070             :    Notes:
    1071             :    A hyphen (-) must NOT be given at the beginning of the prefix name.
    1072             :    The first character of all runtime options is AUTOMATICALLY the
    1073             :    hyphen.
    1074             : 
    1075             :    For example, to distinguish between the runtime options for two
    1076             :    different NEP contexts, one could call
    1077             : .vb
    1078             :       NEPSetOptionsPrefix(nep1,"neig1_")
    1079             :       NEPSetOptionsPrefix(nep2,"neig2_")
    1080             : .ve
    1081             : 
    1082             :    Level: advanced
    1083             : 
    1084             : .seealso: NEPAppendOptionsPrefix(), NEPGetOptionsPrefix()
    1085             : @*/
    1086           1 : PetscErrorCode NEPSetOptionsPrefix(NEP nep,const char *prefix)
    1087             : {
    1088           1 :   PetscFunctionBegin;
    1089           1 :   PetscValidHeaderSpecific(nep,NEP_CLASSID,1);
    1090           1 :   if (!nep->V) PetscCall(NEPGetBV(nep,&nep->V));
    1091           1 :   PetscCall(BVSetOptionsPrefix(nep->V,prefix));
    1092           1 :   if (!nep->ds) PetscCall(NEPGetDS(nep,&nep->ds));
    1093           1 :   PetscCall(DSSetOptionsPrefix(nep->ds,prefix));
    1094           1 :   if (!nep->rg) PetscCall(NEPGetRG(nep,&nep->rg));
    1095           1 :   PetscCall(RGSetOptionsPrefix(nep->rg,prefix));
    1096           1 :   PetscCall(PetscObjectSetOptionsPrefix((PetscObject)nep,prefix));
    1097           1 :   PetscFunctionReturn(PETSC_SUCCESS);
    1098             : }
    1099             : 
    1100             : /*@
    1101             :    NEPAppendOptionsPrefix - Appends to the prefix used for searching for all
    1102             :    NEP options in the database.
    1103             : 
    1104             :    Logically Collective
    1105             : 
    1106             :    Input Parameters:
    1107             : +  nep - the nonlinear eigensolver context
    1108             : -  prefix - the prefix string to prepend to all NEP option requests
    1109             : 
    1110             :    Notes:
    1111             :    A hyphen (-) must NOT be given at the beginning of the prefix name.
    1112             :    The first character of all runtime options is AUTOMATICALLY the hyphen.
    1113             : 
    1114             :    Level: advanced
    1115             : 
    1116             : .seealso: NEPSetOptionsPrefix(), NEPGetOptionsPrefix()
    1117             : @*/
    1118           1 : PetscErrorCode NEPAppendOptionsPrefix(NEP nep,const char *prefix)
    1119             : {
    1120           1 :   PetscFunctionBegin;
    1121           1 :   PetscValidHeaderSpecific(nep,NEP_CLASSID,1);
    1122           1 :   if (!nep->V) PetscCall(NEPGetBV(nep,&nep->V));
    1123           1 :   PetscCall(BVAppendOptionsPrefix(nep->V,prefix));
    1124           1 :   if (!nep->ds) PetscCall(NEPGetDS(nep,&nep->ds));
    1125           1 :   PetscCall(DSAppendOptionsPrefix(nep->ds,prefix));
    1126           1 :   if (!nep->rg) PetscCall(NEPGetRG(nep,&nep->rg));
    1127           1 :   PetscCall(RGAppendOptionsPrefix(nep->rg,prefix));
    1128           1 :   PetscCall(PetscObjectAppendOptionsPrefix((PetscObject)nep,prefix));
    1129           1 :   PetscFunctionReturn(PETSC_SUCCESS);
    1130             : }
    1131             : 
    1132             : /*@
    1133             :    NEPGetOptionsPrefix - Gets the prefix used for searching for all
    1134             :    NEP options in the database.
    1135             : 
    1136             :    Not Collective
    1137             : 
    1138             :    Input Parameters:
    1139             : .  nep - the nonlinear eigensolver context
    1140             : 
    1141             :    Output Parameters:
    1142             : .  prefix - pointer to the prefix string used is returned
    1143             : 
    1144             :    Note:
    1145             :    On the Fortran side, the user should pass in a string 'prefix' of
    1146             :    sufficient length to hold the prefix.
    1147             : 
    1148             :    Level: advanced
    1149             : 
    1150             : .seealso: NEPSetOptionsPrefix(), NEPAppendOptionsPrefix()
    1151             : @*/
    1152           1 : PetscErrorCode NEPGetOptionsPrefix(NEP nep,const char *prefix[])
    1153             : {
    1154           1 :   PetscFunctionBegin;
    1155           1 :   PetscValidHeaderSpecific(nep,NEP_CLASSID,1);
    1156           1 :   PetscAssertPointer(prefix,2);
    1157           1 :   PetscCall(PetscObjectGetOptionsPrefix((PetscObject)nep,prefix));
    1158           1 :   PetscFunctionReturn(PETSC_SUCCESS);
    1159             : }

Generated by: LCOV version 1.14