LCOV - code coverage report
Current view: top level - eps/tutorials - ex5.c (source / functions) Hit Total Coverage
Test: SLEPc Lines: 64 68 94.1 %
Date: 2024-11-21 00:34:55 Functions: 2 2 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       3             :    SLEPc - Scalable Library for Eigenvalue Problem Computations
       4             :    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
       5             : 
       6             :    This file is part of SLEPc.
       7             :    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
       8             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       9             : */
      10             : 
      11             : static char help[] = "Eigenvalue problem associated with a Markov model of a random walk on a triangular grid. "
      12             :   "It is a standard nonsymmetric eigenproblem with real eigenvalues and the rightmost eigenvalue is known to be 1.\n"
      13             :   "This example illustrates how the user can set the initial vector.\n\n"
      14             :   "The command line options are:\n"
      15             :   "  -m <m>, where <m> = number of grid subdivisions in each dimension.\n\n";
      16             : 
      17             : #include <slepceps.h>
      18             : 
      19             : /*
      20             :    User-defined routines
      21             : */
      22             : PetscErrorCode MatMarkovModel(PetscInt m,Mat A);
      23             : 
      24           8 : int main(int argc,char **argv)
      25             : {
      26           8 :   Vec            v0;              /* initial vector */
      27           8 :   Mat            A;               /* operator matrix */
      28           8 :   EPS            eps;             /* eigenproblem solver context */
      29           8 :   EPSType        type;
      30           8 :   PetscInt       N,m=15,nev;
      31           8 :   PetscMPIInt    rank;
      32           8 :   PetscBool      terse;
      33             : 
      34           8 :   PetscFunctionBeginUser;
      35           8 :   PetscCall(SlepcInitialize(&argc,&argv,NULL,help));
      36             : 
      37           8 :   PetscCall(PetscOptionsGetInt(NULL,NULL,"-m",&m,NULL));
      38           8 :   N = m*(m+1)/2;
      39           8 :   PetscCall(PetscPrintf(PETSC_COMM_WORLD,"\nMarkov Model, N=%" PetscInt_FMT " (m=%" PetscInt_FMT ")\n\n",N,m));
      40             : 
      41             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      42             :      Compute the operator matrix that defines the eigensystem, Ax=kx
      43             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
      44             : 
      45           8 :   PetscCall(MatCreate(PETSC_COMM_WORLD,&A));
      46           8 :   PetscCall(MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,N,N));
      47           8 :   PetscCall(MatSetFromOptions(A));
      48           8 :   PetscCall(MatMarkovModel(m,A));
      49             : 
      50             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      51             :                 Create the eigensolver and set various options
      52             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
      53             : 
      54             :   /*
      55             :      Create eigensolver context
      56             :   */
      57           8 :   PetscCall(EPSCreate(PETSC_COMM_WORLD,&eps));
      58             : 
      59             :   /*
      60             :      Set operators. In this case, it is a standard eigenvalue problem
      61             :   */
      62           8 :   PetscCall(EPSSetOperators(eps,A,NULL));
      63           8 :   PetscCall(EPSSetProblemType(eps,EPS_NHEP));
      64             : 
      65             :   /*
      66             :      Set solver parameters at runtime
      67             :   */
      68           8 :   PetscCall(EPSSetFromOptions(eps));
      69             : 
      70             :   /*
      71             :      Set the initial vector. This is optional, if not done the initial
      72             :      vector is set to random values
      73             :   */
      74           8 :   PetscCall(MatCreateVecs(A,&v0,NULL));
      75           8 :   PetscCallMPI(MPI_Comm_rank(PETSC_COMM_WORLD,&rank));
      76           8 :   if (!rank) {
      77           4 :     PetscCall(VecSetValue(v0,0,1.0,INSERT_VALUES));
      78           4 :     PetscCall(VecSetValue(v0,1,1.0,INSERT_VALUES));
      79           4 :     PetscCall(VecSetValue(v0,2,1.0,INSERT_VALUES));
      80             :   }
      81           8 :   PetscCall(VecAssemblyBegin(v0));
      82           8 :   PetscCall(VecAssemblyEnd(v0));
      83           8 :   PetscCall(EPSSetInitialSpace(eps,1,&v0));
      84             : 
      85             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      86             :                       Solve the eigensystem
      87             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
      88             : 
      89           8 :   PetscCall(EPSSolve(eps));
      90             : 
      91             :   /*
      92             :      Optional: Get some information from the solver and display it
      93             :   */
      94           8 :   PetscCall(EPSGetType(eps,&type));
      95           8 :   PetscCall(PetscPrintf(PETSC_COMM_WORLD," Solution method: %s\n\n",type));
      96           8 :   PetscCall(EPSGetDimensions(eps,&nev,NULL,NULL));
      97           8 :   PetscCall(PetscPrintf(PETSC_COMM_WORLD," Number of requested eigenvalues: %" PetscInt_FMT "\n",nev));
      98             : 
      99             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     100             :                     Display solution and clean up
     101             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
     102             : 
     103             :   /* show detailed info unless -terse option is given by user */
     104           8 :   PetscCall(PetscOptionsHasName(NULL,NULL,"-terse",&terse));
     105           8 :   if (terse) PetscCall(EPSErrorView(eps,EPS_ERROR_RELATIVE,NULL));
     106             :   else {
     107           0 :     PetscCall(PetscViewerPushFormat(PETSC_VIEWER_STDOUT_WORLD,PETSC_VIEWER_ASCII_INFO_DETAIL));
     108           0 :     PetscCall(EPSConvergedReasonView(eps,PETSC_VIEWER_STDOUT_WORLD));
     109           0 :     PetscCall(EPSErrorView(eps,EPS_ERROR_RELATIVE,PETSC_VIEWER_STDOUT_WORLD));
     110           0 :     PetscCall(PetscViewerPopFormat(PETSC_VIEWER_STDOUT_WORLD));
     111             :   }
     112           8 :   PetscCall(EPSDestroy(&eps));
     113           8 :   PetscCall(MatDestroy(&A));
     114           8 :   PetscCall(VecDestroy(&v0));
     115           8 :   PetscCall(SlepcFinalize());
     116             :   return 0;
     117             : }
     118             : 
     119             : /*
     120             :     Matrix generator for a Markov model of a random walk on a triangular grid.
     121             : 
     122             :     This subroutine generates a test matrix that models a random walk on a
     123             :     triangular grid. This test example was used by G. W. Stewart ["{SRRIT} - a
     124             :     FORTRAN subroutine to calculate the dominant invariant subspaces of a real
     125             :     matrix", Tech. report. TR-514, University of Maryland (1978).] and in a few
     126             :     papers on eigenvalue problems by Y. Saad [see e.g. LAA, vol. 34, pp. 269-295
     127             :     (1980) ]. These matrices provide reasonably easy test problems for eigenvalue
     128             :     algorithms. The transpose of the matrix  is stochastic and so it is known
     129             :     that one is an exact eigenvalue. One seeks the eigenvector of the transpose
     130             :     associated with the eigenvalue unity. The problem is to calculate the steady
     131             :     state probability distribution of the system, which is the eigevector
     132             :     associated with the eigenvalue one and scaled in such a way that the sum all
     133             :     the components is equal to one.
     134             : 
     135             :     Note: the code will actually compute the transpose of the stochastic matrix
     136             :     that contains the transition probabilities.
     137             : */
     138           8 : PetscErrorCode MatMarkovModel(PetscInt m,Mat A)
     139             : {
     140           8 :   const PetscReal cst = 0.5/(PetscReal)(m-1);
     141           8 :   PetscReal       pd,pu;
     142           8 :   PetscInt        Istart,Iend,i,j,jmax,ix=0;
     143             : 
     144           8 :   PetscFunctionBeginUser;
     145           8 :   PetscCall(MatGetOwnershipRange(A,&Istart,&Iend));
     146         128 :   for (i=1;i<=m;i++) {
     147         120 :     jmax = m-i+1;
     148        1080 :     for (j=1;j<=jmax;j++) {
     149         960 :       ix = ix + 1;
     150         960 :       if (ix-1<Istart || ix>Iend) continue;  /* compute only owned rows */
     151         480 :       if (j!=jmax) {
     152         420 :         pd = cst*(PetscReal)(i+j-1);
     153             :         /* north */
     154         420 :         if (i==1) PetscCall(MatSetValue(A,ix-1,ix,2*pd,INSERT_VALUES));
     155         364 :         else PetscCall(MatSetValue(A,ix-1,ix,pd,INSERT_VALUES));
     156             :         /* east */
     157         420 :         if (j==1) PetscCall(MatSetValue(A,ix-1,ix+jmax-1,2*pd,INSERT_VALUES));
     158         364 :         else PetscCall(MatSetValue(A,ix-1,ix+jmax-1,pd,INSERT_VALUES));
     159             :       }
     160             :       /* south */
     161         480 :       pu = 0.5 - cst*(PetscReal)(i+j-3);
     162         480 :       if (j>1) PetscCall(MatSetValue(A,ix-1,ix-2,pu,INSERT_VALUES));
     163             :       /* west */
     164         960 :       if (i>1) PetscCall(MatSetValue(A,ix-1,ix-jmax-2,pu,INSERT_VALUES));
     165             :     }
     166             :   }
     167           8 :   PetscCall(MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY));
     168           8 :   PetscCall(MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY));
     169           8 :   PetscFunctionReturn(PETSC_SUCCESS);
     170             : }
     171             : 
     172             : /*TEST
     173             : 
     174             :    test:
     175             :       suffix: 1
     176             :       nsize: 2
     177             :       args: -eps_largest_real -eps_nev 4 -eps_two_sided {{0 1}} -eps_krylovschur_locking {{0 1}} -ds_parallel synchronized -terse
     178             :       filter: sed -e "s/90424/90423/" | sed -e "s/85715/85714/"
     179             : 
     180             : TEST*/

Generated by: LCOV version 1.14