LCOV - code coverage report
Current view: top level - eps/tutorials - ex47.c (source / functions) Hit Total Coverage
Test: SLEPc Lines: 79 80 98.8 %
Date: 2024-11-21 00:34:55 Functions: 2 2 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       3             :    SLEPc - Scalable Library for Eigenvalue Problem Computations
       4             :    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
       5             : 
       6             :    This file is part of SLEPc.
       7             :    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
       8             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       9             : */
      10             : 
      11             : static char help[] = "Shows how to recover symmetry when solving a GHEP as non-symmetric.\n\n"
      12             :   "The command line options are:\n"
      13             :   "  -n <n>, where <n> = number of grid subdivisions in x dimension.\n"
      14             :   "  -m <m>, where <m> = number of grid subdivisions in y dimension.\n\n";
      15             : 
      16             : #include <slepceps.h>
      17             : 
      18             : /*
      19             :    User context for shell matrix
      20             : */
      21             : typedef struct {
      22             :   KSP       ksp;
      23             :   Mat       B;
      24             :   Vec       w;
      25             : } CTX_SHELL;
      26             : 
      27             : /*
      28             :     Matrix-vector product function for user matrix
      29             :        y <-- A^{-1}*B*x
      30             :     The matrix A^{-1}*B*x is not symmetric, but it is self-adjoint with respect
      31             :     to the B-inner product. Here we assume A is symmetric and B is SPD.
      32             :  */
      33          32 : PetscErrorCode MatMult_Sinvert0(Mat S,Vec x,Vec y)
      34             : {
      35          32 :   CTX_SHELL      *ctx;
      36             : 
      37          32 :   PetscFunctionBeginUser;
      38          32 :   PetscCall(MatShellGetContext(S,&ctx));
      39          32 :   PetscCall(MatMult(ctx->B,x,ctx->w));
      40          32 :   PetscCall(KSPSolve(ctx->ksp,ctx->w,y));
      41          32 :   PetscFunctionReturn(PETSC_SUCCESS);
      42             : }
      43             : 
      44           1 : int main(int argc,char **argv)
      45             : {
      46           1 :   Mat               A,B,S;      /* matrices */
      47           1 :   EPS               eps;        /* eigenproblem solver context */
      48           1 :   BV                bv;
      49           1 :   Vec               *X,v;
      50           1 :   PetscReal         lev=0.0,tol=1000*PETSC_MACHINE_EPSILON;
      51           1 :   PetscInt          N,n=45,m,Istart,Iend,II,i,j,nconv;
      52           1 :   PetscBool         flag;
      53           1 :   CTX_SHELL         *ctx;
      54             : 
      55           1 :   PetscFunctionBeginUser;
      56           1 :   PetscCall(SlepcInitialize(&argc,&argv,NULL,help));
      57           1 :   PetscCall(PetscOptionsGetInt(NULL,NULL,"-n",&n,NULL));
      58           1 :   PetscCall(PetscOptionsGetInt(NULL,NULL,"-m",&m,&flag));
      59           1 :   if (!flag) m=n;
      60           1 :   N = n*m;
      61           1 :   PetscCall(PetscPrintf(PETSC_COMM_WORLD,"\nGeneralized Symmetric Eigenproblem, N=%" PetscInt_FMT " (%" PetscInt_FMT "x%" PetscInt_FMT " grid)\n\n",N,n,m));
      62             : 
      63             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      64             :          Compute the matrices that define the eigensystem, Ax=kBx
      65             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
      66             : 
      67           1 :   PetscCall(MatCreate(PETSC_COMM_WORLD,&A));
      68           1 :   PetscCall(MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,N,N));
      69           1 :   PetscCall(MatSetFromOptions(A));
      70             : 
      71           1 :   PetscCall(MatCreate(PETSC_COMM_WORLD,&B));
      72           1 :   PetscCall(MatSetSizes(B,PETSC_DECIDE,PETSC_DECIDE,N,N));
      73           1 :   PetscCall(MatSetFromOptions(B));
      74             : 
      75           1 :   PetscCall(MatGetOwnershipRange(A,&Istart,&Iend));
      76         325 :   for (II=Istart;II<Iend;II++) {
      77         324 :     i = II/n; j = II-i*n;
      78         324 :     if (i>0) PetscCall(MatSetValue(A,II,II-n,-1.0,INSERT_VALUES));
      79         324 :     if (i<m-1) PetscCall(MatSetValue(A,II,II+n,-1.0,INSERT_VALUES));
      80         324 :     if (j>0) PetscCall(MatSetValue(A,II,II-1,-1.0,INSERT_VALUES));
      81         324 :     if (j<n-1) PetscCall(MatSetValue(A,II,II+1,-1.0,INSERT_VALUES));
      82         324 :     PetscCall(MatSetValue(A,II,II,4.0,INSERT_VALUES));
      83         324 :     PetscCall(MatSetValue(B,II,II,2.0/PetscLogScalar(II+2),INSERT_VALUES));
      84             :   }
      85             : 
      86           1 :   PetscCall(MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY));
      87           1 :   PetscCall(MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY));
      88           1 :   PetscCall(MatAssemblyBegin(B,MAT_FINAL_ASSEMBLY));
      89           1 :   PetscCall(MatAssemblyEnd(B,MAT_FINAL_ASSEMBLY));
      90           1 :   PetscCall(MatCreateVecs(B,&v,NULL));
      91             : 
      92             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      93             :               Create a shell matrix S = A^{-1}*B
      94             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
      95           1 :   PetscCall(PetscNew(&ctx));
      96           1 :   PetscCall(KSPCreate(PETSC_COMM_WORLD,&ctx->ksp));
      97           1 :   PetscCall(KSPSetOperators(ctx->ksp,A,A));
      98           1 :   PetscCall(KSPSetTolerances(ctx->ksp,tol,PETSC_CURRENT,PETSC_CURRENT,PETSC_CURRENT));
      99           1 :   PetscCall(KSPSetFromOptions(ctx->ksp));
     100           1 :   ctx->B = B;
     101           1 :   PetscCall(MatCreateVecs(A,&ctx->w,NULL));
     102           1 :   PetscCall(MatCreateShell(PETSC_COMM_WORLD,PETSC_DECIDE,PETSC_DECIDE,N,N,(void*)ctx,&S));
     103           1 :   PetscCall(MatShellSetOperation(S,MATOP_MULT,(void(*)(void))MatMult_Sinvert0));
     104             : 
     105             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     106             :                 Create the eigensolver and set various options
     107             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
     108             : 
     109           1 :   PetscCall(EPSCreate(PETSC_COMM_WORLD,&eps));
     110           1 :   PetscCall(EPSSetOperators(eps,S,NULL));
     111           1 :   PetscCall(EPSSetProblemType(eps,EPS_HEP));  /* even though S is not symmetric */
     112           1 :   PetscCall(EPSSetTolerances(eps,tol,PETSC_CURRENT));
     113           1 :   PetscCall(EPSSetFromOptions(eps));
     114             : 
     115             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     116             :                       Solve the eigensystem
     117             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
     118             : 
     119           1 :   PetscCall(EPSSetUp(eps));   /* explicitly call setup */
     120           1 :   PetscCall(EPSGetBV(eps,&bv));
     121           1 :   PetscCall(BVSetMatrix(bv,B,PETSC_FALSE));  /* set inner product matrix to recover symmetry */
     122           1 :   PetscCall(EPSSolve(eps));
     123             : 
     124             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     125             :                  Display solution and check B-orthogonality
     126             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
     127             : 
     128           1 :   PetscCall(EPSGetTolerances(eps,&tol,NULL));
     129           1 :   PetscCall(EPSErrorView(eps,EPS_ERROR_RELATIVE,NULL));
     130           1 :   PetscCall(EPSGetConverged(eps,&nconv));
     131           1 :   if (nconv>1) {
     132           1 :     PetscCall(VecDuplicateVecs(v,nconv,&X));
     133           5 :     for (i=0;i<nconv;i++) PetscCall(EPSGetEigenvector(eps,i,X[i],NULL));
     134           1 :     PetscCall(VecCheckOrthonormality(X,nconv,NULL,nconv,B,NULL,&lev));
     135           1 :     if (lev<10*tol) PetscCall(PetscPrintf(PETSC_COMM_WORLD,"Level of orthogonality below the tolerance\n"));
     136           0 :     else PetscCall(PetscPrintf(PETSC_COMM_WORLD,"Level of orthogonality: %g\n",(double)lev));
     137           1 :     PetscCall(VecDestroyVecs(nconv,&X));
     138             :   }
     139             : 
     140           1 :   PetscCall(EPSDestroy(&eps));
     141           1 :   PetscCall(MatDestroy(&A));
     142           1 :   PetscCall(MatDestroy(&B));
     143           1 :   PetscCall(VecDestroy(&v));
     144           1 :   PetscCall(KSPDestroy(&ctx->ksp));
     145           1 :   PetscCall(VecDestroy(&ctx->w));
     146           1 :   PetscCall(PetscFree(ctx));
     147           1 :   PetscCall(MatDestroy(&S));
     148           1 :   PetscCall(SlepcFinalize());
     149             :   return 0;
     150             : }
     151             : 
     152             : /*TEST
     153             : 
     154             :    test:
     155             :       args: -n 18 -eps_nev 4 -eps_max_it 1500
     156             :       requires: !single
     157             : 
     158             : TEST*/

Generated by: LCOV version 1.14