LCOV - code coverage report
Current view: top level - eps/tutorials - ex41.c (source / functions) Hit Total Coverage
Test: SLEPc Lines: 111 123 90.2 %
Date: 2024-12-18 00:42:09 Functions: 3 3 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       3             :    SLEPc - Scalable Library for Eigenvalue Problem Computations
       4             :    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
       5             : 
       6             :    This file is part of SLEPc.
       7             :    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
       8             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       9             : */
      10             : 
      11             : static char help[] = "Illustrates the computation of left eigenvectors.\n\n"
      12             :   "The problem is the Markov model as in ex5.c.\n"
      13             :   "The command line options are:\n"
      14             :   "  -m <m>, where <m> = number of grid subdivisions in each dimension.\n\n";
      15             : 
      16             : #include <slepceps.h>
      17             : 
      18             : /*
      19             :    User-defined routines
      20             : */
      21             : PetscErrorCode MatMarkovModel(PetscInt,Mat);
      22             : PetscErrorCode ComputeResidualNorm(Mat,PetscBool,PetscScalar,PetscScalar,Vec,Vec,Vec,PetscReal*);
      23             : 
      24           4 : int main(int argc,char **argv)
      25             : {
      26           4 :   Vec            v0,w0;           /* initial vectors */
      27           4 :   Mat            A;               /* operator matrix */
      28           4 :   EPS            eps;             /* eigenproblem solver context */
      29           4 :   EPSType        type;
      30           4 :   PetscInt       i,N,m=15,nconv;
      31           4 :   PetscBool      twosided;
      32           4 :   PetscReal      nrmr,nrml=0.0,re,im,lev;
      33           4 :   PetscScalar    *kr,*ki;
      34           4 :   Vec            t,*xr,*xi,*yr,*yi;
      35           4 :   PetscMPIInt    rank;
      36             : 
      37           4 :   PetscFunctionBeginUser;
      38           4 :   PetscCall(SlepcInitialize(&argc,&argv,NULL,help));
      39             : 
      40           4 :   PetscCall(PetscOptionsGetInt(NULL,NULL,"-m",&m,NULL));
      41           4 :   N = m*(m+1)/2;
      42           4 :   PetscCall(PetscPrintf(PETSC_COMM_WORLD,"\nMarkov Model, N=%" PetscInt_FMT " (m=%" PetscInt_FMT ")\n\n",N,m));
      43             : 
      44             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      45             :      Compute the operator matrix that defines the eigensystem, Ax=kx
      46             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
      47             : 
      48           4 :   PetscCall(MatCreate(PETSC_COMM_WORLD,&A));
      49           4 :   PetscCall(MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,N,N));
      50           4 :   PetscCall(MatSetFromOptions(A));
      51           4 :   PetscCall(MatMarkovModel(m,A));
      52           4 :   PetscCall(MatCreateVecs(A,NULL,&t));
      53             : 
      54             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      55             :                 Create the eigensolver and set various options
      56             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
      57             : 
      58           4 :   PetscCall(EPSCreate(PETSC_COMM_WORLD,&eps));
      59           4 :   PetscCall(EPSSetOperators(eps,A,NULL));
      60           4 :   PetscCall(EPSSetProblemType(eps,EPS_NHEP));
      61             : 
      62             :   /* use a two-sided algorithm to compute left eigenvectors as well */
      63           4 :   PetscCall(EPSSetTwoSided(eps,PETSC_TRUE));
      64             : 
      65             :   /* allow user to change settings at run time */
      66           4 :   PetscCall(EPSSetFromOptions(eps));
      67           4 :   PetscCall(EPSGetTwoSided(eps,&twosided));
      68             : 
      69             :   /*
      70             :      Set the initial vectors. This is optional, if not done the initial
      71             :      vectors are set to random values
      72             :   */
      73           4 :   PetscCall(MatCreateVecs(A,&v0,&w0));
      74           4 :   PetscCallMPI(MPI_Comm_rank(PETSC_COMM_WORLD,&rank));
      75           4 :   if (!rank) {
      76           4 :     PetscCall(VecSetValue(v0,0,1.0,INSERT_VALUES));
      77           4 :     PetscCall(VecSetValue(v0,1,1.0,INSERT_VALUES));
      78           4 :     PetscCall(VecSetValue(v0,2,1.0,INSERT_VALUES));
      79           4 :     PetscCall(VecSetValue(w0,0,2.0,INSERT_VALUES));
      80           4 :     PetscCall(VecSetValue(w0,2,0.5,INSERT_VALUES));
      81             :   }
      82           4 :   PetscCall(VecAssemblyBegin(v0));
      83           4 :   PetscCall(VecAssemblyBegin(w0));
      84           4 :   PetscCall(VecAssemblyEnd(v0));
      85           4 :   PetscCall(VecAssemblyEnd(w0));
      86           4 :   PetscCall(EPSSetInitialSpace(eps,1,&v0));
      87           4 :   PetscCall(EPSSetLeftInitialSpace(eps,1,&w0));
      88             : 
      89             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      90             :                       Solve the eigensystem
      91             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
      92             : 
      93           4 :   PetscCall(EPSSolve(eps));
      94             : 
      95             :   /*
      96             :      Optional: Get some information from the solver and display it
      97             :   */
      98           4 :   PetscCall(EPSGetType(eps,&type));
      99           4 :   PetscCall(PetscPrintf(PETSC_COMM_WORLD," Solution method: %s\n\n",type));
     100             : 
     101             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     102             :                     Display solution and clean up
     103             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
     104             : 
     105             :   /*
     106             :      Get number of converged approximate eigenpairs
     107             :   */
     108           4 :   PetscCall(EPSGetConverged(eps,&nconv));
     109           4 :   PetscCall(PetscPrintf(PETSC_COMM_WORLD," Number of converged eigenpairs: %" PetscInt_FMT "\n\n",nconv));
     110           4 :   PetscCall(PetscMalloc2(nconv,&kr,nconv,&ki));
     111           4 :   PetscCall(VecDuplicateVecs(t,nconv,&xr));
     112           4 :   PetscCall(VecDuplicateVecs(t,nconv,&xi));
     113           4 :   if (twosided) {
     114           4 :     PetscCall(VecDuplicateVecs(t,nconv,&yr));
     115           4 :     PetscCall(VecDuplicateVecs(t,nconv,&yi));
     116             :   }
     117             : 
     118           4 :   if (nconv>0) {
     119             :     /*
     120             :        Display eigenvalues and relative errors
     121             :     */
     122           4 :     PetscCall(PetscPrintf(PETSC_COMM_WORLD,
     123             :          "           k            ||Ax-kx||         ||y'A-y'k||\n"
     124             :          "   ---------------- ------------------ ------------------\n"));
     125             : 
     126          21 :     for (i=0;i<nconv;i++) {
     127             :       /*
     128             :         Get converged eigenpairs: i-th eigenvalue is stored in kr (real part) and
     129             :         ki (imaginary part)
     130             :       */
     131          17 :       PetscCall(EPSGetEigenpair(eps,i,&kr[i],&ki[i],xr[i],xi[i]));
     132          17 :       if (twosided) PetscCall(EPSGetLeftEigenvector(eps,i,yr[i],yi[i]));
     133             :       /*
     134             :          Compute the residual norms associated to each eigenpair
     135             :       */
     136          17 :       PetscCall(ComputeResidualNorm(A,PETSC_FALSE,kr[i],ki[i],xr[i],xi[i],t,&nrmr));
     137          17 :       if (twosided) PetscCall(ComputeResidualNorm(A,PETSC_TRUE,kr[i],ki[i],yr[i],yi[i],t,&nrml));
     138             : 
     139             : #if defined(PETSC_USE_COMPLEX)
     140             :       re = PetscRealPart(kr[i]);
     141             :       im = PetscImaginaryPart(kr[i]);
     142             : #else
     143          17 :       re = kr[i];
     144          17 :       im = ki[i];
     145             : #endif
     146          17 :       if (im!=0.0) PetscCall(PetscPrintf(PETSC_COMM_WORLD," %8f%+8fi %12g %12g\n",(double)re,(double)im,(double)nrmr,(double)nrml));
     147          17 :       else PetscCall(PetscPrintf(PETSC_COMM_WORLD,"   %12f       %12g       %12g\n",(double)re,(double)nrmr,(double)nrml));
     148             :     }
     149           4 :     PetscCall(PetscPrintf(PETSC_COMM_WORLD,"\n"));
     150             :     /*
     151             :        Check bi-orthogonality of eigenvectors
     152             :     */
     153           4 :     if (twosided) {
     154           4 :       PetscCall(VecCheckOrthogonality(xr,nconv,yr,nconv,NULL,NULL,&lev));
     155           4 :       if (lev<100*PETSC_MACHINE_EPSILON) PetscCall(PetscPrintf(PETSC_COMM_WORLD,"  Level of bi-orthogonality of eigenvectors < 100*eps\n\n"));
     156           0 :       else PetscCall(PetscPrintf(PETSC_COMM_WORLD,"  Level of bi-orthogonality of eigenvectors: %g\n\n",(double)lev));
     157             :     }
     158             :   }
     159             : 
     160           4 :   PetscCall(EPSDestroy(&eps));
     161           4 :   PetscCall(MatDestroy(&A));
     162           4 :   PetscCall(VecDestroy(&v0));
     163           4 :   PetscCall(VecDestroy(&w0));
     164           4 :   PetscCall(VecDestroy(&t));
     165           4 :   PetscCall(PetscFree2(kr,ki));
     166           4 :   PetscCall(VecDestroyVecs(nconv,&xr));
     167           4 :   PetscCall(VecDestroyVecs(nconv,&xi));
     168           4 :   if (twosided) {
     169           4 :     PetscCall(VecDestroyVecs(nconv,&yr));
     170           4 :     PetscCall(VecDestroyVecs(nconv,&yi));
     171             :   }
     172           4 :   PetscCall(SlepcFinalize());
     173             :   return 0;
     174             : }
     175             : 
     176             : /*
     177             :     Matrix generator for a Markov model of a random walk on a triangular grid.
     178             : 
     179             :     This subroutine generates a test matrix that models a random walk on a
     180             :     triangular grid. This test example was used by G. W. Stewart ["{SRRIT} - a
     181             :     FORTRAN subroutine to calculate the dominant invariant subspaces of a real
     182             :     matrix", Tech. report. TR-514, University of Maryland (1978).] and in a few
     183             :     papers on eigenvalue problems by Y. Saad [see e.g. LAA, vol. 34, pp. 269-295
     184             :     (1980) ]. These matrices provide reasonably easy test problems for eigenvalue
     185             :     algorithms. The transpose of the matrix  is stochastic and so it is known
     186             :     that one is an exact eigenvalue. One seeks the eigenvector of the transpose
     187             :     associated with the eigenvalue unity. The problem is to calculate the steady
     188             :     state probability distribution of the system, which is the eigevector
     189             :     associated with the eigenvalue one and scaled in such a way that the sum all
     190             :     the components is equal to one.
     191             : 
     192             :     Note: the code will actually compute the transpose of the stochastic matrix
     193             :     that contains the transition probabilities.
     194             : */
     195           4 : PetscErrorCode MatMarkovModel(PetscInt m,Mat A)
     196             : {
     197           4 :   const PetscReal cst = 0.5/(PetscReal)(m-1);
     198           4 :   PetscReal       pd,pu;
     199           4 :   PetscInt        Istart,Iend,i,j,jmax,ix=0;
     200             : 
     201           4 :   PetscFunctionBeginUser;
     202           4 :   PetscCall(MatGetOwnershipRange(A,&Istart,&Iend));
     203          64 :   for (i=1;i<=m;i++) {
     204          60 :     jmax = m-i+1;
     205         540 :     for (j=1;j<=jmax;j++) {
     206         480 :       ix = ix + 1;
     207         480 :       if (ix-1<Istart || ix>Iend) continue;  /* compute only owned rows */
     208         480 :       if (j!=jmax) {
     209         420 :         pd = cst*(PetscReal)(i+j-1);
     210             :         /* north */
     211         420 :         if (i==1) PetscCall(MatSetValue(A,ix-1,ix,2*pd,INSERT_VALUES));
     212         364 :         else PetscCall(MatSetValue(A,ix-1,ix,pd,INSERT_VALUES));
     213             :         /* east */
     214         420 :         if (j==1) PetscCall(MatSetValue(A,ix-1,ix+jmax-1,2*pd,INSERT_VALUES));
     215         364 :         else PetscCall(MatSetValue(A,ix-1,ix+jmax-1,pd,INSERT_VALUES));
     216             :       }
     217             :       /* south */
     218         480 :       pu = 0.5 - cst*(PetscReal)(i+j-3);
     219         480 :       if (j>1) PetscCall(MatSetValue(A,ix-1,ix-2,pu,INSERT_VALUES));
     220             :       /* west */
     221         480 :       if (i>1) PetscCall(MatSetValue(A,ix-1,ix-jmax-2,pu,INSERT_VALUES));
     222             :     }
     223             :   }
     224           4 :   PetscCall(MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY));
     225           4 :   PetscCall(MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY));
     226           4 :   PetscFunctionReturn(PETSC_SUCCESS);
     227             : }
     228             : 
     229             : /*
     230             :    ComputeResidualNorm - Computes the norm of the residual vector
     231             :    associated with an eigenpair.
     232             : 
     233             :    Input Parameters:
     234             :      trans - whether A' must be used instead of A
     235             :      kr,ki - eigenvalue
     236             :      xr,xi - eigenvector
     237             :      u     - work vector
     238             : */
     239          34 : PetscErrorCode ComputeResidualNorm(Mat A,PetscBool trans,PetscScalar kr,PetscScalar ki,Vec xr,Vec xi,Vec u,PetscReal *norm)
     240             : {
     241             : #if !defined(PETSC_USE_COMPLEX)
     242          34 :   PetscReal      ni,nr;
     243             : #endif
     244          34 :   PetscErrorCode (*matmult)(Mat,Vec,Vec) = trans? MatMultTranspose: MatMult;
     245             : 
     246          34 :   PetscFunctionBegin;
     247             : #if !defined(PETSC_USE_COMPLEX)
     248          34 :   if (ki == 0 || PetscAbsScalar(ki) < PetscAbsScalar(kr*PETSC_MACHINE_EPSILON)) {
     249             : #endif
     250          34 :     PetscCall((*matmult)(A,xr,u));
     251          34 :     if (PetscAbsScalar(kr) > PETSC_MACHINE_EPSILON) PetscCall(VecAXPY(u,-kr,xr));
     252          34 :     PetscCall(VecNorm(u,NORM_2,norm));
     253             : #if !defined(PETSC_USE_COMPLEX)
     254             :   } else {
     255           0 :     PetscCall((*matmult)(A,xr,u));
     256           0 :     if (SlepcAbsEigenvalue(kr,ki) > PETSC_MACHINE_EPSILON) {
     257           0 :       PetscCall(VecAXPY(u,-kr,xr));
     258           0 :       PetscCall(VecAXPY(u,ki,xi));
     259             :     }
     260           0 :     PetscCall(VecNorm(u,NORM_2,&nr));
     261           0 :     PetscCall((*matmult)(A,xi,u));
     262           0 :     if (SlepcAbsEigenvalue(kr,ki) > PETSC_MACHINE_EPSILON) {
     263           0 :       PetscCall(VecAXPY(u,-kr,xi));
     264           0 :       PetscCall(VecAXPY(u,-ki,xr));
     265             :     }
     266           0 :     PetscCall(VecNorm(u,NORM_2,&ni));
     267           0 :     *norm = SlepcAbsEigenvalue(nr,ni);
     268             :   }
     269             : #endif
     270          34 :   PetscFunctionReturn(PETSC_SUCCESS);
     271             : }
     272             : 
     273             : /*TEST
     274             : 
     275             :    testset:
     276             :       args: -st_type sinvert -eps_target 1.1 -eps_nev 4
     277             :       filter: grep -v method | sed -e "s/[+-]0\.0*i//g" | sed -e "s/[0-9]\.[0-9]*e[+-]\([0-9]*\)/removed/g"
     278             :       requires: !single
     279             :       output_file: output/ex41_1.out
     280             :       test:
     281             :          suffix: 1
     282             :          args: -eps_type {{power krylovschur}}
     283             :       test:
     284             :          suffix: 1_balance
     285             :          args: -eps_balance {{oneside twoside}} -eps_ncv 17 -eps_krylovschur_locking 0
     286             :          requires: !__float128
     287             : 
     288             : TEST*/

Generated by: LCOV version 1.14