LCOV - code coverage report
Current view: top level - eps/tutorials - ex3.c (source / functions) Hit Total Coverage
Test: SLEPc Lines: 65 73 89.0 %
Date: 2024-11-21 00:34:55 Functions: 3 4 75.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       3             :    SLEPc - Scalable Library for Eigenvalue Problem Computations
       4             :    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
       5             : 
       6             :    This file is part of SLEPc.
       7             :    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
       8             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       9             : */
      10             : 
      11             : static char help[] = "Solves the same eigenproblem as in example ex2, but using a shell matrix. "
      12             :   "The problem is a standard symmetric eigenproblem corresponding to the 2-D Laplacian operator.\n\n"
      13             :   "The command line options are:\n"
      14             :   "  -n <n>, where <n> = number of grid subdivisions in both x and y dimensions.\n\n";
      15             : 
      16             : #include <slepceps.h>
      17             : 
      18             : /*
      19             :    User-defined routines
      20             : */
      21             : PetscErrorCode MatMult_Laplacian2D(Mat A,Vec x,Vec y);
      22             : PetscErrorCode MatGetDiagonal_Laplacian2D(Mat A,Vec diag);
      23             : 
      24           1 : int main(int argc,char **argv)
      25             : {
      26           1 :   Mat            A;               /* operator matrix */
      27           1 :   EPS            eps;             /* eigenproblem solver context */
      28           1 :   EPSType        type;
      29           1 :   PetscMPIInt    size;
      30           1 :   PetscInt       N,n=10,nev;
      31           1 :   PetscBool      terse;
      32             : 
      33           1 :   PetscFunctionBeginUser;
      34           1 :   PetscCall(SlepcInitialize(&argc,&argv,NULL,help));
      35           1 :   PetscCallMPI(MPI_Comm_size(PETSC_COMM_WORLD,&size));
      36           1 :   PetscCheck(size==1,PETSC_COMM_WORLD,PETSC_ERR_WRONG_MPI_SIZE,"This is a uniprocessor example only");
      37             : 
      38           1 :   PetscCall(PetscOptionsGetInt(NULL,NULL,"-n",&n,NULL));
      39           1 :   N = n*n;
      40           1 :   PetscCall(PetscPrintf(PETSC_COMM_WORLD,"\n2-D Laplacian Eigenproblem (matrix-free version), N=%" PetscInt_FMT " (%" PetscInt_FMT "x%" PetscInt_FMT " grid)\n\n",N,n,n));
      41             : 
      42             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      43             :        Create the operator matrix that defines the eigensystem, Ax=kx
      44             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
      45             : 
      46           1 :   PetscCall(MatCreateShell(PETSC_COMM_WORLD,N,N,N,N,&n,&A));
      47           1 :   PetscCall(MatShellSetOperation(A,MATOP_MULT,(void(*)(void))MatMult_Laplacian2D));
      48           1 :   PetscCall(MatShellSetOperation(A,MATOP_MULT_TRANSPOSE,(void(*)(void))MatMult_Laplacian2D));
      49           1 :   PetscCall(MatShellSetOperation(A,MATOP_GET_DIAGONAL,(void(*)(void))MatGetDiagonal_Laplacian2D));
      50             : 
      51             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      52             :                 Create the eigensolver and set various options
      53             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
      54             : 
      55             :   /*
      56             :      Create eigensolver context
      57             :   */
      58           1 :   PetscCall(EPSCreate(PETSC_COMM_WORLD,&eps));
      59             : 
      60             :   /*
      61             :      Set operators. In this case, it is a standard eigenvalue problem
      62             :   */
      63           1 :   PetscCall(EPSSetOperators(eps,A,NULL));
      64           1 :   PetscCall(EPSSetProblemType(eps,EPS_HEP));
      65             : 
      66             :   /*
      67             :      Set solver parameters at runtime
      68             :   */
      69           1 :   PetscCall(EPSSetFromOptions(eps));
      70             : 
      71             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      72             :                       Solve the eigensystem
      73             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
      74             : 
      75           1 :   PetscCall(EPSSolve(eps));
      76             : 
      77             :   /*
      78             :      Optional: Get some information from the solver and display it
      79             :   */
      80           1 :   PetscCall(EPSGetType(eps,&type));
      81           1 :   PetscCall(PetscPrintf(PETSC_COMM_WORLD," Solution method: %s\n\n",type));
      82           1 :   PetscCall(EPSGetDimensions(eps,&nev,NULL,NULL));
      83           1 :   PetscCall(PetscPrintf(PETSC_COMM_WORLD," Number of requested eigenvalues: %" PetscInt_FMT "\n",nev));
      84             : 
      85             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      86             :                     Display solution and clean up
      87             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
      88             : 
      89             :   /* show detailed info unless -terse option is given by user */
      90           1 :   PetscCall(PetscOptionsHasName(NULL,NULL,"-terse",&terse));
      91           1 :   if (terse) PetscCall(EPSErrorView(eps,EPS_ERROR_RELATIVE,NULL));
      92             :   else {
      93           0 :     PetscCall(PetscViewerPushFormat(PETSC_VIEWER_STDOUT_WORLD,PETSC_VIEWER_ASCII_INFO_DETAIL));
      94           0 :     PetscCall(EPSConvergedReasonView(eps,PETSC_VIEWER_STDOUT_WORLD));
      95           0 :     PetscCall(EPSErrorView(eps,EPS_ERROR_RELATIVE,PETSC_VIEWER_STDOUT_WORLD));
      96           0 :     PetscCall(PetscViewerPopFormat(PETSC_VIEWER_STDOUT_WORLD));
      97             :   }
      98           1 :   PetscCall(EPSDestroy(&eps));
      99           1 :   PetscCall(MatDestroy(&A));
     100           1 :   PetscCall(SlepcFinalize());
     101             :   return 0;
     102             : }
     103             : 
     104             : /*
     105             :     Compute the matrix vector multiplication y<---T*x where T is a nx by nx
     106             :     tridiagonal matrix with DD on the diagonal, DL on the subdiagonal, and
     107             :     DU on the superdiagonal.
     108             :  */
     109       23832 : static void tv(int nx,const PetscScalar *x,PetscScalar *y)
     110             : {
     111       23832 :   PetscScalar dd,dl,du;
     112       23832 :   int         j;
     113             : 
     114       23832 :   dd  = 4.0;
     115       23832 :   dl  = -1.0;
     116       23832 :   du  = -1.0;
     117             : 
     118       23832 :   y[0] =  dd*x[0] + du*x[1];
     119     1692072 :   for (j=1;j<nx-1;j++)
     120     1668240 :     y[j] = dl*x[j-1] + dd*x[j] + du*x[j+1];
     121       23832 :   y[nx-1] = dl*x[nx-2] + dd*x[nx-1];
     122       23832 : }
     123             : 
     124             : /*
     125             :     Matrix-vector product subroutine for the 2D Laplacian.
     126             : 
     127             :     The matrix used is the 2 dimensional discrete Laplacian on unit square with
     128             :     zero Dirichlet boundary condition.
     129             : 
     130             :     Computes y <-- A*x, where A is the block tridiagonal matrix
     131             : 
     132             :                  | T -I          |
     133             :                  |-I  T -I       |
     134             :              A = |   -I  T       |
     135             :                  |        ...  -I|
     136             :                  |           -I T|
     137             : 
     138             :     The subroutine TV is called to compute y<--T*x.
     139             :  */
     140         331 : PetscErrorCode MatMult_Laplacian2D(Mat A,Vec x,Vec y)
     141             : {
     142         331 :   void              *ctx;
     143         331 :   int               nx,lo,i,j;
     144         331 :   const PetscScalar *px;
     145         331 :   PetscScalar       *py;
     146             : 
     147         331 :   PetscFunctionBeginUser;
     148         331 :   PetscCall(MatShellGetContext(A,&ctx));
     149         331 :   nx = *(int*)ctx;
     150         331 :   PetscCall(VecGetArrayRead(x,&px));
     151         331 :   PetscCall(VecGetArray(y,&py));
     152             : 
     153         331 :   tv(nx,&px[0],&py[0]);
     154       24494 :   for (i=0;i<nx;i++) py[i] -= px[nx+i];
     155             : 
     156       23501 :   for (j=2;j<nx;j++) {
     157       23170 :     lo = (j-1)*nx;
     158       23170 :     tv(nx,&px[lo],&py[lo]);
     159     1714580 :     for (i=0;i<nx;i++) py[lo+i] -= px[lo-nx+i] + px[lo+nx+i];
     160             :   }
     161             : 
     162         331 :   lo = (nx-1)*nx;
     163         331 :   tv(nx,&px[lo],&py[lo]);
     164       24494 :   for (i=0;i<nx;i++) py[lo+i] -= px[lo-nx+i];
     165             : 
     166         331 :   PetscCall(VecRestoreArrayRead(x,&px));
     167         331 :   PetscCall(VecRestoreArray(y,&py));
     168         331 :   PetscFunctionReturn(PETSC_SUCCESS);
     169             : }
     170             : 
     171           0 : PetscErrorCode MatGetDiagonal_Laplacian2D(Mat A,Vec diag)
     172             : {
     173           0 :   PetscFunctionBeginUser;
     174           0 :   PetscCall(VecSet(diag,4.0));
     175           0 :   PetscFunctionReturn(PETSC_SUCCESS);
     176             : }
     177             : 
     178             : /*TEST
     179             : 
     180             :    test:
     181             :       suffix: 1
     182             :       args: -n 72 -eps_nev 4 -eps_ncv 20 -terse
     183             :       requires: !single
     184             : 
     185             : TEST*/

Generated by: LCOV version 1.14