LCOV - code coverage report
Current view: top level - eps/tutorials - ex18.c (source / functions) Hit Total Coverage
Test: SLEPc Lines: 76 82 92.7 %
Date: 2024-12-18 00:42:09 Functions: 3 3 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       3             :    SLEPc - Scalable Library for Eigenvalue Problem Computations
       4             :    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
       5             : 
       6             :    This file is part of SLEPc.
       7             :    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
       8             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       9             : */
      10             : 
      11             : static char help[] = "Solves the same problem as in ex5, but with a user-defined sorting criterion."
      12             :   "It is a standard nonsymmetric eigenproblem with real eigenvalues and the rightmost eigenvalue is known to be 1.\n"
      13             :   "This example illustrates how the user can set a custom spectrum selection.\n\n"
      14             :   "The command line options are:\n"
      15             :   "  -m <m>, where <m> = number of grid subdivisions in each dimension.\n\n";
      16             : 
      17             : #include <slepceps.h>
      18             : 
      19             : /*
      20             :    User-defined routines
      21             : */
      22             : 
      23             : PetscErrorCode MyEigenSort(PetscScalar ar,PetscScalar ai,PetscScalar br,PetscScalar bi,PetscInt *r,void *ctx);
      24             : PetscErrorCode MatMarkovModel(PetscInt m,Mat A);
      25             : 
      26           1 : int main(int argc,char **argv)
      27             : {
      28           1 :   Mat            A;               /* operator matrix */
      29           1 :   EPS            eps;             /* eigenproblem solver context */
      30           1 :   EPSType        type;
      31           1 :   PetscScalar    target=0.5;
      32           1 :   PetscInt       N,m=15,nev;
      33           1 :   PetscBool      terse;
      34           1 :   PetscViewer    viewer;
      35           1 :   char           str[50];
      36             : 
      37           1 :   PetscFunctionBeginUser;
      38           1 :   PetscCall(SlepcInitialize(&argc,&argv,NULL,help));
      39             : 
      40           1 :   PetscCall(PetscOptionsGetInt(NULL,NULL,"-m",&m,NULL));
      41           1 :   N = m*(m+1)/2;
      42           1 :   PetscCall(PetscPrintf(PETSC_COMM_WORLD,"\nMarkov Model, N=%" PetscInt_FMT " (m=%" PetscInt_FMT ")\n",N,m));
      43           1 :   PetscCall(PetscOptionsGetScalar(NULL,NULL,"-target",&target,NULL));
      44           1 :   PetscCall(SlepcSNPrintfScalar(str,sizeof(str),target,PETSC_FALSE));
      45           1 :   PetscCall(PetscPrintf(PETSC_COMM_WORLD,"Searching closest eigenvalues to the right of %s.\n\n",str));
      46             : 
      47             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      48             :      Compute the operator matrix that defines the eigensystem, Ax=kx
      49             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
      50             : 
      51           1 :   PetscCall(MatCreate(PETSC_COMM_WORLD,&A));
      52           1 :   PetscCall(MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,N,N));
      53           1 :   PetscCall(MatSetFromOptions(A));
      54           1 :   PetscCall(MatMarkovModel(m,A));
      55             : 
      56             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      57             :                 Create the eigensolver and set various options
      58             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
      59             : 
      60             :   /*
      61             :      Create eigensolver context
      62             :   */
      63           1 :   PetscCall(EPSCreate(PETSC_COMM_WORLD,&eps));
      64             : 
      65             :   /*
      66             :      Set operators. In this case, it is a standard eigenvalue problem
      67             :   */
      68           1 :   PetscCall(EPSSetOperators(eps,A,NULL));
      69           1 :   PetscCall(EPSSetProblemType(eps,EPS_NHEP));
      70             : 
      71             :   /*
      72             :      Set the custom comparing routine in order to obtain the eigenvalues
      73             :      closest to the target on the right only
      74             :   */
      75           1 :   PetscCall(EPSSetEigenvalueComparison(eps,MyEigenSort,&target));
      76             : 
      77             :   /*
      78             :      Set solver parameters at runtime
      79             :   */
      80           1 :   PetscCall(EPSSetFromOptions(eps));
      81             : 
      82             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      83             :                       Solve the eigensystem
      84             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
      85             : 
      86           1 :   PetscCall(EPSSolve(eps));
      87             : 
      88             :   /*
      89             :      Optional: Get some information from the solver and display it
      90             :   */
      91           1 :   PetscCall(EPSGetType(eps,&type));
      92           1 :   PetscCall(PetscPrintf(PETSC_COMM_WORLD," Solution method: %s\n\n",type));
      93           1 :   PetscCall(EPSGetDimensions(eps,&nev,NULL,NULL));
      94           1 :   PetscCall(PetscPrintf(PETSC_COMM_WORLD," Number of requested eigenvalues: %" PetscInt_FMT "\n",nev));
      95             : 
      96             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      97             :                     Display solution and clean up
      98             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
      99             : 
     100             :   /* show detailed info unless -terse option is given by user */
     101           1 :   PetscCall(PetscOptionsHasName(NULL,NULL,"-terse",&terse));
     102           1 :   if (terse) PetscCall(EPSErrorView(eps,EPS_ERROR_RELATIVE,NULL));
     103             :   else {
     104           0 :     PetscCall(PetscViewerASCIIGetStdout(PETSC_COMM_WORLD,&viewer));
     105           0 :     PetscCall(PetscViewerPushFormat(viewer,PETSC_VIEWER_ASCII_INFO_DETAIL));
     106           0 :     PetscCall(EPSConvergedReasonView(eps,viewer));
     107           0 :     PetscCall(EPSErrorView(eps,EPS_ERROR_RELATIVE,viewer));
     108           0 :     PetscCall(PetscViewerPopFormat(viewer));
     109             :   }
     110           1 :   PetscCall(EPSDestroy(&eps));
     111           1 :   PetscCall(MatDestroy(&A));
     112           1 :   PetscCall(SlepcFinalize());
     113             :   return 0;
     114             : }
     115             : 
     116             : /*
     117             :     Matrix generator for a Markov model of a random walk on a triangular grid.
     118             : 
     119             :     This subroutine generates a test matrix that models a random walk on a
     120             :     triangular grid. This test example was used by G. W. Stewart ["{SRRIT} - a
     121             :     FORTRAN subroutine to calculate the dominant invariant subspaces of a real
     122             :     matrix", Tech. report. TR-514, University of Maryland (1978).] and in a few
     123             :     papers on eigenvalue problems by Y. Saad [see e.g. LAA, vol. 34, pp. 269-295
     124             :     (1980) ]. These matrices provide reasonably easy test problems for eigenvalue
     125             :     algorithms. The transpose of the matrix  is stochastic and so it is known
     126             :     that one is an exact eigenvalue. One seeks the eigenvector of the transpose
     127             :     associated with the eigenvalue unity. The problem is to calculate the steady
     128             :     state probability distribution of the system, which is the eigevector
     129             :     associated with the eigenvalue one and scaled in such a way that the sum all
     130             :     the components is equal to one.
     131             : 
     132             :     Note: the code will actually compute the transpose of the stochastic matrix
     133             :     that contains the transition probabilities.
     134             : */
     135           1 : PetscErrorCode MatMarkovModel(PetscInt m,Mat A)
     136             : {
     137           1 :   const PetscReal cst = 0.5/(PetscReal)(m-1);
     138           1 :   PetscReal       pd,pu;
     139           1 :   PetscInt        Istart,Iend,i,j,jmax,ix=0;
     140             : 
     141           1 :   PetscFunctionBeginUser;
     142           1 :   PetscCall(MatGetOwnershipRange(A,&Istart,&Iend));
     143          16 :   for (i=1;i<=m;i++) {
     144          15 :     jmax = m-i+1;
     145         135 :     for (j=1;j<=jmax;j++) {
     146         120 :       ix = ix + 1;
     147         120 :       if (ix-1<Istart || ix>Iend) continue;  /* compute only owned rows */
     148         120 :       if (j!=jmax) {
     149         105 :         pd = cst*(PetscReal)(i+j-1);
     150             :         /* north */
     151         105 :         if (i==1) PetscCall(MatSetValue(A,ix-1,ix,2*pd,INSERT_VALUES));
     152          91 :         else PetscCall(MatSetValue(A,ix-1,ix,pd,INSERT_VALUES));
     153             :         /* east */
     154         105 :         if (j==1) PetscCall(MatSetValue(A,ix-1,ix+jmax-1,2*pd,INSERT_VALUES));
     155          91 :         else PetscCall(MatSetValue(A,ix-1,ix+jmax-1,pd,INSERT_VALUES));
     156             :       }
     157             :       /* south */
     158         120 :       pu = 0.5 - cst*(PetscReal)(i+j-3);
     159         120 :       if (j>1) PetscCall(MatSetValue(A,ix-1,ix-2,pu,INSERT_VALUES));
     160             :       /* west */
     161         120 :       if (i>1) PetscCall(MatSetValue(A,ix-1,ix-jmax-2,pu,INSERT_VALUES));
     162             :     }
     163             :   }
     164           1 :   PetscCall(MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY));
     165           1 :   PetscCall(MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY));
     166           1 :   PetscFunctionReturn(PETSC_SUCCESS);
     167             : }
     168             : 
     169             : /*
     170             :     Function for user-defined eigenvalue ordering criterion.
     171             : 
     172             :     Given two eigenvalues ar+i*ai and br+i*bi, the subroutine must choose
     173             :     one of them as the preferred one according to the criterion.
     174             :     In this example, the preferred value is the one closest to the target,
     175             :     but on the right side.
     176             : */
     177        5185 : PetscErrorCode MyEigenSort(PetscScalar ar,PetscScalar ai,PetscScalar br,PetscScalar bi,PetscInt *r,void *ctx)
     178             : {
     179        5185 :   PetscScalar target = *(PetscScalar*)ctx;
     180        5185 :   PetscReal   da,db;
     181        5185 :   PetscBool   aisright,bisright;
     182             : 
     183        5185 :   PetscFunctionBeginUser;
     184        5185 :   if (PetscRealPart(target) < PetscRealPart(ar)) aisright = PETSC_TRUE;
     185        2950 :   else aisright = PETSC_FALSE;
     186        5185 :   if (PetscRealPart(target) < PetscRealPart(br)) bisright = PETSC_TRUE;
     187        2934 :   else bisright = PETSC_FALSE;
     188        5185 :   if (aisright == bisright) {
     189             :     /* both are on the same side of the target */
     190        4469 :     da = SlepcAbsEigenvalue(ar-target,ai);
     191        4469 :     db = SlepcAbsEigenvalue(br-target,bi);
     192        4469 :     if (da < db) *r = -1;
     193        3872 :     else if (da > db) *r = 1;
     194           0 :     else *r = 0;
     195         716 :   } else if (aisright && !bisright) *r = -1; /* 'a' is on the right */
     196         366 :   else *r = 1;  /* 'b' is on the right */
     197        5185 :   PetscFunctionReturn(PETSC_SUCCESS);
     198             : }
     199             : 
     200             : /*TEST
     201             : 
     202             :    test:
     203             :       suffix: 1
     204             :       args: -eps_nev 4 -terse
     205             :       requires: !single
     206             :       filter: sed -e "s/[+-]0\.0*i//g"
     207             : 
     208             : TEST*/

Generated by: LCOV version 1.14