LCOV - code coverage report
Current view: top level - eps/interface - epssetup.c (source / functions) Hit Total Coverage
Test: SLEPc Lines: 333 340 97.9 %
Date: 2024-11-21 00:34:55 Functions: 17 17 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       3             :    SLEPc - Scalable Library for Eigenvalue Problem Computations
       4             :    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
       5             : 
       6             :    This file is part of SLEPc.
       7             :    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
       8             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       9             : */
      10             : /*
      11             :    EPS routines related to problem setup
      12             : */
      13             : 
      14             : #include <slepc/private/epsimpl.h>       /*I "slepceps.h" I*/
      15             : 
      16             : /*
      17             :    Let the solver choose the ST type that should be used by default,
      18             :    otherwise set it to SHIFT.
      19             :    This is called at EPSSetFromOptions (before STSetFromOptions)
      20             :    and also at EPSSetUp (in case EPSSetFromOptions was not called).
      21             : */
      22        1495 : PetscErrorCode EPSSetDefaultST(EPS eps)
      23             : {
      24        1495 :   PetscFunctionBegin;
      25        1495 :   PetscTryTypeMethod(eps,setdefaultst);
      26        1495 :   if (!((PetscObject)eps->st)->type_name) PetscCall(STSetType(eps->st,STSHIFT));
      27        1495 :   PetscFunctionReturn(PETSC_SUCCESS);
      28             : }
      29             : 
      30             : /*
      31             :    This is done by preconditioned eigensolvers that use the PC only.
      32             :    It sets STPRECOND with KSPPREONLY.
      33             : */
      34         103 : PetscErrorCode EPSSetDefaultST_Precond(EPS eps)
      35             : {
      36         103 :   KSP            ksp;
      37             : 
      38         103 :   PetscFunctionBegin;
      39         103 :   if (!((PetscObject)eps->st)->type_name) PetscCall(STSetType(eps->st,STPRECOND));
      40         103 :   PetscCall(STGetKSP(eps->st,&ksp));
      41         103 :   if (!((PetscObject)ksp)->type_name) PetscCall(KSPSetType(ksp,KSPPREONLY));
      42         103 :   PetscFunctionReturn(PETSC_SUCCESS);
      43             : }
      44             : 
      45             : /*
      46             :    This is done by preconditioned eigensolvers that can also use the KSP.
      47             :    It sets STPRECOND with the default KSP (GMRES) and maxit=5.
      48             : */
      49         107 : PetscErrorCode EPSSetDefaultST_GMRES(EPS eps)
      50             : {
      51         107 :   KSP            ksp;
      52             : 
      53         107 :   PetscFunctionBegin;
      54         107 :   if (!((PetscObject)eps->st)->type_name) PetscCall(STSetType(eps->st,STPRECOND));
      55         107 :   PetscCall(STPrecondSetKSPHasMat(eps->st,PETSC_TRUE));
      56         107 :   PetscCall(STGetKSP(eps->st,&ksp));
      57         107 :   if (!((PetscObject)ksp)->type_name) {
      58          43 :     PetscCall(KSPSetType(ksp,KSPGMRES));
      59          43 :     PetscCall(KSPSetTolerances(ksp,PETSC_CURRENT,PETSC_CURRENT,PETSC_CURRENT,5));
      60             :   }
      61         107 :   PetscFunctionReturn(PETSC_SUCCESS);
      62             : }
      63             : 
      64             : #if defined(SLEPC_HAVE_SCALAPACK) || defined(SLEPC_HAVE_ELPA) || defined(SLEPC_HAVE_ELEMENTAL) || defined(SLEPC_HAVE_EVSL)
      65             : /*
      66             :    This is for direct eigensolvers that work with A and B directly, so
      67             :    no need to factorize B.
      68             : */
      69          24 : PetscErrorCode EPSSetDefaultST_NoFactor(EPS eps)
      70             : {
      71          24 :   KSP            ksp;
      72          24 :   PC             pc;
      73             : 
      74          24 :   PetscFunctionBegin;
      75          24 :   if (!((PetscObject)eps->st)->type_name) PetscCall(STSetType(eps->st,STSHIFT));
      76          24 :   PetscCall(STGetKSP(eps->st,&ksp));
      77          24 :   if (!((PetscObject)ksp)->type_name) PetscCall(KSPSetType(ksp,KSPPREONLY));
      78          24 :   PetscCall(KSPGetPC(ksp,&pc));
      79          24 :   if (!((PetscObject)pc)->type_name) PetscCall(PCSetType(pc,PCNONE));
      80          24 :   PetscFunctionReturn(PETSC_SUCCESS);
      81             : }
      82             : #endif
      83             : 
      84             : /*
      85             :    Check that the ST selected by the user is compatible with the EPS solver and options
      86             : */
      87         887 : static PetscErrorCode EPSCheckCompatibleST(EPS eps)
      88             : {
      89         887 :   PetscBool      precond,shift,sinvert,cayley,lyapii;
      90             : #if defined(PETSC_USE_COMPLEX)
      91             :   PetscScalar    sigma;
      92             : #endif
      93             : 
      94         887 :   PetscFunctionBegin;
      95         887 :   PetscCall(PetscObjectTypeCompare((PetscObject)eps->st,STPRECOND,&precond));
      96         887 :   PetscCall(PetscObjectTypeCompare((PetscObject)eps->st,STSHIFT,&shift));
      97         887 :   PetscCall(PetscObjectTypeCompare((PetscObject)eps->st,STSINVERT,&sinvert));
      98         887 :   PetscCall(PetscObjectTypeCompare((PetscObject)eps->st,STCAYLEY,&cayley));
      99             : 
     100             :   /* preconditioned eigensolvers */
     101         887 :   PetscCheck(eps->categ!=EPS_CATEGORY_PRECOND || precond,PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"This solver requires ST=PRECOND");
     102         887 :   PetscCheck(eps->categ==EPS_CATEGORY_PRECOND || !precond,PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"STPRECOND is intended for preconditioned eigensolvers only");
     103             : 
     104             :   /* harmonic extraction */
     105         887 :   PetscCheck(precond || shift || !eps->extraction || eps->extraction==EPS_RITZ,PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"Cannot use a spectral transformation combined with harmonic extraction");
     106             : 
     107             :   /* real shifts in Hermitian problems */
     108             : #if defined(PETSC_USE_COMPLEX)
     109             :   PetscCall(STGetShift(eps->st,&sigma));
     110             :   PetscCheck(!eps->ishermitian || PetscImaginaryPart(sigma)==0.0,PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"Hermitian problems are not compatible with complex shifts");
     111             : #endif
     112             : 
     113             :   /* Cayley with PGNHEP */
     114         887 :   PetscCheck(!cayley || eps->problem_type!=EPS_PGNHEP,PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"Cayley spectral transformation is not compatible with PGNHEP");
     115             : 
     116             :   /* make sure that the user does not specify smallest magnitude with shift-and-invert */
     117         887 :   if ((cayley || sinvert) && (eps->categ==EPS_CATEGORY_KRYLOV || eps->categ==EPS_CATEGORY_OTHER)) {
     118         122 :     PetscCall(PetscObjectTypeCompare((PetscObject)eps,EPSLYAPII,&lyapii));
     119         122 :     PetscCheck(lyapii || eps->which==EPS_TARGET_MAGNITUDE || eps->which==EPS_TARGET_REAL || eps->which==EPS_TARGET_IMAGINARY || eps->which==EPS_ALL || eps->which==EPS_WHICH_USER,PetscObjectComm((PetscObject)eps),PETSC_ERR_USER_INPUT,"Shift-and-invert requires a target 'which' (see EPSSetWhichEigenpairs), for instance -st_type sinvert -eps_target 0 -eps_target_magnitude");
     120             :   }
     121         887 :   PetscFunctionReturn(PETSC_SUCCESS);
     122             : }
     123             : 
     124             : /*
     125             :    MatEstimateSpectralRange_EPS: estimate the spectral range [left,right] of a
     126             :    symmetric/Hermitian matrix A using an auxiliary EPS object
     127             : */
     128           7 : PetscErrorCode MatEstimateSpectralRange_EPS(Mat A,PetscReal *left,PetscReal *right)
     129             : {
     130           7 :   PetscInt       nconv;
     131           7 :   PetscScalar    eig0;
     132           7 :   PetscReal      tol=1e-3,errest=tol;
     133           7 :   EPS            eps;
     134             : 
     135           7 :   PetscFunctionBegin;
     136           7 :   *left = 0.0; *right = 0.0;
     137           7 :   PetscCall(EPSCreate(PetscObjectComm((PetscObject)A),&eps));
     138           7 :   PetscCall(EPSSetOptionsPrefix(eps,"eps_filter_"));
     139           7 :   PetscCall(EPSSetOperators(eps,A,NULL));
     140           7 :   PetscCall(EPSSetProblemType(eps,EPS_HEP));
     141           7 :   PetscCall(EPSSetTolerances(eps,tol,50));
     142           7 :   PetscCall(EPSSetConvergenceTest(eps,EPS_CONV_ABS));
     143           7 :   PetscCall(EPSSetWhichEigenpairs(eps,EPS_SMALLEST_REAL));
     144           7 :   PetscCall(EPSSolve(eps));
     145           7 :   PetscCall(EPSGetConverged(eps,&nconv));
     146           7 :   if (nconv>0) {
     147           7 :     PetscCall(EPSGetEigenvalue(eps,0,&eig0,NULL));
     148           7 :     PetscCall(EPSGetErrorEstimate(eps,0,&errest));
     149           0 :   } else eig0 = eps->eigr[0];
     150           7 :   *left = PetscRealPart(eig0)-errest;
     151           7 :   PetscCall(EPSSetWhichEigenpairs(eps,EPS_LARGEST_REAL));
     152           7 :   PetscCall(EPSSolve(eps));
     153           7 :   PetscCall(EPSGetConverged(eps,&nconv));
     154           7 :   if (nconv>0) {
     155           7 :     PetscCall(EPSGetEigenvalue(eps,0,&eig0,NULL));
     156           7 :     PetscCall(EPSGetErrorEstimate(eps,0,&errest));
     157           0 :   } else eig0 = eps->eigr[0];
     158           7 :   *right = PetscRealPart(eig0)+errest;
     159           7 :   PetscCall(EPSDestroy(&eps));
     160           7 :   PetscFunctionReturn(PETSC_SUCCESS);
     161             : }
     162             : 
     163             : /*
     164             :    EPSSetUpSort_Basic: configure the EPS sorting criterion according to 'which'
     165             : */
     166         826 : PetscErrorCode EPSSetUpSort_Basic(EPS eps)
     167             : {
     168         826 :   PetscFunctionBegin;
     169         826 :   switch (eps->which) {
     170         299 :     case EPS_LARGEST_MAGNITUDE:
     171         299 :       eps->sc->comparison    = SlepcCompareLargestMagnitude;
     172         299 :       eps->sc->comparisonctx = NULL;
     173         299 :       break;
     174          14 :     case EPS_SMALLEST_MAGNITUDE:
     175          14 :       eps->sc->comparison    = SlepcCompareSmallestMagnitude;
     176          14 :       eps->sc->comparisonctx = NULL;
     177          14 :       break;
     178         148 :     case EPS_LARGEST_REAL:
     179         148 :       eps->sc->comparison    = SlepcCompareLargestReal;
     180         148 :       eps->sc->comparisonctx = NULL;
     181         148 :       break;
     182         159 :     case EPS_SMALLEST_REAL:
     183         159 :       eps->sc->comparison    = SlepcCompareSmallestReal;
     184         159 :       eps->sc->comparisonctx = NULL;
     185         159 :       break;
     186           1 :     case EPS_LARGEST_IMAGINARY:
     187           1 :       eps->sc->comparison    = SlepcCompareLargestImaginary;
     188           1 :       eps->sc->comparisonctx = NULL;
     189           1 :       break;
     190           1 :     case EPS_SMALLEST_IMAGINARY:
     191           1 :       eps->sc->comparison    = SlepcCompareSmallestImaginary;
     192           1 :       eps->sc->comparisonctx = NULL;
     193           1 :       break;
     194         117 :     case EPS_TARGET_MAGNITUDE:
     195         117 :       eps->sc->comparison    = SlepcCompareTargetMagnitude;
     196         117 :       eps->sc->comparisonctx = &eps->target;
     197         117 :       break;
     198           6 :     case EPS_TARGET_REAL:
     199           6 :       eps->sc->comparison    = SlepcCompareTargetReal;
     200           6 :       eps->sc->comparisonctx = &eps->target;
     201           6 :       break;
     202             :     case EPS_TARGET_IMAGINARY:
     203             : #if defined(PETSC_USE_COMPLEX)
     204             :       eps->sc->comparison    = SlepcCompareTargetImaginary;
     205             :       eps->sc->comparisonctx = &eps->target;
     206             : #endif
     207             :       break;
     208          60 :     case EPS_ALL:
     209          60 :       eps->sc->comparison    = SlepcCompareSmallestReal;
     210          60 :       eps->sc->comparisonctx = NULL;
     211          60 :       break;
     212             :     case EPS_WHICH_USER:
     213             :       break;
     214             :   }
     215         826 :   eps->sc->map    = NULL;
     216         826 :   eps->sc->mapobj = NULL;
     217         826 :   PetscFunctionReturn(PETSC_SUCCESS);
     218             : }
     219             : 
     220             : /*
     221             :    EPSSetUpSort_Default: configure both EPS and DS sorting criterion
     222             : */
     223         779 : PetscErrorCode EPSSetUpSort_Default(EPS eps)
     224             : {
     225         779 :   SlepcSC        sc;
     226         779 :   PetscBool      istrivial;
     227             : 
     228         779 :   PetscFunctionBegin;
     229             :   /* fill sorting criterion context */
     230         779 :   PetscCall(EPSSetUpSort_Basic(eps));
     231             :   /* fill sorting criterion for DS */
     232         779 :   PetscCall(DSGetSlepcSC(eps->ds,&sc));
     233         779 :   PetscCall(RGIsTrivial(eps->rg,&istrivial));
     234         779 :   sc->rg            = istrivial? NULL: eps->rg;
     235         779 :   sc->comparison    = eps->sc->comparison;
     236         779 :   sc->comparisonctx = eps->sc->comparisonctx;
     237         779 :   sc->map           = SlepcMap_ST;
     238         779 :   sc->mapobj        = (PetscObject)eps->st;
     239         779 :   PetscFunctionReturn(PETSC_SUCCESS);
     240             : }
     241             : 
     242             : /*@
     243             :    EPSSetDSType - Sets the type of the internal DS object based on the current
     244             :    settings of the eigenvalue solver.
     245             : 
     246             :    Collective
     247             : 
     248             :    Input Parameter:
     249             : .  eps - eigenproblem solver context
     250             : 
     251             :    Note:
     252             :    This function need not be called explicitly, since it will be called at
     253             :    both EPSSetFromOptions() and EPSSetUp().
     254             : 
     255             :    Level: developer
     256             : 
     257             : .seealso: EPSSetFromOptions(), EPSSetUp()
     258             : @*/
     259        1328 : PetscErrorCode EPSSetDSType(EPS eps)
     260             : {
     261        1328 :   PetscFunctionBegin;
     262        1328 :   PetscValidHeaderSpecific(eps,EPS_CLASSID,1);
     263        1328 :   PetscTryTypeMethod(eps,setdstype);
     264        1328 :   PetscFunctionReturn(PETSC_SUCCESS);
     265             : }
     266             : 
     267             : /*@
     268             :    EPSSetUp - Sets up all the internal data structures necessary for the
     269             :    execution of the eigensolver. Then calls STSetUp() for any set-up
     270             :    operations associated to the ST object.
     271             : 
     272             :    Collective
     273             : 
     274             :    Input Parameter:
     275             : .  eps   - eigenproblem solver context
     276             : 
     277             :    Notes:
     278             :    This function need not be called explicitly in most cases, since EPSSolve()
     279             :    calls it. It can be useful when one wants to measure the set-up time
     280             :    separately from the solve time.
     281             : 
     282             :    Level: developer
     283             : 
     284             : .seealso: EPSCreate(), EPSSolve(), EPSDestroy(), STSetUp(), EPSSetInitialSpace()
     285             : @*/
     286        1062 : PetscErrorCode EPSSetUp(EPS eps)
     287             : {
     288        1062 :   Mat            A,B;
     289        1062 :   PetscInt       k,nmat;
     290        1062 :   PetscBool      flg;
     291             : 
     292        1062 :   PetscFunctionBegin;
     293        1062 :   PetscValidHeaderSpecific(eps,EPS_CLASSID,1);
     294        1062 :   if (eps->state) PetscFunctionReturn(PETSC_SUCCESS);
     295         887 :   PetscCall(PetscLogEventBegin(EPS_SetUp,eps,0,0,0));
     296             : 
     297             :   /* reset the convergence flag from the previous solves */
     298         887 :   eps->reason = EPS_CONVERGED_ITERATING;
     299             : 
     300             :   /* Set default solver type (EPSSetFromOptions was not called) */
     301         887 :   if (!((PetscObject)eps)->type_name) PetscCall(EPSSetType(eps,EPSKRYLOVSCHUR));
     302         887 :   if (!eps->st) PetscCall(EPSGetST(eps,&eps->st));
     303         887 :   PetscCall(EPSSetDefaultST(eps));
     304             : 
     305         887 :   PetscCall(STSetTransform(eps->st,PETSC_TRUE));
     306         887 :   PetscCall(STSetStructured(eps->st,PETSC_FALSE));
     307         887 :   if (eps->useds && !eps->ds) PetscCall(EPSGetDS(eps,&eps->ds));
     308         887 :   if (eps->useds) PetscCall(EPSSetDSType(eps));
     309         887 :   if (eps->twosided) {
     310          19 :     PetscCheck(!eps->ishermitian || (eps->isgeneralized && !eps->ispositive),PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"Two-sided methods are not intended for %s problems",SLEPC_STRING_HERMITIAN);
     311             :   }
     312         887 :   if (!eps->rg) PetscCall(EPSGetRG(eps,&eps->rg));
     313         887 :   if (!((PetscObject)eps->rg)->type_name) PetscCall(RGSetType(eps->rg,RGINTERVAL));
     314             : 
     315             :   /* Set problem dimensions */
     316         887 :   PetscCall(STGetNumMatrices(eps->st,&nmat));
     317         887 :   PetscCheck(nmat,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_WRONGSTATE,"EPSSetOperators must be called first");
     318         887 :   PetscCall(STMatGetSize(eps->st,&eps->n,NULL));
     319         887 :   PetscCall(STMatGetLocalSize(eps->st,&eps->nloc,NULL));
     320             : 
     321             :   /* Set default problem type */
     322         887 :   if (!eps->problem_type) {
     323          41 :     if (nmat==1) PetscCall(EPSSetProblemType(eps,EPS_NHEP));
     324           5 :     else PetscCall(EPSSetProblemType(eps,EPS_GNHEP));
     325         846 :   } else if (nmat==1 && eps->isgeneralized) {
     326           0 :     PetscCall(PetscInfo(eps,"Eigenproblem set as generalized but no matrix B was provided; reverting to a standard eigenproblem\n"));
     327           0 :     eps->isgeneralized = PETSC_FALSE;
     328           0 :     eps->problem_type = eps->ishermitian? EPS_HEP: EPS_NHEP;
     329         846 :   } else PetscCheck(nmat==1 || eps->isgeneralized,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_INCOMP,"Inconsistent EPS state: the problem type does not match the number of matrices");
     330             : 
     331         887 :   if (eps->isstructured) {
     332             :     /* make sure the user has set the appropriate matrix */
     333          14 :     PetscCall(STGetMatrix(eps->st,0,&A));
     334          14 :     if (eps->problem_type==EPS_BSE) PetscCall(SlepcCheckMatStruct(A,SLEPC_MAT_STRUCT_BSE,NULL));
     335             :   }
     336             : 
     337         887 :   if (eps->nev > eps->n) eps->nev = eps->n;
     338         887 :   if (eps->ncv > eps->n) eps->ncv = eps->n;
     339             : 
     340             :   /* check some combinations of eps->which */
     341         887 :   PetscCheck(!eps->ishermitian || (eps->isgeneralized && !eps->ispositive) || (eps->which!=EPS_LARGEST_IMAGINARY && eps->which!=EPS_SMALLEST_IMAGINARY && eps->which!=EPS_TARGET_IMAGINARY),PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"Sorting the eigenvalues along the imaginary axis is not allowed when all eigenvalues are real");
     342             : 
     343             :   /* initialization of matrix norms */
     344         887 :   if (eps->conv==EPS_CONV_NORM) {
     345          43 :     if (!eps->nrma) {
     346          43 :       PetscCall(STGetMatrix(eps->st,0,&A));
     347          43 :       PetscCall(MatNorm(A,NORM_INFINITY,&eps->nrma));
     348             :     }
     349          43 :     if (nmat>1 && !eps->nrmb) {
     350          42 :       PetscCall(STGetMatrix(eps->st,1,&B));
     351          42 :       PetscCall(MatNorm(B,NORM_INFINITY,&eps->nrmb));
     352             :     }
     353             :   }
     354             : 
     355             :   /* call specific solver setup */
     356         887 :   PetscUseTypeMethod(eps,setup);
     357             : 
     358             :   /* if purification is set, check that it really makes sense */
     359         887 :   if (eps->purify) {
     360         641 :     if (eps->categ==EPS_CATEGORY_PRECOND || eps->categ==EPS_CATEGORY_CONTOUR) eps->purify = PETSC_FALSE;
     361             :     else {
     362         470 :       if (!eps->isgeneralized) eps->purify = PETSC_FALSE;
     363         147 :       else if (!eps->ishermitian && !eps->ispositive) eps->purify = PETSC_FALSE;
     364             :       else {
     365         120 :         PetscCall(PetscObjectTypeCompare((PetscObject)eps->st,STCAYLEY,&flg));
     366         120 :         if (flg) eps->purify = PETSC_FALSE;
     367             :       }
     368             :     }
     369             :   }
     370             : 
     371             :   /* set tolerance if not yet set */
     372         887 :   if (eps->tol==(PetscReal)PETSC_DETERMINE) eps->tol = SLEPC_DEFAULT_TOL;
     373             : 
     374             :   /* set up sorting criterion */
     375         887 :   PetscTryTypeMethod(eps,setupsort);
     376             : 
     377             :   /* Build balancing matrix if required */
     378         887 :   if (eps->balance!=EPS_BALANCE_USER) {
     379         887 :     PetscCall(STSetBalanceMatrix(eps->st,NULL));
     380         887 :     if (!eps->ishermitian && (eps->balance==EPS_BALANCE_ONESIDE || eps->balance==EPS_BALANCE_TWOSIDE)) {
     381          13 :       if (!eps->D) PetscCall(BVCreateVec(eps->V,&eps->D));
     382          13 :       PetscCall(EPSBuildBalance_Krylov(eps));
     383          13 :       PetscCall(STSetBalanceMatrix(eps->st,eps->D));
     384             :     }
     385             :   }
     386             : 
     387             :   /* Setup ST */
     388         887 :   PetscCall(STSetUp(eps->st));
     389         887 :   PetscCall(EPSCheckCompatibleST(eps));
     390             : 
     391             :   /* process deflation and initial vectors */
     392         887 :   if (eps->nds<0) {
     393          14 :     PetscCheck(!eps->isstructured,PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"Deflation space is not supported in structured eigenproblems");
     394          14 :     k = -eps->nds;
     395          14 :     PetscCall(BVInsertConstraints(eps->V,&k,eps->defl));
     396          14 :     PetscCall(SlepcBasisDestroy_Private(&eps->nds,&eps->defl));
     397          14 :     eps->nds = k;
     398          14 :     PetscCall(STCheckNullSpace(eps->st,eps->V));
     399             :   }
     400         887 :   if (eps->nini<0) {
     401         224 :     k = -eps->nini;
     402         224 :     PetscCheck(k<=eps->ncv,PetscObjectComm((PetscObject)eps),PETSC_ERR_USER_INPUT,"The number of initial vectors is larger than ncv");
     403         224 :     PetscCall(BVInsertVecs(eps->V,0,&k,eps->IS,PETSC_TRUE));
     404         224 :     PetscCall(SlepcBasisDestroy_Private(&eps->nini,&eps->IS));
     405         224 :     eps->nini = k;
     406             :   }
     407         887 :   if (eps->twosided && eps->ninil<0) {
     408           4 :     k = -eps->ninil;
     409           4 :     PetscCheck(k<=eps->ncv,PetscObjectComm((PetscObject)eps),PETSC_ERR_USER_INPUT,"The number of left initial vectors is larger than ncv");
     410           4 :     PetscCall(BVInsertVecs(eps->W,0,&k,eps->ISL,PETSC_TRUE));
     411           4 :     PetscCall(SlepcBasisDestroy_Private(&eps->ninil,&eps->ISL));
     412           4 :     eps->ninil = k;
     413             :   }
     414             : 
     415         887 :   PetscCall(PetscLogEventEnd(EPS_SetUp,eps,0,0,0));
     416         887 :   eps->state = EPS_STATE_SETUP;
     417         887 :   PetscFunctionReturn(PETSC_SUCCESS);
     418             : }
     419             : 
     420             : /*@
     421             :    EPSSetOperators - Sets the matrices associated with the eigenvalue problem.
     422             : 
     423             :    Collective
     424             : 
     425             :    Input Parameters:
     426             : +  eps - the eigenproblem solver context
     427             : .  A  - the matrix associated with the eigensystem
     428             : -  B  - the second matrix in the case of generalized eigenproblems
     429             : 
     430             :    Notes:
     431             :    To specify a standard eigenproblem, use NULL for parameter B.
     432             : 
     433             :    It must be called before EPSSetUp(). If it is called again after EPSSetUp() and
     434             :    the matrix sizes have changed then the EPS object is reset.
     435             : 
     436             :    For structured eigenproblem types such as EPS_BSE (see EPSSetProblemType()), the
     437             :    provided matrices must have been created with the corresponding helper function,
     438             :    i.e., MatCreateBSE().
     439             : 
     440             :    Level: beginner
     441             : 
     442             : .seealso: EPSSolve(), EPSSetUp(), EPSReset(), EPSGetST(), STGetMatrix(), EPSSetProblemType()
     443             : @*/
     444         750 : PetscErrorCode EPSSetOperators(EPS eps,Mat A,Mat B)
     445             : {
     446         750 :   PetscInt       m,n,m0,mloc,nloc,mloc0,nmat;
     447         750 :   Mat            mat[2];
     448             : 
     449         750 :   PetscFunctionBegin;
     450         750 :   PetscValidHeaderSpecific(eps,EPS_CLASSID,1);
     451         750 :   PetscValidHeaderSpecific(A,MAT_CLASSID,2);
     452         750 :   if (B) PetscValidHeaderSpecific(B,MAT_CLASSID,3);
     453         750 :   PetscCheckSameComm(eps,1,A,2);
     454         750 :   if (B) PetscCheckSameComm(eps,1,B,3);
     455             : 
     456             :   /* Check matrix sizes */
     457         750 :   PetscCall(MatGetSize(A,&m,&n));
     458         750 :   PetscCall(MatGetLocalSize(A,&mloc,&nloc));
     459         750 :   PetscCheck(m==n,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_WRONG,"A is a non-square matrix (%" PetscInt_FMT " rows, %" PetscInt_FMT " cols)",m,n);
     460         750 :   PetscCheck(mloc==nloc,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_WRONG,"A does not have equal row and column sizes (%" PetscInt_FMT ", %" PetscInt_FMT ")",mloc,nloc);
     461         750 :   if (B) {
     462         231 :     PetscCall(MatGetSize(B,&m0,&n));
     463         231 :     PetscCall(MatGetLocalSize(B,&mloc0,&nloc));
     464         231 :     PetscCheck(m0==n,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_WRONG,"B is a non-square matrix (%" PetscInt_FMT " rows, %" PetscInt_FMT " cols)",m0,n);
     465         231 :     PetscCheck(mloc0==nloc,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_WRONG,"B does not have equal row and column local sizes (%" PetscInt_FMT ", %" PetscInt_FMT ")",mloc0,nloc);
     466         231 :     PetscCheck(m==m0,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_INCOMP,"Dimensions of A and B do not match (%" PetscInt_FMT ", %" PetscInt_FMT ")",m,m0);
     467         231 :     PetscCheck(mloc==mloc0,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_INCOMP,"Local dimensions of A and B do not match (%" PetscInt_FMT ", %" PetscInt_FMT ")",mloc,mloc0);
     468             :   }
     469         750 :   if (eps->state && (n!=eps->n || nloc!=eps->nloc)) PetscCall(EPSReset(eps));
     470         750 :   eps->nrma = 0.0;
     471         750 :   eps->nrmb = 0.0;
     472         750 :   if (!eps->st) PetscCall(EPSGetST(eps,&eps->st));
     473         750 :   mat[0] = A;
     474         750 :   if (B) {
     475         231 :     mat[1] = B;
     476         231 :     nmat = 2;
     477             :   } else nmat = 1;
     478         750 :   PetscCall(STSetMatrices(eps->st,nmat,mat));
     479         750 :   eps->state = EPS_STATE_INITIAL;
     480         750 :   PetscFunctionReturn(PETSC_SUCCESS);
     481             : }
     482             : 
     483             : /*@
     484             :    EPSGetOperators - Gets the matrices associated with the eigensystem.
     485             : 
     486             :    Collective
     487             : 
     488             :    Input Parameter:
     489             : .  eps - the EPS context
     490             : 
     491             :    Output Parameters:
     492             : +  A  - the matrix associated with the eigensystem
     493             : -  B  - the second matrix in the case of generalized eigenproblems
     494             : 
     495             :    Note:
     496             :    Does not increase the reference count of the matrices, so you should not destroy them.
     497             : 
     498             :    Level: intermediate
     499             : 
     500             : .seealso: EPSSolve(), EPSGetST(), STGetMatrix(), STSetMatrices()
     501             : @*/
     502         887 : PetscErrorCode EPSGetOperators(EPS eps,Mat *A,Mat *B)
     503             : {
     504         887 :   ST             st;
     505         887 :   PetscInt       k;
     506             : 
     507         887 :   PetscFunctionBegin;
     508         887 :   PetscValidHeaderSpecific(eps,EPS_CLASSID,1);
     509         887 :   PetscCall(EPSGetST(eps,&st));
     510         887 :   PetscCall(STGetNumMatrices(st,&k));
     511         887 :   if (A) {
     512         450 :     if (k<1) *A = NULL;
     513         450 :     else PetscCall(STGetMatrix(st,0,A));
     514             :   }
     515         887 :   if (B) {
     516         594 :     if (k<2) *B = NULL;
     517         565 :     else PetscCall(STGetMatrix(st,1,B));
     518             :   }
     519         887 :   PetscFunctionReturn(PETSC_SUCCESS);
     520             : }
     521             : 
     522             : /*@
     523             :    EPSSetDeflationSpace - Specify a basis of vectors that constitute the deflation
     524             :    space.
     525             : 
     526             :    Collective
     527             : 
     528             :    Input Parameters:
     529             : +  eps - the eigenproblem solver context
     530             : .  n   - number of vectors
     531             : -  v   - set of basis vectors of the deflation space
     532             : 
     533             :    Notes:
     534             :    When a deflation space is given, the eigensolver seeks the eigensolution
     535             :    in the restriction of the problem to the orthogonal complement of this
     536             :    space. This can be used for instance in the case that an invariant
     537             :    subspace is known beforehand (such as the nullspace of the matrix).
     538             : 
     539             :    These vectors do not persist from one EPSSolve() call to the other, so the
     540             :    deflation space should be set every time.
     541             : 
     542             :    The vectors do not need to be mutually orthonormal, since they are explicitly
     543             :    orthonormalized internally.
     544             : 
     545             :    Level: intermediate
     546             : 
     547             : .seealso: EPSSetInitialSpace()
     548             : @*/
     549          16 : PetscErrorCode EPSSetDeflationSpace(EPS eps,PetscInt n,Vec v[])
     550             : {
     551          16 :   PetscFunctionBegin;
     552          16 :   PetscValidHeaderSpecific(eps,EPS_CLASSID,1);
     553          48 :   PetscValidLogicalCollectiveInt(eps,n,2);
     554          16 :   PetscCheck(n>=0,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"Argument n cannot be negative");
     555          16 :   if (n>0) {
     556          14 :     PetscAssertPointer(v,3);
     557          14 :     PetscValidHeaderSpecific(*v,VEC_CLASSID,3);
     558             :   }
     559          16 :   PetscCall(SlepcBasisReference_Private(n,v,&eps->nds,&eps->defl));
     560          16 :   if (n>0) eps->state = EPS_STATE_INITIAL;
     561          16 :   PetscFunctionReturn(PETSC_SUCCESS);
     562             : }
     563             : 
     564             : /*@
     565             :    EPSSetInitialSpace - Specify a basis of vectors that constitute the initial
     566             :    space, that is, the subspace from which the solver starts to iterate.
     567             : 
     568             :    Collective
     569             : 
     570             :    Input Parameters:
     571             : +  eps - the eigenproblem solver context
     572             : .  n   - number of vectors
     573             : -  is  - set of basis vectors of the initial space
     574             : 
     575             :    Notes:
     576             :    Some solvers start to iterate on a single vector (initial vector). In that case,
     577             :    the other vectors are ignored.
     578             : 
     579             :    These vectors do not persist from one EPSSolve() call to the other, so the
     580             :    initial space should be set every time.
     581             : 
     582             :    The vectors do not need to be mutually orthonormal, since they are explicitly
     583             :    orthonormalized internally.
     584             : 
     585             :    Common usage of this function is when the user can provide a rough approximation
     586             :    of the wanted eigenspace. Then, convergence may be faster.
     587             : 
     588             :    Level: intermediate
     589             : 
     590             : .seealso: EPSSetLeftInitialSpace(), EPSSetDeflationSpace()
     591             : @*/
     592         230 : PetscErrorCode EPSSetInitialSpace(EPS eps,PetscInt n,Vec is[])
     593             : {
     594         230 :   PetscFunctionBegin;
     595         230 :   PetscValidHeaderSpecific(eps,EPS_CLASSID,1);
     596         690 :   PetscValidLogicalCollectiveInt(eps,n,2);
     597         230 :   PetscCheck(n>=0,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"Argument n cannot be negative");
     598         230 :   if (n>0) {
     599         224 :     PetscAssertPointer(is,3);
     600         224 :     PetscValidHeaderSpecific(*is,VEC_CLASSID,3);
     601             :   }
     602         230 :   PetscCall(SlepcBasisReference_Private(n,is,&eps->nini,&eps->IS));
     603         230 :   if (n>0) eps->state = EPS_STATE_INITIAL;
     604         230 :   PetscFunctionReturn(PETSC_SUCCESS);
     605             : }
     606             : 
     607             : /*@
     608             :    EPSSetLeftInitialSpace - Specify a basis of vectors that constitute the left
     609             :    initial space, used by two-sided solvers to start the left subspace.
     610             : 
     611             :    Collective
     612             : 
     613             :    Input Parameters:
     614             : +  eps - the eigenproblem solver context
     615             : .  n   - number of vectors
     616             : -  isl - set of basis vectors of the left initial space
     617             : 
     618             :    Notes:
     619             :    Left initial vectors are used to initiate the left search space in two-sided
     620             :    eigensolvers. Users should pass here an approximation of the left eigenspace,
     621             :    if available.
     622             : 
     623             :    The same comments in EPSSetInitialSpace() are applicable here.
     624             : 
     625             :    Level: intermediate
     626             : 
     627             : .seealso: EPSSetInitialSpace(), EPSSetTwoSided()
     628             : @*/
     629           4 : PetscErrorCode EPSSetLeftInitialSpace(EPS eps,PetscInt n,Vec isl[])
     630             : {
     631           4 :   PetscFunctionBegin;
     632           4 :   PetscValidHeaderSpecific(eps,EPS_CLASSID,1);
     633          12 :   PetscValidLogicalCollectiveInt(eps,n,2);
     634           4 :   PetscCheck(n>=0,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"Argument n cannot be negative");
     635           4 :   if (n>0) {
     636           4 :     PetscAssertPointer(isl,3);
     637           4 :     PetscValidHeaderSpecific(*isl,VEC_CLASSID,3);
     638             :   }
     639           4 :   PetscCall(SlepcBasisReference_Private(n,isl,&eps->ninil,&eps->ISL));
     640           4 :   if (n>0) eps->state = EPS_STATE_INITIAL;
     641           4 :   PetscFunctionReturn(PETSC_SUCCESS);
     642             : }
     643             : 
     644             : /*
     645             :   EPSSetDimensions_Default - Set reasonable values for ncv, mpd if not set
     646             :   by the user. This is called at setup.
     647             :  */
     648         591 : PetscErrorCode EPSSetDimensions_Default(EPS eps,PetscInt nev,PetscInt *ncv,PetscInt *mpd)
     649             : {
     650         591 :   PetscBool      krylov;
     651             : 
     652         591 :   PetscFunctionBegin;
     653         591 :   if (*ncv!=PETSC_DETERMINE) { /* ncv set */
     654         290 :     PetscCall(PetscObjectTypeCompareAny((PetscObject)eps,&krylov,EPSKRYLOVSCHUR,EPSARNOLDI,EPSLANCZOS,""));
     655         290 :     if (krylov) {
     656         274 :       PetscCheck(*ncv>=nev+1 || (*ncv==nev && *ncv==eps->n),PetscObjectComm((PetscObject)eps),PETSC_ERR_USER_INPUT,"The value of ncv must be at least nev+1");
     657             :     } else {
     658          16 :       PetscCheck(*ncv>=nev,PetscObjectComm((PetscObject)eps),PETSC_ERR_USER_INPUT,"The value of ncv must be at least nev");
     659             :     }
     660         301 :   } else if (*mpd!=PETSC_DETERMINE) { /* mpd set */
     661           6 :     *ncv = PetscMin(eps->n,nev+(*mpd));
     662             :   } else { /* neither set: defaults depend on nev being small or large */
     663         295 :     if (nev<500) *ncv = PetscMin(eps->n,PetscMax(2*nev,nev+15));
     664             :     else {
     665           0 :       *mpd = 500;
     666           0 :       *ncv = PetscMin(eps->n,nev+(*mpd));
     667             :     }
     668             :   }
     669         591 :   if (*mpd==PETSC_DETERMINE) *mpd = *ncv;
     670         591 :   PetscFunctionReturn(PETSC_SUCCESS);
     671             : }
     672             : 
     673             : /*@
     674             :    EPSAllocateSolution - Allocate memory storage for common variables such
     675             :    as eigenvalues and eigenvectors.
     676             : 
     677             :    Collective
     678             : 
     679             :    Input Parameters:
     680             : +  eps   - eigensolver context
     681             : -  extra - number of additional positions, used for methods that require a
     682             :            working basis slightly larger than ncv
     683             : 
     684             :    Developer Notes:
     685             :    This is SLEPC_EXTERN because it may be required by user plugin EPS
     686             :    implementations.
     687             : 
     688             :    Level: developer
     689             : 
     690             : .seealso: EPSSetUp()
     691             : @*/
     692         887 : PetscErrorCode EPSAllocateSolution(EPS eps,PetscInt extra)
     693             : {
     694         887 :   PetscInt       oldsize,requested;
     695         887 :   PetscRandom    rand;
     696         887 :   Vec            t;
     697             : 
     698         887 :   PetscFunctionBegin;
     699         887 :   requested = eps->ncv + extra;
     700             : 
     701             :   /* oldsize is zero if this is the first time setup is called */
     702         887 :   PetscCall(BVGetSizes(eps->V,NULL,NULL,&oldsize));
     703             : 
     704             :   /* allocate space for eigenvalues and friends */
     705         887 :   if (requested != oldsize || !eps->eigr) {
     706         680 :     PetscCall(PetscFree4(eps->eigr,eps->eigi,eps->errest,eps->perm));
     707         680 :     PetscCall(PetscMalloc4(requested,&eps->eigr,requested,&eps->eigi,requested,&eps->errest,requested,&eps->perm));
     708             :   }
     709             : 
     710             :   /* workspace for the case of arbitrary selection */
     711         887 :   if (eps->arbitrary) {
     712           8 :     if (eps->rr) PetscCall(PetscFree2(eps->rr,eps->ri));
     713           8 :     PetscCall(PetscMalloc2(requested,&eps->rr,requested,&eps->ri));
     714             :   }
     715             : 
     716             :   /* allocate V */
     717         887 :   if (!eps->V) PetscCall(EPSGetBV(eps,&eps->V));
     718         887 :   if (!oldsize) {
     719         667 :     if (!((PetscObject)eps->V)->type_name) PetscCall(BVSetType(eps->V,BVMAT));
     720         667 :     PetscCall(STMatCreateVecsEmpty(eps->st,&t,NULL));
     721         667 :     PetscCall(BVSetSizesFromVec(eps->V,t,requested));
     722         667 :     PetscCall(VecDestroy(&t));
     723         220 :   } else PetscCall(BVResize(eps->V,requested,PETSC_FALSE));
     724             : 
     725             :   /* allocate W */
     726         887 :   if (eps->twosided) {
     727          19 :     PetscCall(BVGetRandomContext(eps->V,&rand));  /* make sure the random context is available when duplicating */
     728          19 :     PetscCall(BVDestroy(&eps->W));
     729          19 :     PetscCall(BVDuplicate(eps->V,&eps->W));
     730             :   }
     731         887 :   PetscFunctionReturn(PETSC_SUCCESS);
     732             : }

Generated by: LCOV version 1.14