Line data Source code
1 : /*
2 : - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3 : SLEPc - Scalable Library for Eigenvalue Problem Computations
4 : Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
5 :
6 : This file is part of SLEPc.
7 : SLEPc is distributed under a 2-clause BSD license (see LICENSE).
8 : - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9 : */
10 : /*
11 : SLEPc eigensolver: "subspace"
12 :
13 : Method: Subspace Iteration
14 :
15 : Algorithm:
16 :
17 : Subspace iteration with Rayleigh-Ritz projection and locking,
18 : based on the SRRIT implementation.
19 :
20 : References:
21 :
22 : [1] "Subspace Iteration in SLEPc", SLEPc Technical Report STR-3,
23 : available at https://slepc.upv.es.
24 : */
25 :
26 : #include <slepc/private/epsimpl.h>
27 :
28 : typedef struct {
29 : PetscBool estimatedrange; /* the filter range was not set by the user */
30 : } EPS_SUBSPACE;
31 :
32 1 : static PetscErrorCode EPSSetUp_Subspace_Filter(EPS eps)
33 : {
34 1 : EPS_SUBSPACE *ctx = (EPS_SUBSPACE*)eps->data;
35 1 : PetscBool estimaterange=PETSC_TRUE;
36 1 : PetscReal rleft,rright;
37 1 : Mat A;
38 :
39 1 : PetscFunctionBegin;
40 1 : EPSCheckHermitianCondition(eps,PETSC_TRUE," with polynomial filter");
41 1 : EPSCheckStandardCondition(eps,PETSC_TRUE," with polynomial filter");
42 1 : PetscCheck(eps->intb<PETSC_MAX_REAL || eps->inta>PETSC_MIN_REAL,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_WRONG,"The defined computational interval should have at least one of their sides bounded");
43 1 : EPSCheckUnsupportedCondition(eps,EPS_FEATURE_ARBITRARY | EPS_FEATURE_REGION | EPS_FEATURE_EXTRACTION,PETSC_TRUE," with polynomial filter");
44 1 : PetscCall(STFilterSetInterval(eps->st,eps->inta,eps->intb));
45 1 : if (!ctx->estimatedrange) {
46 1 : PetscCall(STFilterGetRange(eps->st,&rleft,&rright));
47 1 : estimaterange = (!rleft && !rright)? PETSC_TRUE: PETSC_FALSE;
48 : }
49 1 : if (estimaterange) { /* user did not set a range */
50 1 : PetscCall(STGetMatrix(eps->st,0,&A));
51 1 : PetscCall(MatEstimateSpectralRange_EPS(A,&rleft,&rright));
52 1 : PetscCall(PetscInfo(eps,"Setting eigenvalue range to [%g,%g]\n",(double)rleft,(double)rright));
53 1 : PetscCall(STFilterSetRange(eps->st,rleft,rright));
54 1 : ctx->estimatedrange = PETSC_TRUE;
55 : }
56 1 : if (eps->ncv==PETSC_DETERMINE && eps->nev==1) eps->nev = 40; /* user did not provide nev estimation */
57 1 : PetscCall(EPSSetDimensions_Default(eps,eps->nev,&eps->ncv,&eps->mpd));
58 1 : PetscCheck(eps->ncv<=eps->nev+eps->mpd,PetscObjectComm((PetscObject)eps),PETSC_ERR_USER_INPUT,"The value of ncv must not be larger than nev+mpd");
59 1 : PetscFunctionReturn(PETSC_SUCCESS);
60 : }
61 :
62 18 : static PetscErrorCode EPSSetUp_Subspace(EPS eps)
63 : {
64 18 : PetscBool isfilt;
65 :
66 18 : PetscFunctionBegin;
67 18 : EPSCheckDefinite(eps);
68 18 : EPSCheckNotStructured(eps);
69 18 : if (eps->max_it==PETSC_DETERMINE) eps->max_it = PetscMax(100,2*eps->n/eps->ncv);
70 18 : if (!eps->which) PetscCall(EPSSetWhichEigenpairs_Default(eps));
71 18 : if (eps->which==EPS_ALL) {
72 1 : PetscCall(PetscObjectTypeCompare((PetscObject)eps->st,STFILTER,&isfilt));
73 1 : PetscCheck(isfilt,PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"Spectrum slicing not supported in this solver");
74 1 : PetscCall(EPSSetUp_Subspace_Filter(eps));
75 : } else {
76 17 : PetscCheck(eps->which==EPS_LARGEST_MAGNITUDE || eps->which==EPS_TARGET_MAGNITUDE,PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"This solver supports only largest magnitude or target magnitude eigenvalues");
77 17 : PetscCall(EPSSetDimensions_Default(eps,eps->nev,&eps->ncv,&eps->mpd));
78 : }
79 18 : EPSCheckUnsupported(eps,EPS_FEATURE_ARBITRARY | EPS_FEATURE_EXTRACTION | EPS_FEATURE_TWOSIDED);
80 18 : PetscCheck(eps->converged==EPSConvergedRelative,PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"This solver only supports relative convergence test");
81 :
82 18 : PetscCall(EPSAllocateSolution(eps,0));
83 18 : PetscCall(EPS_SetInnerProduct(eps));
84 18 : if (eps->ishermitian) PetscCall(DSSetType(eps->ds,DSHEP));
85 6 : else PetscCall(DSSetType(eps->ds,DSNHEP));
86 18 : PetscCall(DSAllocate(eps->ds,eps->ncv));
87 18 : PetscFunctionReturn(PETSC_SUCCESS);
88 : }
89 :
90 18 : static PetscErrorCode EPSSetUpSort_Subspace(EPS eps)
91 : {
92 18 : SlepcSC sc;
93 :
94 18 : PetscFunctionBegin;
95 18 : PetscCall(EPSSetUpSort_Default(eps));
96 18 : if (eps->which==EPS_ALL) {
97 1 : PetscCall(DSGetSlepcSC(eps->ds,&sc));
98 1 : sc->rg = NULL;
99 1 : sc->comparison = SlepcCompareLargestReal;
100 1 : sc->comparisonctx = NULL;
101 1 : sc->map = NULL;
102 1 : sc->mapobj = NULL;
103 : }
104 18 : PetscFunctionReturn(PETSC_SUCCESS);
105 : }
106 :
107 : /*
108 : EPSSubspaceFindGroup - Find a group of nearly equimodular eigenvalues, provided
109 : in arrays wr and wi, according to the tolerance grptol. Also the 2-norms
110 : of the residuals must be passed in (rsd). Arrays are processed from index
111 : l to index m only. The output information is:
112 :
113 : ngrp - number of entries of the group
114 : ctr - (w(l)+w(l+ngrp-1))/2
115 : ae - average of wr(l),...,wr(l+ngrp-1)
116 : arsd - average of rsd(l),...,rsd(l+ngrp-1)
117 : */
118 544 : static PetscErrorCode EPSSubspaceFindGroup(PetscInt l,PetscInt m,PetscScalar *wr,PetscScalar *wi,PetscReal *rsd,PetscReal grptol,PetscInt *ngrp,PetscReal *ctr,PetscReal *ae,PetscReal *arsd)
119 : {
120 544 : PetscInt i;
121 544 : PetscReal rmod,rmod1;
122 :
123 544 : PetscFunctionBegin;
124 544 : *ngrp = 0;
125 544 : *ctr = 0;
126 544 : rmod = SlepcAbsEigenvalue(wr[l],wi[l]);
127 :
128 1921 : for (i=l;i<m;) {
129 1357 : rmod1 = SlepcAbsEigenvalue(wr[i],wi[i]);
130 1357 : if (PetscAbsReal(rmod-rmod1) > grptol*(rmod+rmod1)) break;
131 833 : *ctr = (rmod+rmod1)/2.0;
132 833 : if (wi[i] == 0.0) {
133 833 : (*ngrp)++;
134 833 : i++;
135 : } else {
136 0 : (*ngrp)+=2;
137 0 : i+=2;
138 : }
139 : }
140 :
141 544 : *ae = 0;
142 544 : *arsd = 0;
143 544 : if (*ngrp) {
144 1377 : for (i=l;i<l+*ngrp;i++) {
145 833 : (*ae) += PetscRealPart(wr[i]);
146 833 : (*arsd) += rsd[i]*rsd[i];
147 : }
148 544 : *ae = *ae / *ngrp;
149 544 : *arsd = PetscSqrtReal(*arsd / *ngrp);
150 : }
151 544 : PetscFunctionReturn(PETSC_SUCCESS);
152 : }
153 :
154 : /*
155 : EPSSubspaceResidualNorms - Computes the column norms of residual vectors
156 : OP*V(1:n,l:m) - V*T(1:m,l:m), where, on entry, OP*V has been computed and
157 : stored in R. On exit, rsd(l) to rsd(m) contain the computed norms.
158 : */
159 158 : static PetscErrorCode EPSSubspaceResidualNorms(BV R,BV V,Mat T,PetscInt l,PetscInt m,PetscScalar *eigi,PetscReal *rsd)
160 : {
161 158 : PetscInt i;
162 :
163 158 : PetscFunctionBegin;
164 158 : PetscCall(BVMult(R,-1.0,1.0,V,T));
165 2650 : for (i=l;i<m;i++) PetscCall(BVNormColumnBegin(R,i,NORM_2,rsd+i));
166 2650 : for (i=l;i<m;i++) PetscCall(BVNormColumnEnd(R,i,NORM_2,rsd+i));
167 : #if !defined(PETSC_USE_COMPLEX)
168 2492 : for (i=l;i<m-1;i++) {
169 2334 : if (eigi[i]!=0.0) {
170 0 : rsd[i] = SlepcAbs(rsd[i],rsd[i+1]);
171 0 : rsd[i+1] = rsd[i];
172 0 : i++;
173 : }
174 : }
175 : #endif
176 158 : PetscFunctionReturn(PETSC_SUCCESS);
177 : }
178 :
179 18 : static PetscErrorCode EPSSolve_Subspace(EPS eps)
180 : {
181 18 : Mat H,Q,S,T,B;
182 18 : BV AV,R;
183 18 : PetscBool indef;
184 18 : PetscInt i,k,ld,ngrp,nogrp,*itrsd,*itrsdold;
185 18 : PetscInt nxtsrr,idsrr,idort,nxtort,nv,ncv = eps->ncv,its,ninside;
186 18 : PetscReal arsd,oarsd,ctr,octr,ae,oae,*rsd,*orsd,tcond=1.0,gamma;
187 18 : PetscScalar *oeigr,*oeigi;
188 : /* Parameters */
189 18 : PetscInt init = 5; /* Number of initial iterations */
190 18 : PetscReal stpfac = 1.5; /* Max num of iter before next SRR step */
191 18 : PetscReal alpha = 1.0; /* Used to predict convergence of next residual */
192 18 : PetscReal beta = 1.1; /* Used to predict convergence of next residual */
193 18 : PetscReal grptol = SLEPC_DEFAULT_TOL; /* Tolerance for EPSSubspaceFindGroup */
194 18 : PetscReal cnvtol = 1e-6; /* Convergence criterion for cnv */
195 18 : PetscInt orttol = 2; /* Number of decimal digits whose loss
196 : can be tolerated in orthogonalization */
197 :
198 18 : PetscFunctionBegin;
199 18 : its = 0;
200 18 : PetscCall(PetscMalloc6(ncv,&rsd,ncv,&orsd,ncv,&oeigr,ncv,&oeigi,ncv,&itrsd,ncv,&itrsdold));
201 18 : PetscCall(DSGetLeadingDimension(eps->ds,&ld));
202 18 : PetscCall(BVDuplicate(eps->V,&AV));
203 18 : PetscCall(BVDuplicate(eps->V,&R));
204 18 : PetscCall(STGetOperator(eps->st,&S));
205 :
206 331 : for (i=0;i<ncv;i++) {
207 313 : rsd[i] = 0.0;
208 313 : itrsd[i] = -1;
209 : }
210 :
211 : /* Complete the initial basis with random vectors and orthonormalize them */
212 329 : for (k=eps->nini;k<ncv;k++) {
213 311 : PetscCall(BVSetRandomColumn(eps->V,k));
214 311 : PetscCall(BVOrthonormalizeColumn(eps->V,k,PETSC_TRUE,NULL,NULL));
215 : }
216 :
217 158 : while (eps->reason == EPS_CONVERGED_ITERATING) {
218 158 : eps->its++;
219 158 : nv = PetscMin(eps->nconv+eps->mpd,ncv);
220 158 : PetscCall(DSSetDimensions(eps->ds,nv,eps->nconv,0));
221 :
222 2650 : for (i=eps->nconv;i<nv;i++) {
223 2492 : oeigr[i] = eps->eigr[i];
224 2492 : oeigi[i] = eps->eigi[i];
225 2492 : orsd[i] = rsd[i];
226 : }
227 :
228 : /* AV(:,idx) = OP * V(:,idx) */
229 158 : PetscCall(BVSetActiveColumns(eps->V,eps->nconv,nv));
230 158 : PetscCall(BVSetActiveColumns(AV,eps->nconv,nv));
231 158 : PetscCall(BVMatMult(eps->V,S,AV));
232 :
233 : /* T(:,idx) = V' * AV(:,idx) */
234 158 : PetscCall(BVSetActiveColumns(eps->V,0,nv));
235 158 : PetscCall(DSGetMat(eps->ds,DS_MAT_A,&H));
236 158 : PetscCall(BVDot(AV,eps->V,H));
237 158 : PetscCall(DSRestoreMat(eps->ds,DS_MAT_A,&H));
238 158 : PetscCall(DSSetState(eps->ds,DS_STATE_RAW));
239 :
240 : /* Solve projected problem */
241 158 : PetscCall(DSSolve(eps->ds,eps->eigr,eps->eigi));
242 158 : PetscCall(DSSort(eps->ds,eps->eigr,eps->eigi,NULL,NULL,NULL));
243 158 : PetscCall(DSSynchronize(eps->ds,eps->eigr,eps->eigi));
244 :
245 : /* Update vectors V(:,idx) = V * U(:,idx) */
246 158 : PetscCall(DSGetMat(eps->ds,DS_MAT_Q,&Q));
247 158 : PetscCall(BVSetActiveColumns(AV,0,nv));
248 158 : PetscCall(BVSetActiveColumns(R,0,nv));
249 158 : PetscCall(BVMultInPlace(eps->V,Q,eps->nconv,nv));
250 158 : PetscCall(BVMultInPlace(AV,Q,eps->nconv,nv));
251 158 : PetscCall(DSRestoreMat(eps->ds,DS_MAT_Q,&Q));
252 158 : PetscCall(BVCopy(AV,R));
253 :
254 : /* Convergence check */
255 158 : PetscCall(DSGetMat(eps->ds,DS_MAT_A,&T));
256 158 : PetscCall(EPSSubspaceResidualNorms(R,eps->V,T,eps->nconv,nv,eps->eigi,rsd));
257 158 : PetscCall(DSRestoreMat(eps->ds,DS_MAT_A,&T));
258 :
259 158 : if (eps->which==EPS_ALL && eps->its>1) { /* adjust eigenvalue count */
260 10 : ninside = 0;
261 10 : PetscCall(STFilterGetThreshold(eps->st,&gamma));
262 91 : for (i=eps->nconv;i<nv;i++) {
263 91 : if (PetscRealPart(eps->eigr[i]) < gamma) break;
264 81 : ninside++;
265 : }
266 10 : eps->nev = eps->nconv+ninside;
267 : }
268 2650 : for (i=eps->nconv;i<nv;i++) {
269 2492 : itrsdold[i] = itrsd[i];
270 2492 : itrsd[i] = its;
271 2492 : eps->errest[i] = rsd[i];
272 : }
273 :
274 272 : for (;;) {
275 : /* Find clusters of computed eigenvalues */
276 272 : PetscCall(EPSSubspaceFindGroup(eps->nconv,nv,eps->eigr,eps->eigi,eps->errest,grptol,&ngrp,&ctr,&ae,&arsd));
277 272 : PetscCall(EPSSubspaceFindGroup(eps->nconv,nv,oeigr,oeigi,orsd,grptol,&nogrp,&octr,&oae,&oarsd));
278 272 : if (ngrp!=nogrp) break;
279 254 : if (ngrp==0) break;
280 254 : if (PetscAbsReal(ae-oae)>ctr*cnvtol*(itrsd[eps->nconv]-itrsdold[eps->nconv])) break;
281 184 : if (arsd>ctr*eps->tol) break;
282 115 : eps->nconv = eps->nconv + ngrp;
283 115 : if (eps->nconv>=nv) break;
284 : }
285 :
286 158 : PetscCall(EPSMonitor(eps,eps->its,eps->nconv,eps->eigr,eps->eigi,eps->errest,nv));
287 158 : PetscCall((*eps->stopping)(eps,eps->its,eps->max_it,eps->nconv,eps->nev,&eps->reason,eps->stoppingctx));
288 158 : if (eps->reason != EPS_CONVERGED_ITERATING) break;
289 :
290 : /* Compute nxtsrr (iteration of next projection step) */
291 140 : nxtsrr = PetscMin(eps->max_it,PetscMax((PetscInt)PetscFloorReal(stpfac*its),init));
292 :
293 140 : if (ngrp!=nogrp || ngrp==0 || arsd>=oarsd) {
294 21 : idsrr = nxtsrr - its;
295 : } else {
296 119 : idsrr = (PetscInt)PetscFloorReal(alpha+beta*(itrsdold[eps->nconv]-itrsd[eps->nconv])*PetscLogReal(arsd/eps->tol)/PetscLogReal(arsd/oarsd));
297 119 : idsrr = PetscMax(1,idsrr);
298 : }
299 140 : nxtsrr = PetscMin(nxtsrr,its+idsrr);
300 :
301 : /* Compute nxtort (iteration of next orthogonalization step) */
302 140 : PetscCall(DSCond(eps->ds,&tcond));
303 140 : idort = PetscMax(1,(PetscInt)PetscFloorReal(orttol/PetscMax(1,PetscLog10Real(tcond))));
304 140 : nxtort = PetscMin(its+idort,nxtsrr);
305 140 : PetscCall(PetscInfo(eps,"Updated iteration counts: nxtort=%" PetscInt_FMT ", nxtsrr=%" PetscInt_FMT "\n",nxtort,nxtsrr));
306 :
307 : /* V(:,idx) = AV(:,idx) */
308 140 : PetscCall(BVSetActiveColumns(eps->V,eps->nconv,nv));
309 140 : PetscCall(BVSetActiveColumns(AV,eps->nconv,nv));
310 140 : PetscCall(BVCopy(AV,eps->V));
311 140 : its++;
312 :
313 : /* Orthogonalization loop */
314 1742 : do {
315 1742 : PetscCall(BVGetMatrix(eps->V,&B,&indef));
316 1742 : PetscCall(BVSetMatrix(eps->V,NULL,PETSC_FALSE));
317 4905 : while (its<nxtort) {
318 : /* A(:,idx) = OP*V(:,idx) with normalization */
319 3163 : PetscCall(BVMatMult(eps->V,S,AV));
320 3163 : PetscCall(BVCopy(AV,eps->V));
321 3163 : PetscCall(BVNormalize(eps->V,NULL));
322 3163 : its++;
323 : }
324 1742 : PetscCall(BVSetMatrix(eps->V,B,indef));
325 : /* Orthonormalize vectors */
326 1742 : PetscCall(BVOrthogonalize(eps->V,NULL));
327 1742 : nxtort = PetscMin(its+idort,nxtsrr);
328 1742 : } while (its<nxtsrr);
329 : }
330 :
331 18 : PetscCall(PetscFree6(rsd,orsd,oeigr,oeigi,itrsd,itrsdold));
332 18 : PetscCall(BVDestroy(&AV));
333 18 : PetscCall(BVDestroy(&R));
334 18 : PetscCall(STRestoreOperator(eps->st,&S));
335 18 : PetscCall(DSTruncate(eps->ds,eps->nconv,PETSC_TRUE));
336 18 : PetscFunctionReturn(PETSC_SUCCESS);
337 : }
338 :
339 16 : static PetscErrorCode EPSDestroy_Subspace(EPS eps)
340 : {
341 16 : PetscFunctionBegin;
342 16 : PetscCall(PetscFree(eps->data));
343 16 : PetscFunctionReturn(PETSC_SUCCESS);
344 : }
345 :
346 16 : SLEPC_EXTERN PetscErrorCode EPSCreate_Subspace(EPS eps)
347 : {
348 16 : EPS_SUBSPACE *ctx;
349 :
350 16 : PetscFunctionBegin;
351 16 : PetscCall(PetscNew(&ctx));
352 16 : eps->data = (void*)ctx;
353 :
354 16 : eps->useds = PETSC_TRUE;
355 16 : eps->categ = EPS_CATEGORY_OTHER;
356 :
357 16 : eps->ops->solve = EPSSolve_Subspace;
358 16 : eps->ops->setup = EPSSetUp_Subspace;
359 16 : eps->ops->setupsort = EPSSetUpSort_Subspace;
360 16 : eps->ops->destroy = EPSDestroy_Subspace;
361 16 : eps->ops->backtransform = EPSBackTransform_Default;
362 16 : eps->ops->computevectors = EPSComputeVectors_Schur;
363 16 : PetscFunctionReturn(PETSC_SUCCESS);
364 : }
|