LCOV - code coverage report
Current view: top level - eps/impls/krylov/lanczos - lanczos.c (source / functions) Hit Total Coverage
Test: SLEPc Lines: 452 483 93.6 %
Date: 2024-12-18 00:42:09 Functions: 17 18 94.4 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       3             :    SLEPc - Scalable Library for Eigenvalue Problem Computations
       4             :    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
       5             : 
       6             :    This file is part of SLEPc.
       7             :    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
       8             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       9             : */
      10             : /*
      11             :    SLEPc eigensolver: "lanczos"
      12             : 
      13             :    Method: Explicitly Restarted Symmetric/Hermitian Lanczos
      14             : 
      15             :    Algorithm:
      16             : 
      17             :        Lanczos method for symmetric (Hermitian) problems, with explicit
      18             :        restart and deflation. Several reorthogonalization strategies can
      19             :        be selected.
      20             : 
      21             :    References:
      22             : 
      23             :        [1] "Lanczos Methods in SLEPc", SLEPc Technical Report STR-5,
      24             :            available at https://slepc.upv.es.
      25             : */
      26             : 
      27             : #include <slepc/private/epsimpl.h>                /*I "slepceps.h" I*/
      28             : #include <slepcblaslapack.h>
      29             : 
      30             : typedef struct {
      31             :   EPSLanczosReorthogType reorthog;      /* user-provided reorthogonalization parameter */
      32             :   PetscInt               allocsize;     /* number of columns of work BV's allocated at setup */
      33             :   BV                     AV;            /* work BV used in selective reorthogonalization */
      34             : } EPS_LANCZOS;
      35             : 
      36          36 : static PetscErrorCode EPSSetUp_Lanczos(EPS eps)
      37             : {
      38          36 :   EPS_LANCZOS        *lanczos = (EPS_LANCZOS*)eps->data;
      39          36 :   BVOrthogRefineType refine;
      40          36 :   BVOrthogBlockType  btype;
      41          36 :   PetscReal          eta;
      42             : 
      43          36 :   PetscFunctionBegin;
      44          36 :   EPSCheckHermitianDefinite(eps);
      45          36 :   EPSCheckNotStructured(eps);
      46          36 :   PetscCall(EPSSetDimensions_Default(eps,&eps->nev,&eps->ncv,&eps->mpd));
      47          36 :   PetscCheck(eps->ncv<=eps->nev+eps->mpd,PetscObjectComm((PetscObject)eps),PETSC_ERR_USER_INPUT,"The value of ncv must not be larger than nev+mpd");
      48          36 :   if (eps->max_it==PETSC_DETERMINE) eps->max_it = PetscMax(100,2*eps->n/eps->ncv);
      49          36 :   if (!eps->which) PetscCall(EPSSetWhichEigenpairs_Default(eps));
      50          36 :   PetscCheck(eps->which!=EPS_ALL,PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"This solver does not support computing all eigenvalues");
      51          36 :   EPSCheckUnsupported(eps,EPS_FEATURE_ARBITRARY | EPS_FEATURE_REGION | EPS_FEATURE_EXTRACTION | EPS_FEATURE_THRESHOLD);
      52          36 :   EPSCheckIgnored(eps,EPS_FEATURE_BALANCE);
      53             : 
      54          36 :   PetscCheck(lanczos->reorthog!=(EPSLanczosReorthogType)-1,PetscObjectComm((PetscObject)eps),PETSC_ERR_USER_INPUT,"You should explicitly provide the reorthogonalization type, e.g., -eps_lanczos_reorthog local. Note that the EPSLANCZOS solver is *NOT RECOMMENDED* for general use, because it uses explicit restart which typically has slow convergence. The recommended solver is EPSKRYLOVSCHUR (the default), which implements Lanczos with thick restart in the case of symmetric/Hermitian problems");
      55             : 
      56          36 :   PetscCall(EPSAllocateSolution(eps,1));
      57          36 :   PetscCall(EPS_SetInnerProduct(eps));
      58          36 :   if (lanczos->reorthog != EPS_LANCZOS_REORTHOG_FULL) {
      59          29 :     PetscCall(BVGetOrthogonalization(eps->V,NULL,&refine,&eta,&btype));
      60          29 :     PetscCall(BVSetOrthogonalization(eps->V,BV_ORTHOG_MGS,refine,eta,btype));
      61          29 :     PetscCall(PetscInfo(eps,"Switching to MGS orthogonalization\n"));
      62             :   }
      63          36 :   if (lanczos->reorthog == EPS_LANCZOS_REORTHOG_SELECTIVE) {
      64           3 :     if (!lanczos->allocsize) {
      65           1 :       PetscCall(BVDuplicate(eps->V,&lanczos->AV));
      66           1 :       PetscCall(BVGetSizes(lanczos->AV,NULL,NULL,&lanczos->allocsize));
      67             :     } else { /* make sure V and AV have the same size */
      68           2 :       PetscCall(BVGetSizes(eps->V,NULL,NULL,&lanczos->allocsize));
      69           2 :       PetscCall(BVResize(lanczos->AV,lanczos->allocsize,PETSC_FALSE));
      70             :     }
      71             :   }
      72             : 
      73          36 :   PetscCall(DSSetType(eps->ds,DSHEP));
      74          36 :   PetscCall(DSSetCompact(eps->ds,PETSC_TRUE));
      75          36 :   PetscCall(DSAllocate(eps->ds,eps->ncv+1));
      76          36 :   if (lanczos->reorthog == EPS_LANCZOS_REORTHOG_LOCAL) PetscCall(EPSSetWorkVecs(eps,1));
      77          36 :   PetscFunctionReturn(PETSC_SUCCESS);
      78             : }
      79             : 
      80             : /*
      81             :    EPSLocalLanczos - Local reorthogonalization.
      82             : 
      83             :    This is the simplest variant. At each Lanczos step, the corresponding Lanczos vector
      84             :    is orthogonalized with respect to the two previous Lanczos vectors, according to
      85             :    the three term Lanczos recurrence. WARNING: This variant does not track the loss of
      86             :    orthogonality that occurs in finite-precision arithmetic and, therefore, the
      87             :    generated vectors are not guaranteed to be (semi-)orthogonal.
      88             : */
      89         520 : static PetscErrorCode EPSLocalLanczos(EPS eps,PetscReal *alpha,PetscReal *beta,PetscInt k,PetscInt *M,PetscBool *breakdown)
      90             : {
      91         520 :   PetscInt       i,j,m = *M;
      92         520 :   Mat            Op;
      93         520 :   PetscBool      *which,lwhich[100];
      94         520 :   PetscScalar    *hwork,lhwork[100];
      95             : 
      96         520 :   PetscFunctionBegin;
      97         520 :   if (m > 100) PetscCall(PetscMalloc2(m,&which,m,&hwork));
      98             :   else {
      99         520 :     which = lwhich;
     100         520 :     hwork = lhwork;
     101             :   }
     102        1857 :   for (i=0;i<k;i++) which[i] = PETSC_TRUE;
     103             : 
     104         520 :   PetscCall(BVSetActiveColumns(eps->V,0,m));
     105         520 :   PetscCall(STGetOperator(eps->st,&Op));
     106        7578 :   for (j=k;j<m;j++) {
     107        7058 :     PetscCall(BVMatMultColumn(eps->V,Op,j));
     108        7058 :     which[j] = PETSC_TRUE;
     109        7058 :     if (j-2>=k) which[j-2] = PETSC_FALSE;
     110        7058 :     PetscCall(BVOrthogonalizeSomeColumn(eps->V,j+1,which,hwork,beta+j,breakdown));
     111        7058 :     alpha[j] = PetscRealPart(hwork[j]);
     112        7058 :     if (PetscUnlikely(*breakdown)) {
     113           0 :       *M = j+1;
     114           0 :       break;
     115        7058 :     } else PetscCall(BVScaleColumn(eps->V,j+1,1/beta[j]));
     116             :   }
     117         520 :   PetscCall(STRestoreOperator(eps->st,&Op));
     118         520 :   if (m > 100) PetscCall(PetscFree2(which,hwork));
     119         520 :   PetscFunctionReturn(PETSC_SUCCESS);
     120             : }
     121             : 
     122             : /*
     123             :    DenseTridiagonal - Solves a real tridiagonal Hermitian Eigenvalue Problem.
     124             : 
     125             :    Input Parameters:
     126             : +  n   - dimension of the eigenproblem
     127             : .  D   - pointer to the array containing the diagonal elements
     128             : -  E   - pointer to the array containing the off-diagonal elements
     129             : 
     130             :    Output Parameters:
     131             : +  w  - pointer to the array to store the computed eigenvalues
     132             : -  V  - pointer to the array to store the eigenvectors
     133             : 
     134             :    Notes:
     135             :    If V is NULL then the eigenvectors are not computed.
     136             : 
     137             :    This routine use LAPACK routines xSTEVR.
     138             : */
     139         673 : static PetscErrorCode DenseTridiagonal(PetscInt n_,PetscReal *D,PetscReal *E,PetscReal *w,PetscScalar *V)
     140             : {
     141         673 :   PetscReal      abstol = 0.0,vl,vu,*work;
     142         673 :   PetscBLASInt   il,iu,m,*isuppz,n,lwork,*iwork,liwork,info;
     143         673 :   const char     *jobz;
     144             : #if defined(PETSC_USE_COMPLEX)
     145             :   PetscInt       i,j;
     146             :   PetscReal      *VV=NULL;
     147             : #endif
     148             : 
     149         673 :   PetscFunctionBegin;
     150         673 :   PetscCall(PetscBLASIntCast(n_,&n));
     151         673 :   PetscCall(PetscBLASIntCast(20*n_,&lwork));
     152         673 :   PetscCall(PetscBLASIntCast(10*n_,&liwork));
     153         673 :   if (V) {
     154             :     jobz = "V";
     155             : #if defined(PETSC_USE_COMPLEX)
     156             :     PetscCall(PetscMalloc1(n*n,&VV));
     157             : #endif
     158           0 :   } else jobz = "N";
     159         673 :   PetscCall(PetscMalloc3(2*n,&isuppz,lwork,&work,liwork,&iwork));
     160         673 :   PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
     161             : #if defined(PETSC_USE_COMPLEX)
     162             :   PetscCallBLAS("LAPACKstevr",LAPACKstevr_(jobz,"A",&n,D,E,&vl,&vu,&il,&iu,&abstol,&m,w,VV,&n,isuppz,work,&lwork,iwork,&liwork,&info));
     163             : #else
     164         673 :   PetscCallBLAS("LAPACKstevr",LAPACKstevr_(jobz,"A",&n,D,E,&vl,&vu,&il,&iu,&abstol,&m,w,V,&n,isuppz,work,&lwork,iwork,&liwork,&info));
     165             : #endif
     166         673 :   PetscCall(PetscFPTrapPop());
     167         673 :   SlepcCheckLapackInfo("stevr",info);
     168             : #if defined(PETSC_USE_COMPLEX)
     169             :   if (V) {
     170             :     for (i=0;i<n;i++)
     171             :       for (j=0;j<n;j++)
     172             :         V[i*n+j] = VV[i*n+j];
     173             :     PetscCall(PetscFree(VV));
     174             :   }
     175             : #endif
     176         673 :   PetscCall(PetscFree3(isuppz,work,iwork));
     177         673 :   PetscFunctionReturn(PETSC_SUCCESS);
     178             : }
     179             : 
     180             : /*
     181             :    EPSSelectiveLanczos - Selective reorthogonalization.
     182             : */
     183          38 : static PetscErrorCode EPSSelectiveLanczos(EPS eps,PetscReal *alpha,PetscReal *beta,PetscInt k,PetscInt *M,PetscBool *breakdown,PetscReal anorm)
     184             : {
     185          38 :   EPS_LANCZOS    *lanczos = (EPS_LANCZOS*)eps->data;
     186          38 :   PetscInt       i,j,m = *M,n,nritz=0,nritzo;
     187          38 :   Vec            vj1,av;
     188          38 :   Mat            Op;
     189          38 :   PetscReal      *d,*e,*ritz,norm;
     190          38 :   PetscScalar    *Y,*hwork;
     191          38 :   PetscBool      *which;
     192             : 
     193          38 :   PetscFunctionBegin;
     194          38 :   PetscCall(PetscCalloc6(m+1,&d,m,&e,m,&ritz,m*m,&Y,m,&which,m,&hwork));
     195          87 :   for (i=0;i<k;i++) which[i] = PETSC_TRUE;
     196          38 :   PetscCall(STGetOperator(eps->st,&Op));
     197             : 
     198         711 :   for (j=k;j<m;j++) {
     199         673 :     PetscCall(BVSetActiveColumns(eps->V,0,m));
     200             : 
     201             :     /* Lanczos step */
     202         673 :     PetscCall(BVMatMultColumn(eps->V,Op,j));
     203         673 :     which[j] = PETSC_TRUE;
     204         673 :     if (j-2>=k) which[j-2] = PETSC_FALSE;
     205         673 :     PetscCall(BVOrthogonalizeSomeColumn(eps->V,j+1,which,hwork,&norm,breakdown));
     206         673 :     alpha[j] = PetscRealPart(hwork[j]);
     207         673 :     beta[j] = norm;
     208         673 :     if (PetscUnlikely(*breakdown)) {
     209           0 :       *M = j+1;
     210           0 :       break;
     211             :     }
     212             : 
     213             :     /* Compute eigenvalues and eigenvectors Y of the tridiagonal block */
     214         673 :     n = j-k+1;
     215        6994 :     for (i=0;i<n;i++) {
     216        6321 :       d[i] = alpha[i+k];
     217        6321 :       e[i] = beta[i+k];
     218             :     }
     219         673 :     PetscCall(DenseTridiagonal(n,d,e,ritz,Y));
     220             : 
     221             :     /* Estimate ||A|| */
     222        6994 :     for (i=0;i<n;i++)
     223        6321 :       if (PetscAbsReal(ritz[i]) > anorm) anorm = PetscAbsReal(ritz[i]);
     224             : 
     225             :     /* Compute nearly converged Ritz vectors */
     226             :     nritzo = 0;
     227        6994 :     for (i=0;i<n;i++) {
     228        6321 :       if (norm*PetscAbsScalar(Y[i*n+n-1]) < PETSC_SQRT_MACHINE_EPSILON*anorm) nritzo++;
     229             :     }
     230         673 :     if (nritzo>nritz) {
     231             :       nritz = 0;
     232         196 :       for (i=0;i<n;i++) {
     233         173 :         if (norm*PetscAbsScalar(Y[i*n+n-1]) < PETSC_SQRT_MACHINE_EPSILON*anorm) {
     234          37 :           PetscCall(BVSetActiveColumns(eps->V,k,k+n));
     235          37 :           PetscCall(BVGetColumn(lanczos->AV,nritz,&av));
     236          37 :           PetscCall(BVMultVec(eps->V,1.0,0.0,av,Y+i*n));
     237          37 :           PetscCall(BVRestoreColumn(lanczos->AV,nritz,&av));
     238          37 :           nritz++;
     239             :         }
     240             :       }
     241             :     }
     242         673 :     if (nritz > 0) {
     243         247 :       PetscCall(BVGetColumn(eps->V,j+1,&vj1));
     244         247 :       PetscCall(BVSetActiveColumns(lanczos->AV,0,nritz));
     245         247 :       PetscCall(BVOrthogonalizeVec(lanczos->AV,vj1,hwork,&norm,breakdown));
     246         247 :       PetscCall(BVRestoreColumn(eps->V,j+1,&vj1));
     247         247 :       if (PetscUnlikely(*breakdown)) {
     248           0 :         *M = j+1;
     249           0 :         break;
     250             :       }
     251             :     }
     252         673 :     PetscCall(BVScaleColumn(eps->V,j+1,1.0/norm));
     253             :   }
     254             : 
     255          38 :   PetscCall(STRestoreOperator(eps->st,&Op));
     256          38 :   PetscCall(PetscFree6(d,e,ritz,Y,which,hwork));
     257          38 :   PetscFunctionReturn(PETSC_SUCCESS);
     258             : }
     259             : 
     260         768 : static void update_omega(PetscReal *omega,PetscReal *omega_old,PetscInt j,PetscReal *alpha,PetscReal *beta,PetscReal eps1,PetscReal anorm)
     261             : {
     262         768 :   PetscInt  k;
     263         768 :   PetscReal T,binv;
     264             : 
     265         768 :   PetscFunctionBegin;
     266             :   /* Estimate of contribution to roundoff errors from A*v
     267             :        fl(A*v) = A*v + f,
     268             :      where ||f|| \approx eps1*||A||.
     269             :      For a full matrix A, a rule-of-thumb estimate is eps1 = sqrt(n)*eps */
     270         768 :   T = eps1*anorm;
     271         768 :   binv = 1.0/beta[j+1];
     272             : 
     273             :   /* Update omega(1) using omega(0)==0 */
     274         768 :   omega_old[0]= beta[1]*omega[1] + (alpha[0]-alpha[j])*omega[0] - beta[j]*omega_old[0];
     275         768 :   if (omega_old[0] > 0) omega_old[0] = binv*(omega_old[0] + T);
     276         461 :   else omega_old[0] = binv*(omega_old[0] - T);
     277             : 
     278             :   /* Update remaining components */
     279        7014 :   for (k=1;k<j-1;k++) {
     280        6246 :     omega_old[k] = beta[k+1]*omega[k+1] + (alpha[k]-alpha[j])*omega[k] + beta[k]*omega[k-1] - beta[j]*omega_old[k];
     281        6246 :     if (omega_old[k] > 0) omega_old[k] = binv*(omega_old[k] + T);
     282        3192 :     else omega_old[k] = binv*(omega_old[k] - T);
     283             :   }
     284         768 :   omega_old[j-1] = binv*T;
     285             : 
     286             :   /* Swap omega and omega_old */
     287        8534 :   for (k=0;k<j;k++) {
     288        7766 :     omega[k] = omega_old[k];
     289        7766 :     omega_old[k] = omega[k];
     290             :   }
     291         768 :   omega[j] = eps1;
     292         768 :   PetscFunctionReturnVoid();
     293             : }
     294             : 
     295          48 : static void compute_int(PetscBool *which,PetscReal *mu,PetscInt j,PetscReal delta,PetscReal eta)
     296             : {
     297          48 :   PetscInt  i,k,maxpos;
     298          48 :   PetscReal max;
     299          48 :   PetscBool found;
     300             : 
     301          48 :   PetscFunctionBegin;
     302             :   /* initialize which */
     303          48 :   found = PETSC_FALSE;
     304          48 :   maxpos = 0;
     305          48 :   max = 0.0;
     306         755 :   for (i=0;i<j;i++) {
     307         707 :     if (PetscAbsReal(mu[i]) >= delta) {
     308         175 :       which[i] = PETSC_TRUE;
     309         175 :       found = PETSC_TRUE;
     310         532 :     } else which[i] = PETSC_FALSE;
     311         707 :     if (PetscAbsReal(mu[i]) > max) {
     312          78 :       maxpos = i;
     313          78 :       max = PetscAbsReal(mu[i]);
     314             :     }
     315             :   }
     316          48 :   if (!found) which[maxpos] = PETSC_TRUE;
     317             : 
     318         755 :   for (i=0;i<j;i++) {
     319         707 :     if (which[i]) {
     320             :       /* find left interval */
     321         623 :       for (k=i;k>=0;k--) {
     322         623 :         if (PetscAbsReal(mu[k])<eta || which[k]) break;
     323           0 :         else which[k] = PETSC_TRUE;
     324             :       }
     325             :       /* find right interval */
     326        1071 :       for (k=i+1;k<j;k++) {
     327        1037 :         if (PetscAbsReal(mu[k])<eta || which[k]) break;
     328         448 :         else which[k] = PETSC_TRUE;
     329             :       }
     330             :     }
     331             :   }
     332          48 :   PetscFunctionReturnVoid();
     333             : }
     334             : 
     335             : /*
     336             :    EPSPartialLanczos - Partial reorthogonalization.
     337             : */
     338          76 : static PetscErrorCode EPSPartialLanczos(EPS eps,PetscReal *alpha,PetscReal *beta,PetscInt k,PetscInt *M,PetscBool *breakdown,PetscReal anorm)
     339             : {
     340          76 :   EPS_LANCZOS    *lanczos = (EPS_LANCZOS*)eps->data;
     341          76 :   PetscInt       i,j,m = *M;
     342          76 :   Mat            Op;
     343          76 :   PetscReal      norm,*omega,lomega[100],*omega_old,lomega_old[100],eps1,delta,eta;
     344          76 :   PetscBool      *which,lwhich[100],*which2,lwhich2[100];
     345          76 :   PetscBool      reorth = PETSC_FALSE,force_reorth = PETSC_FALSE;
     346          76 :   PetscBool      fro = PETSC_FALSE,estimate_anorm = PETSC_FALSE;
     347          76 :   PetscScalar    *hwork,lhwork[100];
     348             : 
     349          76 :   PetscFunctionBegin;
     350          76 :   if (m>100) PetscCall(PetscMalloc5(m,&omega,m,&omega_old,m,&which,m,&which2,m,&hwork));
     351             :   else {
     352          76 :     omega     = lomega;
     353          76 :     omega_old = lomega_old;
     354          76 :     which     = lwhich;
     355          76 :     which2    = lwhich2;
     356          76 :     hwork     = lhwork;
     357             :   }
     358             : 
     359          76 :   eps1 = PetscSqrtReal((PetscReal)eps->n)*PETSC_MACHINE_EPSILON/2;
     360          76 :   delta = PETSC_SQRT_MACHINE_EPSILON/PetscSqrtReal((PetscReal)eps->ncv);
     361          76 :   eta = PetscPowReal(PETSC_MACHINE_EPSILON,3.0/4.0)/PetscSqrtReal((PetscReal)eps->ncv);
     362          76 :   if (anorm < 0.0) {
     363           6 :     anorm = 1.0;
     364           6 :     estimate_anorm = PETSC_TRUE;
     365             :   }
     366        7676 :   for (i=0;i<PetscMax(100,m);i++) omega[i] = omega_old[i] = 0.0;
     367         174 :   for (i=0;i<k;i++) which[i] = PETSC_TRUE;
     368             : 
     369          76 :   PetscCall(BVSetActiveColumns(eps->V,0,m));
     370          76 :   PetscCall(STGetOperator(eps->st,&Op));
     371        1422 :   for (j=k;j<m;j++) {
     372        1346 :     PetscCall(BVMatMultColumn(eps->V,Op,j));
     373        1346 :     if (fro) {
     374             :       /* Lanczos step with full reorthogonalization */
     375         502 :       PetscCall(BVOrthogonalizeColumn(eps->V,j+1,hwork,&norm,breakdown));
     376         502 :       alpha[j] = PetscRealPart(hwork[j]);
     377             :     } else {
     378             :       /* Lanczos step */
     379         844 :       which[j] = PETSC_TRUE;
     380         844 :       if (j-2>=k) which[j-2] = PETSC_FALSE;
     381         844 :       PetscCall(BVOrthogonalizeSomeColumn(eps->V,j+1,which,hwork,&norm,breakdown));
     382         844 :       alpha[j] = PetscRealPart(hwork[j]);
     383         844 :       beta[j] = norm;
     384             : 
     385             :       /* Estimate ||A|| if needed */
     386         844 :       if (estimate_anorm) {
     387         114 :         if (j>k) anorm = PetscMax(anorm,PetscAbsReal(alpha[j])+norm+beta[j-1]);
     388           6 :         else anorm = PetscMax(anorm,PetscAbsReal(alpha[j])+norm);
     389             :       }
     390             : 
     391             :       /* Check if reorthogonalization is needed */
     392         844 :       reorth = PETSC_FALSE;
     393         844 :       if (j>k) {
     394         768 :         update_omega(omega,omega_old,j,alpha,beta-1,eps1,anorm);
     395        8362 :         for (i=0;i<j-k;i++) {
     396        6826 :           if (PetscAbsReal(omega[i]) > delta) reorth = PETSC_TRUE;
     397             :         }
     398             :       }
     399         844 :       if (reorth || force_reorth) {
     400         290 :         for (i=0;i<k;i++) which2[i] = PETSC_FALSE;
     401        2653 :         for (i=k;i<=j;i++) which2[i] = PETSC_TRUE;
     402         159 :         if (lanczos->reorthog == EPS_LANCZOS_REORTHOG_PERIODIC) {
     403             :           /* Periodic reorthogonalization */
     404          79 :           if (force_reorth) force_reorth = PETSC_FALSE;
     405          47 :           else force_reorth = PETSC_TRUE;
     406        1238 :           for (i=0;i<j-k;i++) omega[i] = eps1;
     407             :         } else {
     408             :           /* Partial reorthogonalization */
     409          80 :           if (force_reorth) force_reorth = PETSC_FALSE;
     410             :           else {
     411          48 :             force_reorth = PETSC_TRUE;
     412          48 :             compute_int(which2+k,omega,j-k,delta,eta);
     413         803 :             for (i=0;i<j-k;i++) {
     414         707 :               if (which2[i+k]) omega[i] = eps1;
     415             :             }
     416             :           }
     417             :         }
     418         159 :         PetscCall(BVOrthogonalizeSomeColumn(eps->V,j+1,which2,hwork,&norm,breakdown));
     419             :       }
     420             :     }
     421             : 
     422        1346 :     if (PetscUnlikely(*breakdown || norm < eps->n*anorm*PETSC_MACHINE_EPSILON)) {
     423           0 :       *M = j+1;
     424           0 :       break;
     425             :     }
     426        1346 :     if (!fro && norm*delta < anorm*eps1) {
     427          30 :       fro = PETSC_TRUE;
     428          30 :       PetscCall(PetscInfo(eps,"Switching to full reorthogonalization at iteration %" PetscInt_FMT "\n",eps->its));
     429             :     }
     430        1346 :     beta[j] = norm;
     431        1346 :     PetscCall(BVScaleColumn(eps->V,j+1,1.0/norm));
     432             :   }
     433             : 
     434          76 :   PetscCall(STRestoreOperator(eps->st,&Op));
     435          76 :   if (m>100) PetscCall(PetscFree5(omega,omega_old,which,which2,hwork));
     436          76 :   PetscFunctionReturn(PETSC_SUCCESS);
     437             : }
     438             : 
     439             : /*
     440             :    EPSBasicLanczos - Computes an m-step Lanczos factorization. The first k
     441             :    columns are assumed to be locked and therefore they are not modified. On
     442             :    exit, the following relation is satisfied:
     443             : 
     444             :                     OP * V - V * T = f * e_m^T
     445             : 
     446             :    where the columns of V are the Lanczos vectors, T is a tridiagonal matrix,
     447             :    f is the residual vector and e_m is the m-th vector of the canonical basis.
     448             :    The Lanczos vectors (together with vector f) are B-orthogonal (to working
     449             :    accuracy) if full reorthogonalization is being used, otherwise they are
     450             :    (B-)semi-orthogonal. On exit, beta contains the B-norm of f and the next
     451             :    Lanczos vector can be computed as v_{m+1} = f / beta.
     452             : 
     453             :    This function simply calls another function which depends on the selected
     454             :    reorthogonalization strategy.
     455             : */
     456         932 : static PetscErrorCode EPSBasicLanczos(EPS eps,PetscInt k,PetscInt *m,PetscReal *betam,PetscBool *breakdown,PetscReal anorm)
     457             : {
     458         932 :   EPS_LANCZOS        *lanczos = (EPS_LANCZOS*)eps->data;
     459         932 :   PetscScalar        *T;
     460         932 :   PetscInt           i,n=*m,ld;
     461         932 :   PetscReal          *alpha,*beta;
     462         932 :   BVOrthogRefineType orthog_ref;
     463         932 :   Mat                Op,M;
     464             : 
     465         932 :   PetscFunctionBegin;
     466         932 :   PetscCall(DSGetLeadingDimension(eps->ds,&ld));
     467         932 :   switch (lanczos->reorthog) {
     468         520 :     case EPS_LANCZOS_REORTHOG_LOCAL:
     469         520 :       PetscCall(DSGetArrayReal(eps->ds,DS_MAT_T,&alpha));
     470         520 :       beta = alpha + ld;
     471         520 :       PetscCall(EPSLocalLanczos(eps,alpha,beta,k,m,breakdown));
     472         520 :       *betam = beta[*m-1];
     473         520 :       PetscCall(DSRestoreArrayReal(eps->ds,DS_MAT_T,&alpha));
     474             :       break;
     475         271 :     case EPS_LANCZOS_REORTHOG_FULL:
     476         271 :       PetscCall(STGetOperator(eps->st,&Op));
     477         271 :       PetscCall(DSGetMat(eps->ds,DS_MAT_T,&M));
     478         271 :       PetscCall(BVMatLanczos(eps->V,Op,M,k,m,betam,breakdown));
     479         271 :       PetscCall(DSRestoreMat(eps->ds,DS_MAT_T,&M));
     480         271 :       PetscCall(STRestoreOperator(eps->st,&Op));
     481             :       break;
     482          38 :     case EPS_LANCZOS_REORTHOG_SELECTIVE:
     483          38 :       PetscCall(DSGetArrayReal(eps->ds,DS_MAT_T,&alpha));
     484          38 :       beta = alpha + ld;
     485          38 :       PetscCall(EPSSelectiveLanczos(eps,alpha,beta,k,m,breakdown,anorm));
     486          38 :       *betam = beta[*m-1];
     487          38 :       PetscCall(DSRestoreArrayReal(eps->ds,DS_MAT_T,&alpha));
     488             :       break;
     489          76 :     case EPS_LANCZOS_REORTHOG_PERIODIC:
     490             :     case EPS_LANCZOS_REORTHOG_PARTIAL:
     491          76 :       PetscCall(DSGetArrayReal(eps->ds,DS_MAT_T,&alpha));
     492          76 :       beta = alpha + ld;
     493          76 :       PetscCall(EPSPartialLanczos(eps,alpha,beta,k,m,breakdown,anorm));
     494          76 :       *betam = beta[*m-1];
     495          76 :       PetscCall(DSRestoreArrayReal(eps->ds,DS_MAT_T,&alpha));
     496             :       break;
     497          27 :     case EPS_LANCZOS_REORTHOG_DELAYED:
     498          27 :       PetscCall(PetscMalloc1(n*n,&T));
     499          27 :       PetscCall(BVGetOrthogonalization(eps->V,NULL,&orthog_ref,NULL,NULL));
     500          27 :       if (orthog_ref == BV_ORTHOG_REFINE_NEVER) PetscCall(EPSDelayedArnoldi1(eps,T,n,k,m,betam,breakdown));
     501          27 :       else PetscCall(EPSDelayedArnoldi(eps,T,n,k,m,betam,breakdown));
     502          27 :       n = *m;
     503          27 :       PetscCall(DSGetArrayReal(eps->ds,DS_MAT_T,&alpha));
     504          27 :       beta = alpha + ld;
     505         472 :       for (i=k;i<n-1;i++) {
     506         445 :         alpha[i] = PetscRealPart(T[n*i+i]);
     507         445 :         beta[i] = PetscRealPart(T[n*i+i+1]);
     508             :       }
     509          27 :       alpha[n-1] = PetscRealPart(T[n*(n-1)+n-1]);
     510          27 :       beta[n-1] = *betam;
     511          27 :       PetscCall(DSRestoreArrayReal(eps->ds,DS_MAT_T,&alpha));
     512          27 :       PetscCall(PetscFree(T));
     513             :       break;
     514             :   }
     515         932 :   PetscFunctionReturn(PETSC_SUCCESS);
     516             : }
     517             : 
     518          36 : static PetscErrorCode EPSSolve_Lanczos(EPS eps)
     519             : {
     520          36 :   EPS_LANCZOS    *lanczos = (EPS_LANCZOS*)eps->data;
     521          36 :   PetscInt       nconv,i,j,k,l,x,n,*perm,restart,ncv=eps->ncv,r,ld;
     522          36 :   Vec            vi,vj,w;
     523          36 :   Mat            U;
     524          36 :   PetscScalar    *Y,*ritz,stmp;
     525          36 :   PetscReal      *bnd,anorm,beta,norm,rtmp,resnorm;
     526          36 :   PetscBool      breakdown;
     527          36 :   char           *conv,ctmp;
     528             : 
     529          36 :   PetscFunctionBegin;
     530          36 :   PetscCall(DSGetLeadingDimension(eps->ds,&ld));
     531          36 :   PetscCall(PetscMalloc4(ncv,&ritz,ncv,&bnd,ncv,&perm,ncv,&conv));
     532             : 
     533             :   /* The first Lanczos vector is the normalized initial vector */
     534          36 :   PetscCall(EPSGetStartVector(eps,0,NULL));
     535             : 
     536             :   anorm = -1.0;
     537             :   nconv = 0;
     538             : 
     539             :   /* Restart loop */
     540         968 :   while (eps->reason == EPS_CONVERGED_ITERATING) {
     541         932 :     eps->its++;
     542             : 
     543             :     /* Compute an ncv-step Lanczos factorization */
     544         932 :     n = PetscMin(nconv+eps->mpd,ncv);
     545         932 :     PetscCall(DSSetDimensions(eps->ds,n,nconv,PETSC_DETERMINE));
     546         932 :     PetscCall(EPSBasicLanczos(eps,nconv,&n,&beta,&breakdown,anorm));
     547         932 :     PetscCall(DSSetDimensions(eps->ds,n,nconv,0));
     548         932 :     PetscCall(DSSetState(eps->ds,DS_STATE_INTERMEDIATE));
     549         932 :     PetscCall(BVSetActiveColumns(eps->V,nconv,n));
     550             : 
     551             :     /* Solve projected problem */
     552         932 :     PetscCall(DSSolve(eps->ds,ritz,NULL));
     553         932 :     PetscCall(DSSort(eps->ds,ritz,NULL,NULL,NULL,NULL));
     554         932 :     PetscCall(DSSynchronize(eps->ds,ritz,NULL));
     555             : 
     556             :     /* Estimate ||A|| */
     557       13272 :     for (i=nconv;i<n;i++)
     558       12761 :       anorm = PetscMax(anorm,PetscAbsReal(PetscRealPart(ritz[i])));
     559             : 
     560             :     /* Compute residual norm estimates as beta*abs(Y(m,:)) + eps*||A|| */
     561         932 :     PetscCall(DSGetArray(eps->ds,DS_MAT_Q,&Y));
     562       13272 :     for (i=nconv;i<n;i++) {
     563       12340 :       resnorm = beta*PetscAbsScalar(Y[n-1+i*ld]) + PETSC_MACHINE_EPSILON*anorm;
     564       12340 :       PetscCall((*eps->converged)(eps,ritz[i],eps->eigi[i],resnorm,&bnd[i],eps->convergedctx));
     565       12340 :       if (bnd[i]<eps->tol) conv[i] = 'C';
     566       12171 :       else conv[i] = 'N';
     567             :     }
     568         932 :     PetscCall(DSRestoreArray(eps->ds,DS_MAT_Q,&Y));
     569             : 
     570             :     /* purge repeated ritz values */
     571         932 :     if (lanczos->reorthog == EPS_LANCZOS_REORTHOG_LOCAL) {
     572        7058 :       for (i=nconv+1;i<n;i++) {
     573        6538 :         if (conv[i] == 'C' && PetscAbsScalar((ritz[i]-ritz[i-1])/ritz[i]) < eps->tol) conv[i] = 'R';
     574             :       }
     575             :     }
     576             : 
     577             :     /* Compute restart vector */
     578         932 :     if (breakdown) PetscCall(PetscInfo(eps,"Breakdown in Lanczos method (it=%" PetscInt_FMT " norm=%g)\n",eps->its,(double)beta));
     579             :     else {
     580             :       restart = nconv;
     581        1078 :       while (restart<n && conv[restart] != 'N') restart++;
     582         931 :       if (restart >= n) {
     583           0 :         breakdown = PETSC_TRUE;
     584             :       } else {
     585       12175 :         for (i=restart+1;i<n;i++) {
     586       11244 :           if (conv[i] == 'N') {
     587       11240 :             PetscCall(SlepcSCCompare(eps->sc,ritz[restart],0.0,ritz[i],0.0,&r));
     588       11240 :             if (r>0) restart = i;
     589             :           }
     590             :         }
     591         931 :         PetscCall(DSGetArray(eps->ds,DS_MAT_Q,&Y));
     592         931 :         PetscCall(BVMultColumn(eps->V,1.0,0.0,n,Y+restart*ld+nconv));
     593         931 :         PetscCall(DSRestoreArray(eps->ds,DS_MAT_Q,&Y));
     594             :       }
     595             :     }
     596             : 
     597             :     /* Count and put converged eigenvalues first */
     598       13272 :     for (i=nconv;i<n;i++) perm[i] = i;
     599        1098 :     for (k=nconv;k<n;k++) {
     600        1097 :       if (conv[perm[k]] != 'C') {
     601         934 :         j = k + 1;
     602       12181 :         while (j<n && conv[perm[j]] != 'C') j++;
     603         934 :         if (j>=n) break;
     604           3 :         l = perm[k]; perm[k] = perm[j]; perm[j] = l;
     605             :       }
     606             :     }
     607             : 
     608             :     /* Sort eigenvectors according to permutation */
     609         932 :     PetscCall(DSGetArray(eps->ds,DS_MAT_Q,&Y));
     610        1098 :     for (i=nconv;i<k;i++) {
     611         166 :       x = perm[i];
     612         166 :       if (x != i) {
     613           3 :         j = i + 1;
     614           7 :         while (perm[j] != i) j++;
     615             :         /* swap eigenvalues i and j */
     616           3 :         stmp = ritz[x]; ritz[x] = ritz[i]; ritz[i] = stmp;
     617           3 :         rtmp = bnd[x]; bnd[x] = bnd[i]; bnd[i] = rtmp;
     618           3 :         ctmp = conv[x]; conv[x] = conv[i]; conv[i] = ctmp;
     619           3 :         perm[j] = x; perm[i] = i;
     620             :         /* swap eigenvectors i and j */
     621          60 :         for (l=0;l<n;l++) {
     622          57 :           stmp = Y[l+x*ld]; Y[l+x*ld] = Y[l+i*ld]; Y[l+i*ld] = stmp;
     623             :         }
     624             :       }
     625             :     }
     626         932 :     PetscCall(DSRestoreArray(eps->ds,DS_MAT_Q,&Y));
     627             : 
     628             :     /* compute converged eigenvectors */
     629         932 :     PetscCall(DSGetMat(eps->ds,DS_MAT_Q,&U));
     630         932 :     PetscCall(BVMultInPlace(eps->V,U,nconv,k));
     631         932 :     PetscCall(DSRestoreMat(eps->ds,DS_MAT_Q,&U));
     632             : 
     633             :     /* purge spurious ritz values */
     634         932 :     if (lanczos->reorthog == EPS_LANCZOS_REORTHOG_LOCAL) {
     635         595 :       for (i=nconv;i<k;i++) {
     636          75 :         PetscCall(BVGetColumn(eps->V,i,&vi));
     637          75 :         PetscCall(VecNorm(vi,NORM_2,&norm));
     638          75 :         PetscCall(VecScale(vi,1.0/norm));
     639          75 :         w = eps->work[0];
     640          75 :         PetscCall(STApply(eps->st,vi,w));
     641          75 :         PetscCall(VecAXPY(w,-ritz[i],vi));
     642          75 :         PetscCall(BVRestoreColumn(eps->V,i,&vi));
     643          75 :         PetscCall(VecNorm(w,NORM_2,&norm));
     644          75 :         PetscCall((*eps->converged)(eps,ritz[i],eps->eigi[i],norm,&bnd[i],eps->convergedctx));
     645          75 :         if (bnd[i]>=eps->tol) conv[i] = 'S';
     646             :       }
     647         594 :       for (i=nconv;i<k;i++) {
     648          75 :         if (conv[i] != 'C') {
     649           1 :           j = i + 1;
     650           1 :           while (j<k && conv[j] != 'C') j++;
     651           1 :           if (j>=k) break;
     652             :           /* swap eigenvalues i and j */
     653           0 :           stmp = ritz[j]; ritz[j] = ritz[i]; ritz[i] = stmp;
     654           0 :           rtmp = bnd[j]; bnd[j] = bnd[i]; bnd[i] = rtmp;
     655           0 :           ctmp = conv[j]; conv[j] = conv[i]; conv[i] = ctmp;
     656             :           /* swap eigenvectors i and j */
     657           0 :           PetscCall(BVGetColumn(eps->V,i,&vi));
     658           0 :           PetscCall(BVGetColumn(eps->V,j,&vj));
     659           0 :           PetscCall(VecSwap(vi,vj));
     660           0 :           PetscCall(BVRestoreColumn(eps->V,i,&vi));
     661          74 :           PetscCall(BVRestoreColumn(eps->V,j,&vj));
     662             :         }
     663             :       }
     664             :       k = i;
     665             :     }
     666             : 
     667             :     /* store ritz values and estimated errors */
     668       13272 :     for (i=nconv;i<n;i++) {
     669       12340 :       eps->eigr[i] = ritz[i];
     670       12340 :       eps->errest[i] = bnd[i];
     671             :     }
     672         932 :     nconv = k;
     673         932 :     PetscCall(EPSMonitor(eps,eps->its,nconv,eps->eigr,eps->eigi,eps->errest,n));
     674         932 :     PetscCall((*eps->stopping)(eps,eps->its,eps->max_it,nconv,eps->nev,&eps->reason,eps->stoppingctx));
     675             : 
     676         932 :     if (eps->reason == EPS_CONVERGED_ITERATING) { /* copy restart vector */
     677         896 :       PetscCall(BVCopyColumn(eps->V,n,nconv));
     678         896 :       if (lanczos->reorthog == EPS_LANCZOS_REORTHOG_LOCAL && !breakdown) {
     679             :         /* Reorthonormalize restart vector */
     680         502 :         PetscCall(BVOrthonormalizeColumn(eps->V,nconv,PETSC_FALSE,NULL,&breakdown));
     681             :       }
     682         896 :       if (breakdown) {
     683             :         /* Use random vector for restarting */
     684           0 :         PetscCall(PetscInfo(eps,"Using random vector for restart\n"));
     685           0 :         PetscCall(EPSGetStartVector(eps,nconv,&breakdown));
     686             :       }
     687         896 :       if (PetscUnlikely(breakdown)) { /* give up */
     688           0 :         eps->reason = EPS_DIVERGED_BREAKDOWN;
     689         968 :         PetscCall(PetscInfo(eps,"Unable to generate more start vectors\n"));
     690             :       }
     691             :     }
     692             :   }
     693          36 :   eps->nconv = nconv;
     694             : 
     695          36 :   PetscCall(PetscFree4(ritz,bnd,perm,conv));
     696          36 :   PetscFunctionReturn(PETSC_SUCCESS);
     697             : }
     698             : 
     699          18 : static PetscErrorCode EPSSetFromOptions_Lanczos(EPS eps,PetscOptionItems *PetscOptionsObject)
     700             : {
     701          18 :   EPS_LANCZOS            *lanczos = (EPS_LANCZOS*)eps->data;
     702          18 :   PetscBool              flg;
     703          18 :   EPSLanczosReorthogType reorthog=EPS_LANCZOS_REORTHOG_LOCAL,curval;
     704             : 
     705          18 :   PetscFunctionBegin;
     706          18 :   PetscOptionsHeadBegin(PetscOptionsObject,"EPS Lanczos Options");
     707             : 
     708          18 :     curval = (lanczos->reorthog==(EPSLanczosReorthogType)-1)? EPS_LANCZOS_REORTHOG_LOCAL: lanczos->reorthog;
     709          18 :     PetscCall(PetscOptionsEnum("-eps_lanczos_reorthog","Lanczos reorthogonalization","EPSLanczosSetReorthog",EPSLanczosReorthogTypes,(PetscEnum)curval,(PetscEnum*)&reorthog,&flg));
     710          18 :     if (flg) PetscCall(EPSLanczosSetReorthog(eps,reorthog));
     711             : 
     712          18 :   PetscOptionsHeadEnd();
     713          18 :   PetscFunctionReturn(PETSC_SUCCESS);
     714             : }
     715             : 
     716          19 : static PetscErrorCode EPSLanczosSetReorthog_Lanczos(EPS eps,EPSLanczosReorthogType reorthog)
     717             : {
     718          19 :   EPS_LANCZOS *lanczos = (EPS_LANCZOS*)eps->data;
     719             : 
     720          19 :   PetscFunctionBegin;
     721          19 :   switch (reorthog) {
     722          19 :     case EPS_LANCZOS_REORTHOG_LOCAL:
     723             :     case EPS_LANCZOS_REORTHOG_FULL:
     724             :     case EPS_LANCZOS_REORTHOG_DELAYED:
     725             :     case EPS_LANCZOS_REORTHOG_SELECTIVE:
     726             :     case EPS_LANCZOS_REORTHOG_PERIODIC:
     727             :     case EPS_LANCZOS_REORTHOG_PARTIAL:
     728          19 :       if (lanczos->reorthog != reorthog) {
     729          19 :         lanczos->reorthog = reorthog;
     730          19 :         eps->state = EPS_STATE_INITIAL;
     731             :       }
     732          19 :       break;
     733           0 :     default:
     734           0 :       SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"Invalid reorthogonalization type");
     735             :   }
     736          19 :   PetscFunctionReturn(PETSC_SUCCESS);
     737             : }
     738             : 
     739             : /*@
     740             :    EPSLanczosSetReorthog - Sets the type of reorthogonalization used during the Lanczos
     741             :    iteration.
     742             : 
     743             :    Logically Collective
     744             : 
     745             :    Input Parameters:
     746             : +  eps - the eigenproblem solver context
     747             : -  reorthog - the type of reorthogonalization
     748             : 
     749             :    Options Database Key:
     750             : .  -eps_lanczos_reorthog - Sets the reorthogonalization type (either 'local', 'selective',
     751             :                          'periodic', 'partial', 'full' or 'delayed')
     752             : 
     753             :    Level: advanced
     754             : 
     755             : .seealso: EPSLanczosGetReorthog(), EPSLanczosReorthogType
     756             : @*/
     757          19 : PetscErrorCode EPSLanczosSetReorthog(EPS eps,EPSLanczosReorthogType reorthog)
     758             : {
     759          19 :   PetscFunctionBegin;
     760          19 :   PetscValidHeaderSpecific(eps,EPS_CLASSID,1);
     761          57 :   PetscValidLogicalCollectiveEnum(eps,reorthog,2);
     762          19 :   PetscTryMethod(eps,"EPSLanczosSetReorthog_C",(EPS,EPSLanczosReorthogType),(eps,reorthog));
     763          19 :   PetscFunctionReturn(PETSC_SUCCESS);
     764             : }
     765             : 
     766           5 : static PetscErrorCode EPSLanczosGetReorthog_Lanczos(EPS eps,EPSLanczosReorthogType *reorthog)
     767             : {
     768           5 :   EPS_LANCZOS *lanczos = (EPS_LANCZOS*)eps->data;
     769             : 
     770           5 :   PetscFunctionBegin;
     771           5 :   *reorthog = lanczos->reorthog;
     772           5 :   PetscFunctionReturn(PETSC_SUCCESS);
     773             : }
     774             : 
     775             : /*@
     776             :    EPSLanczosGetReorthog - Gets the type of reorthogonalization used during
     777             :    the Lanczos iteration.
     778             : 
     779             :    Not Collective
     780             : 
     781             :    Input Parameter:
     782             : .  eps - the eigenproblem solver context
     783             : 
     784             :    Output Parameter:
     785             : .  reorthog - the type of reorthogonalization
     786             : 
     787             :    Level: advanced
     788             : 
     789             : .seealso: EPSLanczosSetReorthog(), EPSLanczosReorthogType
     790             : @*/
     791           5 : PetscErrorCode EPSLanczosGetReorthog(EPS eps,EPSLanczosReorthogType *reorthog)
     792             : {
     793           5 :   PetscFunctionBegin;
     794           5 :   PetscValidHeaderSpecific(eps,EPS_CLASSID,1);
     795           5 :   PetscAssertPointer(reorthog,2);
     796           5 :   PetscUseMethod(eps,"EPSLanczosGetReorthog_C",(EPS,EPSLanczosReorthogType*),(eps,reorthog));
     797           5 :   PetscFunctionReturn(PETSC_SUCCESS);
     798             : }
     799             : 
     800          22 : static PetscErrorCode EPSReset_Lanczos(EPS eps)
     801             : {
     802          22 :   EPS_LANCZOS    *lanczos = (EPS_LANCZOS*)eps->data;
     803             : 
     804          22 :   PetscFunctionBegin;
     805          22 :   PetscCall(BVDestroy(&lanczos->AV));
     806          22 :   lanczos->allocsize = 0;
     807          22 :   PetscFunctionReturn(PETSC_SUCCESS);
     808             : }
     809             : 
     810          19 : static PetscErrorCode EPSDestroy_Lanczos(EPS eps)
     811             : {
     812          19 :   PetscFunctionBegin;
     813          19 :   PetscCall(PetscFree(eps->data));
     814          19 :   PetscCall(PetscObjectComposeFunction((PetscObject)eps,"EPSLanczosSetReorthog_C",NULL));
     815          19 :   PetscCall(PetscObjectComposeFunction((PetscObject)eps,"EPSLanczosGetReorthog_C",NULL));
     816          19 :   PetscFunctionReturn(PETSC_SUCCESS);
     817             : }
     818             : 
     819           0 : static PetscErrorCode EPSView_Lanczos(EPS eps,PetscViewer viewer)
     820             : {
     821           0 :   EPS_LANCZOS    *lanczos = (EPS_LANCZOS*)eps->data;
     822           0 :   PetscBool      isascii;
     823             : 
     824           0 :   PetscFunctionBegin;
     825           0 :   PetscCall(PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&isascii));
     826           0 :   if (isascii) {
     827           0 :     if (lanczos->reorthog != (EPSLanczosReorthogType)-1) PetscCall(PetscViewerASCIIPrintf(viewer,"  %s reorthogonalization\n",EPSLanczosReorthogTypes[lanczos->reorthog]));
     828             :   }
     829           0 :   PetscFunctionReturn(PETSC_SUCCESS);
     830             : }
     831             : 
     832          19 : SLEPC_EXTERN PetscErrorCode EPSCreate_Lanczos(EPS eps)
     833             : {
     834          19 :   EPS_LANCZOS    *ctx;
     835             : 
     836          19 :   PetscFunctionBegin;
     837          19 :   PetscCall(PetscNew(&ctx));
     838          19 :   eps->data = (void*)ctx;
     839          19 :   ctx->reorthog = (EPSLanczosReorthogType)-1;
     840             : 
     841          19 :   eps->useds = PETSC_TRUE;
     842             : 
     843          19 :   eps->ops->solve          = EPSSolve_Lanczos;
     844          19 :   eps->ops->setup          = EPSSetUp_Lanczos;
     845          19 :   eps->ops->setupsort      = EPSSetUpSort_Default;
     846          19 :   eps->ops->setfromoptions = EPSSetFromOptions_Lanczos;
     847          19 :   eps->ops->destroy        = EPSDestroy_Lanczos;
     848          19 :   eps->ops->reset          = EPSReset_Lanczos;
     849          19 :   eps->ops->view           = EPSView_Lanczos;
     850          19 :   eps->ops->backtransform  = EPSBackTransform_Default;
     851          19 :   eps->ops->computevectors = EPSComputeVectors_Hermitian;
     852             : 
     853          19 :   PetscCall(PetscObjectComposeFunction((PetscObject)eps,"EPSLanczosSetReorthog_C",EPSLanczosSetReorthog_Lanczos));
     854          19 :   PetscCall(PetscObjectComposeFunction((PetscObject)eps,"EPSLanczosGetReorthog_C",EPSLanczosGetReorthog_Lanczos));
     855          19 :   PetscFunctionReturn(PETSC_SUCCESS);
     856             : }

Generated by: LCOV version 1.14