Line data Source code
1 : /*
2 : - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3 : SLEPc - Scalable Library for Eigenvalue Problem Computations
4 : Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
5 :
6 : This file is part of SLEPc.
7 : SLEPc is distributed under a 2-clause BSD license (see LICENSE).
8 : - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9 : */
10 : /*
11 : SLEPc eigensolver: "krylovschur"
12 :
13 : Method: Two-sided Arnoldi with Krylov-Schur restart (for left eigenvectors)
14 :
15 : References:
16 :
17 : [1] I.N. Zwaan and M.E. Hochstenbach, "Krylov-Schur-type restarts
18 : for the two-sided Arnoldi method", SIAM J. Matrix Anal. Appl.
19 : 38(2):297-321, 2017.
20 :
21 : */
22 :
23 : #include <slepc/private/epsimpl.h>
24 : #include "krylovschur.h"
25 : #include <slepcblaslapack.h>
26 :
27 77 : static PetscErrorCode EPSTwoSidedRQUpdate1(EPS eps,Mat M,PetscInt nv,PetscReal beta,PetscReal betat)
28 : {
29 77 : PetscScalar *T,*S,*A,*w;
30 77 : const PetscScalar *pM;
31 77 : Vec u;
32 77 : PetscInt ld,ncv=eps->ncv,i,l,nnv;
33 77 : PetscBLASInt info,n_,ncv_,*p,one=1;
34 :
35 77 : PetscFunctionBegin;
36 77 : PetscCall(DSGetLeadingDimension(eps->ds,&ld));
37 77 : PetscCall(PetscMalloc3(nv,&p,ncv*ncv,&A,ncv,&w));
38 77 : PetscCall(BVGetActiveColumns(eps->V,&l,&nnv));
39 77 : PetscCall(BVSetActiveColumns(eps->V,0,nv));
40 77 : PetscCall(BVSetActiveColumns(eps->W,0,nv));
41 77 : PetscCall(BVGetColumn(eps->V,nv,&u));
42 77 : PetscCall(BVDotVec(eps->W,u,w));
43 77 : PetscCall(BVRestoreColumn(eps->V,nv,&u));
44 77 : PetscCall(MatDenseGetArrayRead(M,&pM));
45 77 : PetscCall(PetscArraycpy(A,pM,ncv*ncv));
46 77 : PetscCall(MatDenseRestoreArrayRead(M,&pM));
47 77 : PetscCall(PetscBLASIntCast(nv,&n_));
48 77 : PetscCall(PetscBLASIntCast(ncv,&ncv_));
49 77 : PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
50 77 : PetscCallBLAS("LAPACKgetrf",LAPACKgetrf_(&n_,&n_,A,&ncv_,p,&info));
51 77 : SlepcCheckLapackInfo("getrf",info);
52 77 : PetscCall(PetscLogFlops(2.0*n_*n_*n_/3.0));
53 77 : PetscCallBLAS("LAPACKgetrs",LAPACKgetrs_("N",&n_,&one,A,&ncv_,p,w,&ncv_,&info));
54 77 : SlepcCheckLapackInfo("getrs",info);
55 77 : PetscCall(PetscLogFlops(2.0*n_*n_-n_));
56 77 : PetscCall(BVMultColumn(eps->V,-1.0,1.0,nv,w));
57 77 : PetscCall(DSGetArray(eps->ds,DS_MAT_A,&S));
58 1542 : for (i=0;i<nv;i++) S[(nv-1)*ld+i] += beta*w[i];
59 77 : PetscCall(DSRestoreArray(eps->ds,DS_MAT_A,&S));
60 77 : PetscCall(BVGetColumn(eps->W,nv,&u));
61 77 : PetscCall(BVDotVec(eps->V,u,w));
62 77 : PetscCall(BVRestoreColumn(eps->W,nv,&u));
63 77 : PetscCallBLAS("LAPACKgetrs",LAPACKgetrs_("C",&n_,&one,A,&ncv_,p,w,&ncv_,&info));
64 77 : PetscCall(PetscFPTrapPop());
65 77 : PetscCall(BVMultColumn(eps->W,-1.0,1.0,nv,w));
66 77 : PetscCall(DSGetArray(eps->ds,DS_MAT_B,&T));
67 1542 : for (i=0;i<nv;i++) T[(nv-1)*ld+i] += betat*w[i];
68 77 : PetscCall(DSRestoreArray(eps->ds,DS_MAT_B,&T));
69 77 : PetscCall(PetscFree3(p,A,w));
70 77 : PetscCall(BVSetActiveColumns(eps->V,l,nnv));
71 77 : PetscCall(BVSetActiveColumns(eps->W,l,nnv));
72 77 : PetscFunctionReturn(PETSC_SUCCESS);
73 : }
74 :
75 64 : static PetscErrorCode EPSTwoSidedRQUpdate2(EPS eps,Mat M,PetscInt k)
76 : {
77 64 : PetscScalar *Q,*pM,*w,zero=0.0,sone=1.0,*c,*A;
78 64 : PetscBLASInt n_,ncv_,ld_;
79 64 : PetscReal norm;
80 64 : PetscInt l,nv,ncv=eps->ncv,ld,i,j;
81 :
82 64 : PetscFunctionBegin;
83 64 : PetscCall(DSGetLeadingDimension(eps->ds,&ld));
84 64 : PetscCall(BVGetActiveColumns(eps->V,&l,&nv));
85 64 : PetscCall(BVSetActiveColumns(eps->V,0,nv));
86 64 : PetscCall(BVSetActiveColumns(eps->W,0,nv));
87 64 : PetscCall(PetscMalloc2(ncv*ncv,&w,ncv,&c));
88 : /* u = u - V*V'*u */
89 64 : PetscCall(BVOrthogonalizeColumn(eps->V,k,c,&norm,NULL));
90 64 : PetscCall(BVScaleColumn(eps->V,k,1.0/norm));
91 64 : PetscCall(DSGetArray(eps->ds,DS_MAT_A,&A));
92 : /* H = H + V'*u*b' */
93 673 : for (j=l;j<k;j++) {
94 6593 : for (i=0;i<k;i++) A[i+j*ld] += c[i]*A[k+j*ld];
95 609 : A[k+j*ld] *= norm;
96 : }
97 64 : PetscCall(DSRestoreArray(eps->ds,DS_MAT_A,&A));
98 64 : PetscCall(BVOrthogonalizeColumn(eps->W,k,c,&norm,NULL));
99 64 : PetscCall(BVScaleColumn(eps->W,k,1.0/norm));
100 64 : PetscCall(DSGetArray(eps->ds,DS_MAT_B,&A));
101 : /* H = H + V'*u*b' */
102 673 : for (j=l;j<k;j++) {
103 6593 : for (i=0;i<k;i++) A[i+j*ld] += c[i]*A[k+j*ld];
104 609 : A[k+j*ld] *= norm;
105 : }
106 64 : PetscCall(DSRestoreArray(eps->ds,DS_MAT_B,&A));
107 :
108 : /* M = Q'*M*Q */
109 64 : PetscCall(MatDenseGetArray(M,&pM));
110 64 : PetscCall(PetscBLASIntCast(ncv,&ncv_));
111 64 : PetscCall(PetscBLASIntCast(nv,&n_));
112 64 : PetscCall(PetscBLASIntCast(ld,&ld_));
113 64 : PetscCall(DSGetArray(eps->ds,DS_MAT_Q,&Q));
114 64 : PetscCallBLAS("BLASgemm",BLASgemm_("N","N",&n_,&n_,&n_,&sone,pM,&ncv_,Q,&ld_,&zero,w,&ncv_));
115 64 : PetscCall(DSRestoreArray(eps->ds,DS_MAT_Q,&Q));
116 64 : PetscCall(DSGetArray(eps->ds,DS_MAT_Z,&Q));
117 64 : PetscCallBLAS("BLASgemm",BLASgemm_("C","N",&n_,&n_,&n_,&sone,Q,&ld_,w,&ncv_,&zero,pM,&ncv_));
118 64 : PetscCall(DSRestoreArray(eps->ds,DS_MAT_Z,&Q));
119 64 : PetscCall(MatDenseRestoreArray(M,&pM));
120 64 : PetscCall(PetscFree2(w,c));
121 64 : PetscCall(BVSetActiveColumns(eps->V,l,nv));
122 64 : PetscCall(BVSetActiveColumns(eps->W,l,nv));
123 64 : PetscFunctionReturn(PETSC_SUCCESS);
124 : }
125 :
126 13 : PetscErrorCode EPSSolve_KrylovSchur_TwoSided(EPS eps)
127 : {
128 13 : EPS_KRYLOVSCHUR *ctx = (EPS_KRYLOVSCHUR*)eps->data;
129 13 : Mat M,U,Op,OpHT,S,T;
130 13 : PetscReal norm,norm2,beta,betat;
131 13 : PetscInt ld,l,nv,nvt,k,nconv,dsn,dsk;
132 13 : PetscBool breakdownt,breakdown,breakdownl;
133 :
134 13 : PetscFunctionBegin;
135 13 : PetscCall(DSGetLeadingDimension(eps->ds,&ld));
136 13 : PetscCall(EPSGetStartVector(eps,0,NULL));
137 13 : PetscCall(EPSGetLeftStartVector(eps,0,NULL));
138 13 : l = 0;
139 13 : PetscCall(MatCreateSeqDense(PETSC_COMM_SELF,eps->ncv,eps->ncv,NULL,&M));
140 :
141 13 : PetscCall(STGetOperator(eps->st,&Op));
142 13 : PetscCall(MatCreateHermitianTranspose(Op,&OpHT));
143 :
144 : /* Restart loop */
145 90 : while (eps->reason == EPS_CONVERGED_ITERATING) {
146 77 : eps->its++;
147 :
148 : /* Compute an nv-step Arnoldi factorization for Op */
149 77 : nv = PetscMin(eps->nconv+eps->mpd,eps->ncv);
150 77 : PetscCall(DSSetDimensions(eps->ds,nv,eps->nconv,eps->nconv+l));
151 77 : PetscCall(DSGetMat(eps->ds,DS_MAT_A,&S));
152 77 : PetscCall(BVMatArnoldi(eps->V,Op,S,eps->nconv+l,&nv,&beta,&breakdown));
153 77 : PetscCall(DSRestoreMat(eps->ds,DS_MAT_A,&S));
154 :
155 : /* Compute an nv-step Arnoldi factorization for Op' */
156 77 : nvt = nv;
157 77 : PetscCall(DSSetDimensions(eps->ds,nv,eps->nconv,eps->nconv+l));
158 77 : PetscCall(DSGetMat(eps->ds,DS_MAT_B,&T));
159 77 : PetscCall(BVMatArnoldi(eps->W,OpHT,T,eps->nconv+l,&nvt,&betat,&breakdownt));
160 77 : PetscCall(DSRestoreMat(eps->ds,DS_MAT_B,&T));
161 :
162 : /* Make sure both factorizations have the same length */
163 77 : nv = PetscMin(nv,nvt);
164 77 : PetscCall(DSSetDimensions(eps->ds,nv,eps->nconv,eps->nconv+l));
165 77 : if (l==0) PetscCall(DSSetState(eps->ds,DS_STATE_INTERMEDIATE));
166 64 : else PetscCall(DSSetState(eps->ds,DS_STATE_RAW));
167 77 : breakdown = (breakdown || breakdownt)? PETSC_TRUE: PETSC_FALSE;
168 :
169 : /* Update M, modify Rayleigh quotients S and T */
170 77 : PetscCall(BVSetActiveColumns(eps->V,eps->nconv+l,nv));
171 77 : PetscCall(BVSetActiveColumns(eps->W,eps->nconv+l,nv));
172 77 : PetscCall(BVMatProject(eps->V,NULL,eps->W,M));
173 :
174 77 : PetscCall(EPSTwoSidedRQUpdate1(eps,M,nv,beta,betat));
175 :
176 : /* Solve projected problem */
177 77 : PetscCall(DSSolve(eps->ds,eps->eigr,eps->eigi));
178 77 : PetscCall(DSSort(eps->ds,eps->eigr,eps->eigi,NULL,NULL,NULL));
179 77 : PetscCall(DSSynchronize(eps->ds,eps->eigr,eps->eigi));
180 77 : PetscCall(DSUpdateExtraRow(eps->ds));
181 :
182 : /* Check convergence */
183 77 : PetscCall(BVNormColumn(eps->V,nv,NORM_2,&norm));
184 77 : PetscCall(BVNormColumn(eps->W,nv,NORM_2,&norm2));
185 77 : PetscCall(EPSKrylovConvergence(eps,PETSC_FALSE,eps->nconv,nv-eps->nconv,beta*norm,betat*norm2,1.0,&k));
186 77 : PetscCall((*eps->stopping)(eps,eps->its,eps->max_it,k,eps->nev,&eps->reason,eps->stoppingctx));
187 77 : nconv = k;
188 :
189 : /* Update l */
190 77 : if (eps->reason != EPS_CONVERGED_ITERATING || breakdown || k==nv) l = 0;
191 : else {
192 64 : l = PetscMax(1,(PetscInt)((nv-k)*ctx->keep));
193 64 : PetscCall(DSGetTruncateSize(eps->ds,k,nv,&l));
194 : }
195 77 : if (!ctx->lock && l>0) { l += k; k = 0; } /* non-locking variant: reset no. of converged pairs */
196 77 : if (l) PetscCall(PetscInfo(eps,"Preparing to restart keeping l=%" PetscInt_FMT " vectors\n",l));
197 :
198 : /* Update the corresponding vectors V(:,idx) = V*Q(:,idx) */
199 77 : PetscCall(BVSetActiveColumns(eps->V,eps->nconv,nv));
200 77 : PetscCall(BVSetActiveColumns(eps->W,eps->nconv,nv));
201 77 : PetscCall(DSGetMat(eps->ds,DS_MAT_Q,&U));
202 77 : PetscCall(BVMultInPlace(eps->V,U,eps->nconv,k+l));
203 77 : PetscCall(DSRestoreMat(eps->ds,DS_MAT_Q,&U));
204 77 : PetscCall(DSGetMat(eps->ds,DS_MAT_Z,&U));
205 77 : PetscCall(BVMultInPlace(eps->W,U,eps->nconv,k+l));
206 77 : PetscCall(DSRestoreMat(eps->ds,DS_MAT_Z,&U));
207 77 : if (eps->reason == EPS_CONVERGED_ITERATING && !breakdown) {
208 64 : PetscCall(BVCopyColumn(eps->V,nv,k+l));
209 64 : PetscCall(BVCopyColumn(eps->W,nv,k+l));
210 : }
211 :
212 77 : if (eps->reason == EPS_CONVERGED_ITERATING) {
213 64 : if (breakdown || k==nv) {
214 : /* Start a new Arnoldi factorization */
215 0 : PetscCall(PetscInfo(eps,"Breakdown in Krylov-Schur method (it=%" PetscInt_FMT " norm=%g)\n",eps->its,(double)beta));
216 0 : if (k<eps->nev) {
217 0 : PetscCall(EPSGetStartVector(eps,k,&breakdown));
218 0 : PetscCall(EPSGetLeftStartVector(eps,k,&breakdownl));
219 0 : if (breakdown || breakdownl) {
220 0 : eps->reason = EPS_DIVERGED_BREAKDOWN;
221 0 : PetscCall(PetscInfo(eps,"Unable to generate more start vectors\n"));
222 : }
223 : }
224 : } else {
225 64 : PetscCall(DSGetDimensions(eps->ds,&dsn,NULL,&dsk,NULL));
226 64 : PetscCall(DSSetDimensions(eps->ds,dsn,k,dsk));
227 64 : PetscCall(DSTruncate(eps->ds,k+l,PETSC_FALSE));
228 : }
229 64 : PetscCall(EPSTwoSidedRQUpdate2(eps,M,k+l));
230 : }
231 77 : eps->nconv = k;
232 90 : PetscCall(EPSMonitor(eps,eps->its,nconv,eps->eigr,eps->eigi,eps->errest,nv));
233 : }
234 :
235 13 : PetscCall(STRestoreOperator(eps->st,&Op));
236 13 : PetscCall(MatDestroy(&OpHT));
237 :
238 13 : PetscCall(DSTruncate(eps->ds,eps->nconv,PETSC_TRUE));
239 13 : PetscCall(MatDestroy(&M));
240 13 : PetscFunctionReturn(PETSC_SUCCESS);
241 : }
|