Line data Source code
1 : /*
2 : - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3 : SLEPc - Scalable Library for Eigenvalue Problem Computations
4 : Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
5 :
6 : This file is part of SLEPc.
7 : SLEPc is distributed under a 2-clause BSD license (see LICENSE).
8 : - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9 : */
10 :
11 : static char help[] = "Test DSGNHEP with upper quasi-triangular matrix pair.\n\n";
12 :
13 : #include <slepcds.h>
14 :
15 1 : int main(int argc,char **argv)
16 : {
17 1 : DS ds;
18 1 : PetscScalar *A,*B,*X;
19 1 : PetscReal rnorm,aux;
20 1 : PetscInt i,j,n=10,ld;
21 1 : PetscViewer viewer;
22 1 : PetscBool verbose;
23 :
24 1 : PetscFunctionBeginUser;
25 1 : PetscCall(SlepcInitialize(&argc,&argv,NULL,help));
26 1 : PetscCall(PetscOptionsGetInt(NULL,NULL,"-n",&n,NULL));
27 1 : PetscCall(PetscPrintf(PETSC_COMM_WORLD,"Solve a Dense System of type GNHEP - dimension %" PetscInt_FMT ".\n",n));
28 1 : PetscCall(PetscOptionsHasName(NULL,NULL,"-verbose",&verbose));
29 :
30 : /* Create DS object */
31 1 : PetscCall(DSCreate(PETSC_COMM_WORLD,&ds));
32 1 : PetscCall(DSSetType(ds,DSGNHEP));
33 1 : PetscCall(DSSetFromOptions(ds));
34 1 : ld = n+2; /* test leading dimension larger than n */
35 1 : PetscCall(DSAllocate(ds,ld));
36 1 : PetscCall(DSSetDimensions(ds,n,0,0));
37 :
38 : /* Set up viewer */
39 1 : PetscCall(PetscViewerASCIIGetStdout(PETSC_COMM_WORLD,&viewer));
40 1 : PetscCall(PetscViewerPushFormat(viewer,PETSC_VIEWER_ASCII_INFO_DETAIL));
41 1 : PetscCall(DSView(ds,viewer));
42 1 : PetscCall(PetscViewerPopFormat(viewer));
43 1 : if (verbose) PetscCall(PetscViewerPushFormat(viewer,PETSC_VIEWER_ASCII_MATLAB));
44 :
45 : /* Fill A,B with upper quasi-triangular matrices */
46 1 : PetscCall(DSGetArray(ds,DS_MAT_A,&A));
47 1 : PetscCall(DSGetArray(ds,DS_MAT_B,&B));
48 1 : PetscCall(PetscArrayzero(A,ld*n));
49 11 : for (i=0;i<n;i++) A[i+i*ld]=2.0;
50 3 : for (j=1;j<3;j++) {
51 19 : for (i=0;i<n-j;i++) A[i+(i+j)*ld]=0.001;
52 : }
53 1 : PetscCall(PetscArrayzero(B,ld*n));
54 11 : for (i=0;i<n;i++) B[i+i*ld]=1.0;
55 1 : B[1+0*ld]=B[0+1*ld]=PETSC_MACHINE_EPSILON;
56 4 : for (i=1;i<n;i+=3) {
57 3 : A[i+(i-1)*ld]=-A[(i-1)+i*ld];
58 : }
59 1 : PetscCall(DSRestoreArray(ds,DS_MAT_A,&A));
60 1 : PetscCall(DSRestoreArray(ds,DS_MAT_B,&B));
61 1 : PetscCall(DSSetState(ds,DS_STATE_INTERMEDIATE));
62 :
63 1 : if (verbose) {
64 0 : PetscCall(PetscPrintf(PETSC_COMM_WORLD,"Initial - - - - - - - - -\n"));
65 0 : PetscCall(DSView(ds,viewer));
66 : }
67 :
68 : /* Eigenvectors */
69 1 : j = 0;
70 1 : PetscCall(DSVectors(ds,DS_MAT_X,&j,&rnorm)); /* first eigenvector */
71 1 : PetscCall(PetscPrintf(PETSC_COMM_WORLD,"Value of rnorm for 2nd vector = %.3f\n",(double)rnorm));
72 1 : PetscCall(DSVectors(ds,DS_MAT_X,NULL,NULL)); /* all eigenvectors */
73 1 : j = 0;
74 1 : rnorm = 0.0;
75 1 : PetscCall(DSGetArray(ds,DS_MAT_X,&X));
76 11 : for (i=0;i<n;i++) {
77 : #if defined(PETSC_USE_COMPLEX)
78 10 : aux = PetscAbsScalar(X[i+j*ld]);
79 : #else
80 : aux = SlepcAbsEigenvalue(X[i+j*ld],X[i+(j+1)*ld]);
81 : #endif
82 10 : rnorm += aux*aux;
83 : }
84 1 : PetscCall(DSRestoreArray(ds,DS_MAT_X,&X));
85 1 : rnorm = PetscSqrtReal(rnorm);
86 1 : PetscCall(PetscPrintf(PETSC_COMM_WORLD,"Norm of 1st columns = %.3f\n",(double)rnorm));
87 1 : if (verbose) {
88 0 : PetscCall(PetscPrintf(PETSC_COMM_WORLD,"After vectors - - - - - - - - -\n"));
89 0 : PetscCall(DSView(ds,viewer));
90 : }
91 :
92 1 : PetscCall(DSDestroy(&ds));
93 1 : PetscCall(SlepcFinalize());
94 : return 0;
95 : }
96 :
97 : /*TEST
98 :
99 : test:
100 : suffix: 1
101 : filter: sed -e "s/-0\./0./"
102 :
103 : TEST*/
|