Line data Source code
1 : /*
2 : - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3 : SLEPc - Scalable Library for Eigenvalue Problem Computations
4 : Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
5 :
6 : This file is part of SLEPc.
7 : SLEPc is distributed under a 2-clause BSD license (see LICENSE).
8 : - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9 : */
10 :
11 : #include <slepc/private/dsimpl.h> /*I "slepcds.h" I*/
12 : #include <slepcblaslapack.h>
13 :
14 : typedef struct {
15 : PetscInt d; /* polynomial degree */
16 : PetscReal *pbc; /* polynomial basis coefficients */
17 : } DS_PEP;
18 :
19 24 : static PetscErrorCode DSAllocate_PEP(DS ds,PetscInt ld)
20 : {
21 24 : DS_PEP *ctx = (DS_PEP*)ds->data;
22 24 : PetscInt i;
23 :
24 24 : PetscFunctionBegin;
25 24 : PetscCheck(ctx->d,PetscObjectComm((PetscObject)ds),PETSC_ERR_ARG_WRONGSTATE,"DSPEP requires specifying the polynomial degree via DSPEPSetDegree()");
26 24 : PetscCall(DSAllocateMat_Private(ds,DS_MAT_X));
27 24 : PetscCall(DSAllocateMat_Private(ds,DS_MAT_Y));
28 109 : for (i=0;i<=ctx->d;i++) PetscCall(DSAllocateMat_Private(ds,DSMatExtra[i]));
29 24 : PetscCall(PetscFree(ds->perm));
30 24 : PetscCall(PetscMalloc1(ld*ctx->d,&ds->perm));
31 24 : PetscFunctionReturn(PETSC_SUCCESS);
32 : }
33 :
34 2 : static PetscErrorCode DSView_PEP(DS ds,PetscViewer viewer)
35 : {
36 2 : DS_PEP *ctx = (DS_PEP*)ds->data;
37 2 : PetscViewerFormat format;
38 2 : PetscInt i;
39 :
40 2 : PetscFunctionBegin;
41 2 : PetscCall(PetscViewerGetFormat(viewer,&format));
42 2 : if (format == PETSC_VIEWER_ASCII_INFO) PetscFunctionReturn(PETSC_SUCCESS);
43 2 : if (format == PETSC_VIEWER_ASCII_INFO_DETAIL) {
44 2 : PetscCall(PetscViewerASCIIPrintf(viewer,"polynomial degree: %" PetscInt_FMT "\n",ctx->d));
45 2 : PetscFunctionReturn(PETSC_SUCCESS);
46 : }
47 0 : for (i=0;i<=ctx->d;i++) PetscCall(DSViewMat(ds,viewer,DSMatExtra[i]));
48 0 : if (ds->state>DS_STATE_INTERMEDIATE) PetscCall(DSViewMat(ds,viewer,DS_MAT_X));
49 0 : PetscFunctionReturn(PETSC_SUCCESS);
50 : }
51 :
52 23 : static PetscErrorCode DSVectors_PEP(DS ds,DSMatType mat,PetscInt *j,PetscReal *rnorm)
53 : {
54 23 : PetscFunctionBegin;
55 23 : PetscCheck(!rnorm,PetscObjectComm((PetscObject)ds),PETSC_ERR_SUP,"Not implemented yet");
56 23 : switch (mat) {
57 : case DS_MAT_X:
58 : break;
59 : case DS_MAT_Y:
60 : break;
61 0 : default:
62 0 : SETERRQ(PetscObjectComm((PetscObject)ds),PETSC_ERR_ARG_OUTOFRANGE,"Invalid mat parameter");
63 : }
64 23 : PetscFunctionReturn(PETSC_SUCCESS);
65 : }
66 :
67 314 : static PetscErrorCode DSSort_PEP(DS ds,PetscScalar *wr,PetscScalar *wi,PetscScalar *rr,PetscScalar *ri,PetscInt *kout)
68 : {
69 314 : DS_PEP *ctx = (DS_PEP*)ds->data;
70 314 : PetscInt n,i,*perm,told;
71 314 : PetscScalar *A;
72 :
73 314 : PetscFunctionBegin;
74 314 : if (!ds->sc) PetscFunctionReturn(PETSC_SUCCESS);
75 314 : n = ds->n*ctx->d;
76 314 : perm = ds->perm;
77 7963 : for (i=0;i<n;i++) perm[i] = i;
78 314 : told = ds->t;
79 314 : ds->t = n; /* force the sorting routines to consider d*n eigenvalues */
80 314 : if (rr) PetscCall(DSSortEigenvalues_Private(ds,rr,ri,perm,PETSC_FALSE));
81 304 : else PetscCall(DSSortEigenvalues_Private(ds,wr,wi,perm,PETSC_FALSE));
82 314 : ds->t = told; /* restore value of t */
83 314 : PetscCall(MatDenseGetArray(ds->omat[DS_MAT_A],&A));
84 7963 : for (i=0;i<n;i++) A[i] = wr[perm[i]];
85 7963 : for (i=0;i<n;i++) wr[i] = A[i];
86 7963 : for (i=0;i<n;i++) A[i] = wi[perm[i]];
87 7963 : for (i=0;i<n;i++) wi[i] = A[i];
88 314 : PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_A],&A));
89 314 : PetscCall(DSPermuteColumnsTwo_Private(ds,0,n,ds->n,DS_MAT_X,DS_MAT_Y,perm));
90 314 : PetscFunctionReturn(PETSC_SUCCESS);
91 : }
92 :
93 314 : static PetscErrorCode DSSolve_PEP_QZ(DS ds,PetscScalar *wr,PetscScalar *wi)
94 : {
95 314 : DS_PEP *ctx = (DS_PEP*)ds->data;
96 314 : PetscInt i,j,k,off;
97 314 : PetscScalar *A,*B,*W,*X,*U,*Y,*work,*beta,a;
98 314 : const PetscScalar *Ed,*Ei;
99 314 : PetscReal *ca,*cb,*cg,norm,done=1.0;
100 314 : PetscBLASInt info,n,ld,ldd,nd,lwork,one=1,zero=0,cols;
101 314 : PetscBool useggev3=(ds->method==1)?PETSC_TRUE:PETSC_FALSE;
102 :
103 314 : PetscFunctionBegin;
104 314 : PetscCall(PetscBLASIntCast(ds->n*ctx->d,&nd));
105 314 : PetscCall(PetscBLASIntCast(ds->n,&n));
106 314 : PetscCall(PetscBLASIntCast(ds->ld,&ld));
107 314 : PetscCall(PetscBLASIntCast(ds->ld*ctx->d,&ldd));
108 314 : PetscCall(DSAllocateMat_Private(ds,DS_MAT_A));
109 314 : PetscCall(DSAllocateMat_Private(ds,DS_MAT_B));
110 314 : PetscCall(DSAllocateMat_Private(ds,DS_MAT_W));
111 314 : PetscCall(DSAllocateMat_Private(ds,DS_MAT_U));
112 314 : PetscCall(MatDenseGetArray(ds->omat[DS_MAT_A],&A));
113 314 : PetscCall(MatDenseGetArray(ds->omat[DS_MAT_B],&B));
114 :
115 : /* build matrices A and B of the linearization */
116 314 : PetscCall(MatDenseGetArrayRead(ds->omat[DSMatExtra[ctx->d]],&Ed));
117 314 : PetscCall(PetscArrayzero(A,ldd*ldd));
118 314 : if (!ctx->pbc) { /* monomial basis */
119 3073 : for (i=0;i<nd-ds->n;i++) A[i+(i+ds->n)*ldd] = 1.0;
120 815 : for (i=0;i<ctx->d;i++) {
121 544 : PetscCall(MatDenseGetArrayRead(ds->omat[DSMatExtra[i]],&Ei));
122 544 : off = i*ds->n*ldd+(ctx->d-1)*ds->n;
123 6130 : for (j=0;j<ds->n;j++) PetscCall(PetscArraycpy(A+off+j*ldd,Ei+j*ds->ld,ds->n));
124 544 : PetscCall(MatDenseRestoreArrayRead(ds->omat[DSMatExtra[i]],&Ei));
125 : }
126 : } else {
127 43 : ca = ctx->pbc;
128 43 : cb = ca+ctx->d+1;
129 43 : cg = cb+ctx->d+1;
130 776 : for (i=0;i<ds->n;i++) {
131 733 : A[i+(i+ds->n)*ldd] = ca[0];
132 733 : A[i+i*ldd] = cb[0];
133 : }
134 640 : for (;i<nd-ds->n;i++) {
135 597 : j = i/ds->n;
136 597 : A[i+(i+ds->n)*ldd] = ca[j];
137 597 : A[i+i*ldd] = cb[j];
138 597 : A[i+(i-ds->n)*ldd] = cg[j];
139 : }
140 86 : for (i=0;i<ctx->d-2;i++) {
141 43 : PetscCall(MatDenseGetArrayRead(ds->omat[DSMatExtra[i]],&Ei));
142 43 : off = i*ds->n*ldd+(ctx->d-1)*ds->n;
143 640 : for (j=0;j<ds->n;j++)
144 16284 : for (k=0;k<ds->n;k++)
145 15687 : A[off+j*ldd+k] = Ei[j*ds->ld+k]*ca[ctx->d-1];
146 43 : PetscCall(MatDenseRestoreArrayRead(ds->omat[DSMatExtra[i]],&Ei));
147 : }
148 43 : PetscCall(MatDenseGetArrayRead(ds->omat[DSMatExtra[i]],&Ei));
149 43 : off = i*ds->n*ldd+(ctx->d-1)*ds->n;
150 776 : for (j=0;j<ds->n;j++)
151 32494 : for (k=0;k<ds->n;k++)
152 31761 : A[off+j*ldd+k] = Ei[j*ds->ld+k]*ca[ctx->d-1]-Ed[j*ds->ld+k]*cg[ctx->d-1];
153 43 : PetscCall(MatDenseRestoreArrayRead(ds->omat[DSMatExtra[i]],&Ei));
154 43 : i++;
155 43 : PetscCall(MatDenseGetArrayRead(ds->omat[DSMatExtra[i]],&Ei));
156 43 : off = i*ds->n*ldd+(ctx->d-1)*ds->n;
157 776 : for (j=0;j<ds->n;j++)
158 32494 : for (k=0;k<ds->n;k++)
159 31761 : A[off+j*ldd+k] = Ei[j*ds->ld+k]*ca[ctx->d-1]-Ed[j*ds->ld+k]*cb[ctx->d-1];
160 43 : PetscCall(MatDenseRestoreArrayRead(ds->omat[DSMatExtra[i]],&Ei));
161 : }
162 314 : PetscCall(PetscArrayzero(B,ldd*ldd));
163 4446 : for (i=0;i<nd-ds->n;i++) B[i+i*ldd] = 1.0;
164 314 : off = (ctx->d-1)*ds->n*(ldd+1);
165 3831 : for (j=0;j<ds->n;j++) {
166 71658 : for (i=0;i<ds->n;i++) B[off+i+j*ldd] = -Ed[i+j*ds->ld];
167 : }
168 314 : PetscCall(MatDenseRestoreArrayRead(ds->omat[DSMatExtra[ctx->d]],&Ed));
169 :
170 : /* solve generalized eigenproblem */
171 314 : PetscCall(MatDenseGetArray(ds->omat[DS_MAT_W],&W));
172 314 : PetscCall(MatDenseGetArray(ds->omat[DS_MAT_U],&U));
173 314 : lwork = -1;
174 : #if defined(PETSC_USE_COMPLEX)
175 314 : if (useggev3) PetscCallBLAS("LAPACKggev3",LAPACKggev3_("V","V",&nd,A,&ldd,B,&ldd,wr,NULL,U,&ldd,W,&ldd,&a,&lwork,NULL,&info));
176 314 : else PetscCallBLAS("LAPACKggev",LAPACKggev_("V","V",&nd,A,&ldd,B,&ldd,wr,NULL,U,&ldd,W,&ldd,&a,&lwork,NULL,&info));
177 314 : PetscCall(PetscBLASIntCast((PetscInt)PetscRealPart(a),&lwork));
178 314 : PetscCall(DSAllocateWork_Private(ds,lwork+nd,8*nd,0));
179 314 : beta = ds->work;
180 314 : work = ds->work + nd;
181 314 : if (useggev3) PetscCallBLAS("LAPACKggev3",LAPACKggev3_("V","V",&nd,A,&ldd,B,&ldd,wr,beta,U,&ldd,W,&ldd,work,&lwork,ds->rwork,&info));
182 314 : else PetscCallBLAS("LAPACKggev",LAPACKggev_("V","V",&nd,A,&ldd,B,&ldd,wr,beta,U,&ldd,W,&ldd,work,&lwork,ds->rwork,&info));
183 : #else
184 : if (useggev3) PetscCallBLAS("LAPACKggev3",LAPACKggev3_("V","V",&nd,A,&ldd,B,&ldd,wr,wi,NULL,U,&ldd,W,&ldd,&a,&lwork,&info));
185 : else PetscCallBLAS("LAPACKggev",LAPACKggev_("V","V",&nd,A,&ldd,B,&ldd,wr,wi,NULL,U,&ldd,W,&ldd,&a,&lwork,&info));
186 : PetscCall(PetscBLASIntCast((PetscInt)a,&lwork));
187 : PetscCall(DSAllocateWork_Private(ds,lwork+nd,0,0));
188 : beta = ds->work;
189 : work = ds->work + nd;
190 : if (useggev3) PetscCallBLAS("LAPACKggev3",LAPACKggev3_("V","V",&nd,A,&ldd,B,&ldd,wr,wi,beta,U,&ldd,W,&ldd,work,&lwork,&info));
191 : else PetscCallBLAS("LAPACKggev",LAPACKggev_("V","V",&nd,A,&ldd,B,&ldd,wr,wi,beta,U,&ldd,W,&ldd,work,&lwork,&info));
192 : #endif
193 314 : SlepcCheckLapackInfo(useggev3?"ggev3":"ggev",info);
194 314 : PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_A],&A));
195 314 : PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_B],&B));
196 :
197 : /* copy eigenvalues */
198 7963 : for (i=0;i<nd;i++) {
199 7649 : if (beta[i]==0.0) wr[i] = (PetscRealPart(wr[i])>0.0)? PETSC_MAX_REAL: PETSC_MIN_REAL;
200 7649 : else wr[i] /= beta[i];
201 : #if !defined(PETSC_USE_COMPLEX)
202 : if (beta[i]==0.0) wi[i] = 0.0;
203 : else wi[i] /= beta[i];
204 : #else
205 7649 : if (wi) wi[i] = 0.0;
206 : #endif
207 : }
208 :
209 : /* copy and normalize eigenvectors */
210 314 : PetscCall(MatDenseGetArray(ds->omat[DS_MAT_X],&X));
211 314 : PetscCall(MatDenseGetArray(ds->omat[DS_MAT_Y],&Y));
212 7963 : for (j=0;j<nd;j++) {
213 7649 : PetscCall(PetscArraycpy(X+j*ds->ld,W+j*ldd,ds->n));
214 7649 : PetscCall(PetscArraycpy(Y+j*ds->ld,U+ds->n*(ctx->d-1)+j*ldd,ds->n));
215 : }
216 314 : PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_W],&W));
217 314 : PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_U],&U));
218 7963 : for (j=0;j<nd;j++) {
219 7649 : cols = 1;
220 7649 : norm = BLASnrm2_(&n,X+j*ds->ld,&one);
221 : #if !defined(PETSC_USE_COMPLEX)
222 : if (wi[j] != 0.0) {
223 : norm = SlepcAbsEigenvalue(norm,BLASnrm2_(&n,X+(j+1)*ds->ld,&one));
224 : cols = 2;
225 : }
226 : #endif
227 7649 : PetscCallBLAS("LAPACKlascl",LAPACKlascl_("G",&zero,&zero,&norm,&done,&n,&cols,X+j*ds->ld,&ld,&info));
228 7649 : SlepcCheckLapackInfo("lascl",info);
229 7649 : norm = BLASnrm2_(&n,Y+j*ds->ld,&one);
230 : #if !defined(PETSC_USE_COMPLEX)
231 : if (wi[j] != 0.0) norm = SlepcAbsEigenvalue(norm,BLASnrm2_(&n,Y+(j+1)*ds->ld,&one));
232 : #endif
233 7649 : PetscCallBLAS("LAPACKlascl",LAPACKlascl_("G",&zero,&zero,&norm,&done,&n,&cols,Y+j*ds->ld,&ld,&info));
234 7649 : SlepcCheckLapackInfo("lascl",info);
235 : #if !defined(PETSC_USE_COMPLEX)
236 : if (wi[j] != 0.0) j++;
237 : #endif
238 : }
239 314 : PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_X],&X));
240 314 : PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_Y],&Y));
241 314 : PetscFunctionReturn(PETSC_SUCCESS);
242 : }
243 :
244 : #if !defined(PETSC_HAVE_MPIUNI)
245 54 : static PetscErrorCode DSSynchronize_PEP(DS ds,PetscScalar eigr[],PetscScalar eigi[])
246 : {
247 54 : DS_PEP *ctx = (DS_PEP*)ds->data;
248 54 : PetscInt ld=ds->ld,k=0;
249 54 : PetscMPIInt ldnd,rank,off=0,size,dn;
250 54 : PetscScalar *X,*Y;
251 :
252 54 : PetscFunctionBegin;
253 54 : if (ds->state>=DS_STATE_CONDENSED) k += 2*ctx->d*ds->n*ld;
254 54 : if (eigr) k += ctx->d*ds->n;
255 54 : if (eigi) k += ctx->d*ds->n;
256 54 : PetscCall(DSAllocateWork_Private(ds,k,0,0));
257 54 : PetscCall(PetscMPIIntCast(k*sizeof(PetscScalar),&size));
258 54 : PetscCall(PetscMPIIntCast(ds->n*ctx->d*ld,&ldnd));
259 54 : PetscCall(PetscMPIIntCast(ctx->d*ds->n,&dn));
260 54 : if (ds->state>=DS_STATE_CONDENSED) {
261 54 : PetscCall(MatDenseGetArray(ds->omat[DS_MAT_X],&X));
262 54 : PetscCall(MatDenseGetArray(ds->omat[DS_MAT_Y],&Y));
263 : }
264 54 : PetscCallMPI(MPI_Comm_rank(PetscObjectComm((PetscObject)ds),&rank));
265 54 : if (!rank) {
266 27 : if (ds->state>=DS_STATE_CONDENSED) {
267 27 : PetscCallMPI(MPI_Pack(X,ldnd,MPIU_SCALAR,ds->work,size,&off,PetscObjectComm((PetscObject)ds)));
268 27 : PetscCallMPI(MPI_Pack(Y,ldnd,MPIU_SCALAR,ds->work,size,&off,PetscObjectComm((PetscObject)ds)));
269 : }
270 27 : if (eigr) PetscCallMPI(MPI_Pack(eigr,dn,MPIU_SCALAR,ds->work,size,&off,PetscObjectComm((PetscObject)ds)));
271 : #if !defined(PETSC_USE_COMPLEX)
272 : if (eigi) PetscCallMPI(MPI_Pack(eigi,dn,MPIU_SCALAR,ds->work,size,&off,PetscObjectComm((PetscObject)ds)));
273 : #endif
274 : }
275 108 : PetscCallMPI(MPI_Bcast(ds->work,size,MPI_BYTE,0,PetscObjectComm((PetscObject)ds)));
276 54 : if (rank) {
277 27 : if (ds->state>=DS_STATE_CONDENSED) {
278 27 : PetscCallMPI(MPI_Unpack(ds->work,size,&off,X,ldnd,MPIU_SCALAR,PetscObjectComm((PetscObject)ds)));
279 27 : PetscCallMPI(MPI_Unpack(ds->work,size,&off,Y,ldnd,MPIU_SCALAR,PetscObjectComm((PetscObject)ds)));
280 : }
281 27 : if (eigr) PetscCallMPI(MPI_Unpack(ds->work,size,&off,eigr,dn,MPIU_SCALAR,PetscObjectComm((PetscObject)ds)));
282 : #if !defined(PETSC_USE_COMPLEX)
283 : if (eigi) PetscCallMPI(MPI_Unpack(ds->work,size,&off,eigi,dn,MPIU_SCALAR,PetscObjectComm((PetscObject)ds)));
284 : #endif
285 : }
286 54 : if (ds->state>=DS_STATE_CONDENSED) {
287 54 : PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_X],&X));
288 54 : PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_Y],&Y));
289 : }
290 54 : PetscFunctionReturn(PETSC_SUCCESS);
291 : }
292 : #endif
293 :
294 25 : static PetscErrorCode DSPEPSetDegree_PEP(DS ds,PetscInt d)
295 : {
296 25 : DS_PEP *ctx = (DS_PEP*)ds->data;
297 :
298 25 : PetscFunctionBegin;
299 25 : PetscCheck(d>=0,PetscObjectComm((PetscObject)ds),PETSC_ERR_ARG_OUTOFRANGE,"The degree must be a non-negative integer");
300 25 : PetscCheck(d<DS_NUM_EXTRA,PetscObjectComm((PetscObject)ds),PETSC_ERR_ARG_OUTOFRANGE,"Only implemented for polynomials of degree at most %d",DS_NUM_EXTRA-1);
301 25 : ctx->d = d;
302 25 : PetscFunctionReturn(PETSC_SUCCESS);
303 : }
304 :
305 : /*@
306 : DSPEPSetDegree - Sets the polynomial degree for a DSPEP.
307 :
308 : Logically Collective
309 :
310 : Input Parameters:
311 : + ds - the direct solver context
312 : - d - the degree
313 :
314 : Level: intermediate
315 :
316 : .seealso: DSPEPGetDegree()
317 : @*/
318 25 : PetscErrorCode DSPEPSetDegree(DS ds,PetscInt d)
319 : {
320 25 : PetscFunctionBegin;
321 25 : PetscValidHeaderSpecific(ds,DS_CLASSID,1);
322 75 : PetscValidLogicalCollectiveInt(ds,d,2);
323 25 : PetscTryMethod(ds,"DSPEPSetDegree_C",(DS,PetscInt),(ds,d));
324 25 : PetscFunctionReturn(PETSC_SUCCESS);
325 : }
326 :
327 1305 : static PetscErrorCode DSPEPGetDegree_PEP(DS ds,PetscInt *d)
328 : {
329 1305 : DS_PEP *ctx = (DS_PEP*)ds->data;
330 :
331 1305 : PetscFunctionBegin;
332 1305 : *d = ctx->d;
333 1305 : PetscFunctionReturn(PETSC_SUCCESS);
334 : }
335 :
336 : /*@
337 : DSPEPGetDegree - Returns the polynomial degree for a DSPEP.
338 :
339 : Not Collective
340 :
341 : Input Parameter:
342 : . ds - the direct solver context
343 :
344 : Output Parameters:
345 : . d - the degree
346 :
347 : Level: intermediate
348 :
349 : .seealso: DSPEPSetDegree()
350 : @*/
351 1305 : PetscErrorCode DSPEPGetDegree(DS ds,PetscInt *d)
352 : {
353 1305 : PetscFunctionBegin;
354 1305 : PetscValidHeaderSpecific(ds,DS_CLASSID,1);
355 1305 : PetscAssertPointer(d,2);
356 1305 : PetscUseMethod(ds,"DSPEPGetDegree_C",(DS,PetscInt*),(ds,d));
357 1305 : PetscFunctionReturn(PETSC_SUCCESS);
358 : }
359 :
360 12 : static PetscErrorCode DSPEPSetCoefficients_PEP(DS ds,PetscReal *pbc)
361 : {
362 12 : DS_PEP *ctx = (DS_PEP*)ds->data;
363 12 : PetscInt i;
364 :
365 12 : PetscFunctionBegin;
366 12 : PetscCheck(ctx->d,PetscObjectComm((PetscObject)ds),PETSC_ERR_ARG_WRONGSTATE,"Must first specify the polynomial degree via DSPEPSetDegree()");
367 12 : if (ctx->pbc) PetscCall(PetscFree(ctx->pbc));
368 12 : PetscCall(PetscMalloc1(3*(ctx->d+1),&ctx->pbc));
369 156 : for (i=0;i<3*(ctx->d+1);i++) ctx->pbc[i] = pbc[i];
370 12 : ds->state = DS_STATE_RAW;
371 12 : PetscFunctionReturn(PETSC_SUCCESS);
372 : }
373 :
374 : /*@
375 : DSPEPSetCoefficients - Sets the polynomial basis coefficients for a DSPEP.
376 :
377 : Logically Collective
378 :
379 : Input Parameters:
380 : + ds - the direct solver context
381 : - pbc - the polynomial basis coefficients
382 :
383 : Notes:
384 : This function is required only in the case of a polynomial specified in a
385 : non-monomial basis, to provide the coefficients that will be used
386 : during the linearization, multiplying the identity blocks on the three main
387 : diagonal blocks. Depending on the polynomial basis (Chebyshev, Legendre, ...)
388 : the coefficients must be different.
389 :
390 : There must be a total of 3*(d+1) coefficients, where d is the degree of the
391 : polynomial. The coefficients are arranged in three groups, alpha, beta, and
392 : gamma, according to the definition of the three-term recurrence. In the case
393 : of the monomial basis, alpha=1 and beta=gamma=0, in which case it is not
394 : necessary to invoke this function.
395 :
396 : Level: advanced
397 :
398 : .seealso: DSPEPGetCoefficients(), DSPEPSetDegree()
399 : @*/
400 12 : PetscErrorCode DSPEPSetCoefficients(DS ds,PetscReal pbc[])
401 : {
402 12 : PetscFunctionBegin;
403 12 : PetscValidHeaderSpecific(ds,DS_CLASSID,1);
404 12 : PetscAssertPointer(pbc,2);
405 12 : PetscTryMethod(ds,"DSPEPSetCoefficients_C",(DS,PetscReal*),(ds,pbc));
406 12 : PetscFunctionReturn(PETSC_SUCCESS);
407 : }
408 :
409 1 : static PetscErrorCode DSPEPGetCoefficients_PEP(DS ds,PetscReal **pbc)
410 : {
411 1 : DS_PEP *ctx = (DS_PEP*)ds->data;
412 1 : PetscInt i;
413 :
414 1 : PetscFunctionBegin;
415 1 : PetscCheck(ctx->d,PetscObjectComm((PetscObject)ds),PETSC_ERR_ARG_WRONGSTATE,"Must first specify the polynomial degree via DSPEPSetDegree()");
416 1 : PetscCall(PetscCalloc1(3*(ctx->d+1),pbc));
417 1 : if (ctx->pbc) for (i=0;i<3*(ctx->d+1);i++) (*pbc)[i] = ctx->pbc[i];
418 4 : else for (i=0;i<ctx->d+1;i++) (*pbc)[i] = 1.0;
419 1 : PetscFunctionReturn(PETSC_SUCCESS);
420 : }
421 :
422 : /*@C
423 : DSPEPGetCoefficients - Returns the polynomial basis coefficients for a DSPEP.
424 :
425 : Not Collective
426 :
427 : Input Parameter:
428 : . ds - the direct solver context
429 :
430 : Output Parameters:
431 : . pbc - the polynomial basis coefficients
432 :
433 : Note:
434 : The returned array has length 3*(d+1) and should be freed by the user.
435 :
436 : Fortran Notes:
437 : The calling sequence from Fortran is
438 : .vb
439 : DSPEPGetCoefficients(eps,pbc,ierr)
440 : double precision pbc(d+1) output
441 : .ve
442 :
443 : Level: advanced
444 :
445 : .seealso: DSPEPSetCoefficients()
446 : @*/
447 1 : PetscErrorCode DSPEPGetCoefficients(DS ds,PetscReal **pbc)
448 : {
449 1 : PetscFunctionBegin;
450 1 : PetscValidHeaderSpecific(ds,DS_CLASSID,1);
451 1 : PetscAssertPointer(pbc,2);
452 1 : PetscUseMethod(ds,"DSPEPGetCoefficients_C",(DS,PetscReal**),(ds,pbc));
453 1 : PetscFunctionReturn(PETSC_SUCCESS);
454 : }
455 :
456 24 : static PetscErrorCode DSDestroy_PEP(DS ds)
457 : {
458 24 : DS_PEP *ctx = (DS_PEP*)ds->data;
459 :
460 24 : PetscFunctionBegin;
461 24 : if (ctx->pbc) PetscCall(PetscFree(ctx->pbc));
462 24 : PetscCall(PetscFree(ds->data));
463 24 : PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSPEPSetDegree_C",NULL));
464 24 : PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSPEPGetDegree_C",NULL));
465 24 : PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSPEPSetCoefficients_C",NULL));
466 24 : PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSPEPGetCoefficients_C",NULL));
467 24 : PetscFunctionReturn(PETSC_SUCCESS);
468 : }
469 :
470 1027 : static PetscErrorCode DSMatGetSize_PEP(DS ds,DSMatType t,PetscInt *rows,PetscInt *cols)
471 : {
472 1027 : DS_PEP *ctx = (DS_PEP*)ds->data;
473 :
474 1027 : PetscFunctionBegin;
475 1027 : PetscCheck(ctx->d,PetscObjectComm((PetscObject)ds),PETSC_ERR_ARG_WRONGSTATE,"DSPEP requires specifying the polynomial degree via DSPEPSetDegree()");
476 1027 : *rows = ds->n;
477 1027 : if (t==DS_MAT_A || t==DS_MAT_B || t==DS_MAT_W || t==DS_MAT_U) *rows *= ctx->d;
478 1027 : *cols = ds->n;
479 1027 : if (t==DS_MAT_A || t==DS_MAT_B || t==DS_MAT_W || t==DS_MAT_U || t==DS_MAT_X || t==DS_MAT_Y) *cols *= ctx->d;
480 1027 : PetscFunctionReturn(PETSC_SUCCESS);
481 : }
482 :
483 : /*MC
484 : DSPEP - Dense Polynomial Eigenvalue Problem.
485 :
486 : Level: beginner
487 :
488 : Notes:
489 : The problem is expressed as P(lambda)*x = 0, where P(.) is a matrix
490 : polynomial of degree d. The eigenvalues lambda are the arguments
491 : returned by DSSolve().
492 :
493 : The degree of the polynomial, d, can be set with DSPEPSetDegree(), with
494 : the first d+1 extra matrices of the DS defining the matrix polynomial. By
495 : default, the polynomial is expressed in the monomial basis, but a
496 : different basis can be used by setting the corresponding coefficients
497 : via DSPEPSetCoefficients().
498 :
499 : The problem is solved via linearization, by building a pencil (A,B) of
500 : size p*n and solving the corresponding GNHEP.
501 :
502 : Used DS matrices:
503 : + DS_MAT_Ex - coefficients of the matrix polynomial
504 : . DS_MAT_X - right eigenvectors
505 : . DS_MAT_Y - left eigenvectors
506 : . DS_MAT_A - (workspace) first matrix of the linearization
507 : . DS_MAT_B - (workspace) second matrix of the linearization
508 : . DS_MAT_W - (workspace) right eigenvectors of the linearization
509 : - DS_MAT_U - (workspace) left eigenvectors of the linearization
510 :
511 : Implemented methods:
512 : . 0 - QZ iteration on the linearization (_ggev)
513 :
514 : .seealso: DSCreate(), DSSetType(), DSType, DSPEPSetDegree(), DSPEPSetCoefficients()
515 : M*/
516 24 : SLEPC_EXTERN PetscErrorCode DSCreate_PEP(DS ds)
517 : {
518 24 : DS_PEP *ctx;
519 :
520 24 : PetscFunctionBegin;
521 24 : PetscCall(PetscNew(&ctx));
522 24 : ds->data = (void*)ctx;
523 :
524 24 : ds->ops->allocate = DSAllocate_PEP;
525 24 : ds->ops->view = DSView_PEP;
526 24 : ds->ops->vectors = DSVectors_PEP;
527 24 : ds->ops->solve[0] = DSSolve_PEP_QZ;
528 : #if !defined(SLEPC_MISSING_LAPACK_GGES3)
529 24 : ds->ops->solve[1] = DSSolve_PEP_QZ;
530 : #endif
531 24 : ds->ops->sort = DSSort_PEP;
532 : #if !defined(PETSC_HAVE_MPIUNI)
533 24 : ds->ops->synchronize = DSSynchronize_PEP;
534 : #endif
535 24 : ds->ops->destroy = DSDestroy_PEP;
536 24 : ds->ops->matgetsize = DSMatGetSize_PEP;
537 24 : PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSPEPSetDegree_C",DSPEPSetDegree_PEP));
538 24 : PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSPEPGetDegree_C",DSPEPGetDegree_PEP));
539 24 : PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSPEPSetCoefficients_C",DSPEPSetCoefficients_PEP));
540 24 : PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSPEPGetCoefficients_C",DSPEPGetCoefficients_PEP));
541 24 : PetscFunctionReturn(PETSC_SUCCESS);
542 : }
|