Line data Source code
1 : /*
2 : - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3 : SLEPc - Scalable Library for Eigenvalue Problem Computations
4 : Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
5 :
6 : This file is part of SLEPc.
7 : SLEPc is distributed under a 2-clause BSD license (see LICENSE).
8 : - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9 : */
10 :
11 : static char help[] = "Tests a user-defined convergence test (based on ex8.c).\n\n"
12 : "The command line options are:\n"
13 : " -n <n>, where <n> = matrix dimension.\n\n";
14 :
15 : #include <slepcsvd.h>
16 :
17 : /*
18 : This example computes the singular values of an nxn Grcar matrix,
19 : which is a nonsymmetric Toeplitz matrix:
20 :
21 : | 1 1 1 1 |
22 : | -1 1 1 1 1 |
23 : | -1 1 1 1 1 |
24 : | . . . . . |
25 : A = | . . . . . |
26 : | -1 1 1 1 1 |
27 : | -1 1 1 1 |
28 : | -1 1 1 |
29 : | -1 1 |
30 :
31 : */
32 :
33 : /*
34 : MyConvergedRel - Convergence test relative to the norm of A (given in ctx).
35 : */
36 14 : PetscErrorCode MyConvergedRel(SVD svd,PetscReal sigma,PetscReal res,PetscReal *errest,void *ctx)
37 : {
38 14 : PetscReal norm = *(PetscReal*)ctx;
39 :
40 14 : PetscFunctionBegin;
41 14 : *errest = res/norm;
42 14 : PetscFunctionReturn(PETSC_SUCCESS);
43 : }
44 :
45 1 : int main(int argc,char **argv)
46 : {
47 1 : Mat A; /* Grcar matrix */
48 1 : SVD svd; /* singular value solver context */
49 1 : PetscInt N=30,Istart,Iend,i,col[5],nconv1,nconv2;
50 1 : PetscScalar value[] = { -1, 1, 1, 1, 1 };
51 1 : PetscReal sigma_1,sigma_n;
52 :
53 1 : PetscFunctionBeginUser;
54 1 : PetscCall(SlepcInitialize(&argc,&argv,NULL,help));
55 :
56 1 : PetscCall(PetscOptionsGetInt(NULL,NULL,"-n",&N,NULL));
57 1 : PetscCall(PetscPrintf(PETSC_COMM_WORLD,"\nEstimate the condition number of a Grcar matrix, n=%" PetscInt_FMT "\n\n",N));
58 :
59 : /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
60 : Generate the matrix
61 : - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
62 :
63 1 : PetscCall(MatCreate(PETSC_COMM_WORLD,&A));
64 1 : PetscCall(MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,N,N));
65 1 : PetscCall(MatSetFromOptions(A));
66 1 : PetscCall(MatGetOwnershipRange(A,&Istart,&Iend));
67 31 : for (i=Istart;i<Iend;i++) {
68 30 : col[0]=i-1; col[1]=i; col[2]=i+1; col[3]=i+2; col[4]=i+3;
69 30 : if (i==0) PetscCall(MatSetValues(A,1,&i,PetscMin(4,N-i),col+1,value+1,INSERT_VALUES));
70 30 : else PetscCall(MatSetValues(A,1,&i,PetscMin(5,N-i+1),col,value,INSERT_VALUES));
71 : }
72 1 : PetscCall(MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY));
73 1 : PetscCall(MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY));
74 :
75 : /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
76 : Create the SVD solver and set the solution method
77 : - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
78 :
79 1 : PetscCall(SVDCreate(PETSC_COMM_WORLD,&svd));
80 1 : PetscCall(SVDSetOperators(svd,A,NULL));
81 1 : PetscCall(SVDSetType(svd,SVDTRLANCZOS));
82 1 : PetscCall(SVDSetFromOptions(svd));
83 :
84 : /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
85 : Solve the singular value problem
86 : - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
87 :
88 1 : PetscCall(SVDSetWhichSingularTriplets(svd,SVD_LARGEST));
89 1 : PetscCall(SVDSolve(svd));
90 1 : PetscCall(SVDGetConverged(svd,&nconv1));
91 1 : if (nconv1 > 0) PetscCall(SVDGetSingularTriplet(svd,0,&sigma_1,NULL,NULL));
92 0 : else PetscCall(PetscPrintf(PETSC_COMM_WORLD," Unable to compute large singular value!\n\n"));
93 :
94 : /* compute smallest singular value relative to the matrix norm */
95 1 : PetscCall(SVDSetConvergenceTestFunction(svd,MyConvergedRel,&sigma_1,NULL));
96 1 : PetscCall(SVDSetWhichSingularTriplets(svd,SVD_SMALLEST));
97 1 : PetscCall(SVDSolve(svd));
98 1 : PetscCall(SVDGetConverged(svd,&nconv2));
99 1 : if (nconv2 > 0) PetscCall(SVDGetSingularTriplet(svd,0,&sigma_n,NULL,NULL));
100 0 : else PetscCall(PetscPrintf(PETSC_COMM_WORLD," Unable to compute small singular value!\n\n"));
101 :
102 : /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
103 : Display solution and clean up
104 : - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
105 1 : if (nconv1 > 0 && nconv2 > 0) {
106 1 : PetscCall(PetscPrintf(PETSC_COMM_WORLD," Computed singular values: sigma_1=%.4f, sigma_n=%.4f\n",(double)sigma_1,(double)sigma_n));
107 1 : PetscCall(PetscPrintf(PETSC_COMM_WORLD," Estimated condition number: sigma_1/sigma_n=%.4f\n\n",(double)(sigma_1/sigma_n)));
108 : }
109 :
110 1 : PetscCall(SVDDestroy(&svd));
111 1 : PetscCall(MatDestroy(&A));
112 1 : PetscCall(SlepcFinalize());
113 : return 0;
114 : }
115 :
116 : /*TEST
117 :
118 : test:
119 : suffix: 1
120 :
121 : TEST*/
|