LCOV - code coverage report
Current view: top level - svd/interface - svdsetup.c (source / functions) Hit Total Coverage
Test: SLEPc Lines: 246 251 98.0 %
Date: 2024-11-23 00:39:48 Functions: 9 9 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       3             :    SLEPc - Scalable Library for Eigenvalue Problem Computations
       4             :    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
       5             : 
       6             :    This file is part of SLEPc.
       7             :    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
       8             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       9             : */
      10             : /*
      11             :    SVD routines for setting up the solver
      12             : */
      13             : 
      14             : #include <slepc/private/svdimpl.h>      /*I "slepcsvd.h" I*/
      15             : 
      16             : /*@
      17             :    SVDSetOperators - Set the matrices associated with the singular value problem.
      18             : 
      19             :    Collective
      20             : 
      21             :    Input Parameters:
      22             : +  svd - the singular value solver context
      23             : .  A   - the matrix associated with the singular value problem
      24             : -  B   - the second matrix in the case of GSVD
      25             : 
      26             :    Level: beginner
      27             : 
      28             : .seealso: SVDSolve(), SVDGetOperators()
      29             : @*/
      30         229 : PetscErrorCode SVDSetOperators(SVD svd,Mat A,Mat B)
      31             : {
      32         229 :   PetscInt       Ma,Na,Mb,Nb,ma,na,mb,nb,M0,N0,m0,n0;
      33         229 :   PetscBool      samesize=PETSC_TRUE;
      34             : 
      35         229 :   PetscFunctionBegin;
      36         229 :   PetscValidHeaderSpecific(svd,SVD_CLASSID,1);
      37         229 :   PetscValidHeaderSpecific(A,MAT_CLASSID,2);
      38         229 :   if (B) PetscValidHeaderSpecific(B,MAT_CLASSID,3);
      39         229 :   PetscCheckSameComm(svd,1,A,2);
      40         229 :   if (B) PetscCheckSameComm(svd,1,B,3);
      41             : 
      42             :   /* Check matrix sizes */
      43         229 :   PetscCall(MatGetSize(A,&Ma,&Na));
      44         229 :   PetscCall(MatGetLocalSize(A,&ma,&na));
      45         229 :   if (svd->OP) {
      46          25 :     PetscCall(MatGetSize(svd->OP,&M0,&N0));
      47          25 :     PetscCall(MatGetLocalSize(svd->OP,&m0,&n0));
      48          25 :     if (M0!=Ma || N0!=Na || m0!=ma || n0!=na) samesize = PETSC_FALSE;
      49             :   }
      50         229 :   if (B) {
      51          85 :     PetscCall(MatGetSize(B,&Mb,&Nb));
      52          85 :     PetscCall(MatGetLocalSize(B,&mb,&nb));
      53          85 :     PetscCheck(Na==Nb,PetscObjectComm((PetscObject)svd),PETSC_ERR_ARG_WRONG,"Different number of columns in A (%" PetscInt_FMT ") and B (%" PetscInt_FMT ")",Na,Nb);
      54          85 :     PetscCheck(na==nb,PetscObjectComm((PetscObject)svd),PETSC_ERR_ARG_WRONG,"Different local column size in A (%" PetscInt_FMT ") and B (%" PetscInt_FMT ")",na,nb);
      55          85 :     if (svd->OPb) {
      56          11 :       PetscCall(MatGetSize(svd->OPb,&M0,&N0));
      57          11 :       PetscCall(MatGetLocalSize(svd->OPb,&m0,&n0));
      58          11 :       if (M0!=Mb || N0!=Nb || m0!=mb || n0!=nb) samesize = PETSC_FALSE;
      59             :     }
      60             :   }
      61             : 
      62         229 :   PetscCall(PetscObjectReference((PetscObject)A));
      63         229 :   if (B) PetscCall(PetscObjectReference((PetscObject)B));
      64         229 :   if (svd->state && !samesize) PetscCall(SVDReset(svd));
      65             :   else {
      66         229 :     PetscCall(MatDestroy(&svd->OP));
      67         229 :     PetscCall(MatDestroy(&svd->OPb));
      68         229 :     PetscCall(MatDestroy(&svd->A));
      69         229 :     PetscCall(MatDestroy(&svd->B));
      70         229 :     PetscCall(MatDestroy(&svd->AT));
      71         229 :     PetscCall(MatDestroy(&svd->BT));
      72             :   }
      73         229 :   svd->nrma = 0.0;
      74         229 :   svd->nrmb = 0.0;
      75         229 :   svd->OP   = A;
      76         229 :   svd->OPb  = B;
      77         229 :   svd->state = SVD_STATE_INITIAL;
      78         229 :   PetscFunctionReturn(PETSC_SUCCESS);
      79             : }
      80             : 
      81             : /*@
      82             :    SVDGetOperators - Get the matrices associated with the singular value problem.
      83             : 
      84             :    Not Collective
      85             : 
      86             :    Input Parameter:
      87             : .  svd - the singular value solver context
      88             : 
      89             :    Output Parameters:
      90             : +  A  - the matrix associated with the singular value problem
      91             : -  B  - the second matrix in the case of GSVD
      92             : 
      93             :    Level: intermediate
      94             : 
      95             : .seealso: SVDSolve(), SVDSetOperators()
      96             : @*/
      97          11 : PetscErrorCode SVDGetOperators(SVD svd,Mat *A,Mat *B)
      98             : {
      99          11 :   PetscFunctionBegin;
     100          11 :   PetscValidHeaderSpecific(svd,SVD_CLASSID,1);
     101          11 :   if (A) *A = svd->OP;
     102          11 :   if (B) *B = svd->OPb;
     103          11 :   PetscFunctionReturn(PETSC_SUCCESS);
     104             : }
     105             : 
     106             : /*@
     107             :    SVDSetSignature - Set the signature matrix defining a hyperbolic singular value problem.
     108             : 
     109             :    Collective
     110             : 
     111             :    Input Parameters:
     112             : +  svd   - the singular value solver context
     113             : -  omega - a vector containing the diagonal elements of the signature matrix (or NULL)
     114             : 
     115             :    Notes:
     116             :    The signature matrix is relevant only for hyperbolic problems (HSVD).
     117             :    Use NULL to reset a previously set signature.
     118             : 
     119             :    Level: intermediate
     120             : 
     121             : .seealso: SVDSetProblemType(), SVDSetOperators(), SVDGetSignature()
     122             : @*/
     123          26 : PetscErrorCode SVDSetSignature(SVD svd,Vec omega)
     124             : {
     125          26 :   PetscInt N,Ma,n,ma;
     126             : 
     127          26 :   PetscFunctionBegin;
     128          26 :   PetscValidHeaderSpecific(svd,SVD_CLASSID,1);
     129          26 :   if (omega) {
     130          26 :     PetscValidHeaderSpecific(omega,VEC_CLASSID,2);
     131          26 :     PetscCheckSameComm(svd,1,omega,2);
     132             :   }
     133             : 
     134          26 :   if (omega && svd->OP) {  /* Check sizes */
     135          25 :     PetscCall(VecGetSize(omega,&N));
     136          25 :     PetscCall(VecGetLocalSize(omega,&n));
     137          25 :     PetscCall(MatGetSize(svd->OP,&Ma,NULL));
     138          25 :     PetscCall(MatGetLocalSize(svd->OP,&ma,NULL));
     139          25 :     PetscCheck(N==Ma,PetscObjectComm((PetscObject)svd),PETSC_ERR_ARG_SIZ,"Global size of signature (%" PetscInt_FMT ") does not match the row size of A (%" PetscInt_FMT ")",N,Ma);
     140          25 :     PetscCheck(n==ma,PetscObjectComm((PetscObject)svd),PETSC_ERR_ARG_SIZ,"Local size of signature (%" PetscInt_FMT ") does not match the local row size of A (%" PetscInt_FMT ")",n,ma);
     141             :   }
     142             : 
     143          26 :   PetscCall(VecDestroy(&svd->omega));
     144          26 :   if (omega) {
     145          26 :     PetscCall(VecDuplicate(omega,&svd->omega));
     146          26 :     PetscCall(VecCopy(omega,svd->omega));
     147             :   }
     148          26 :   svd->state = SVD_STATE_INITIAL;
     149          26 :   PetscFunctionReturn(PETSC_SUCCESS);
     150             : }
     151             : 
     152             : /*@
     153             :    SVDGetSignature - Get the signature matrix defining a hyperbolic singular value problem.
     154             : 
     155             :    Not Collective
     156             : 
     157             :    Input Parameter:
     158             : .  svd - the singular value solver context
     159             : 
     160             :    Output Parameter:
     161             : .  omega - a vector containing the diagonal elements of the signature matrix
     162             : 
     163             :    Notes:
     164             :    The signature matrix is relevant only for hyperbolic problems (HSVD).
     165             :    If no signature has been set, this function will return a vector of all ones.
     166             : 
     167             :    The user should pass a previously created Vec with the appropriate dimension.
     168             : 
     169             :    Level: intermediate
     170             : 
     171             : .seealso: SVDSetSignature()
     172             : @*/
     173           1 : PetscErrorCode SVDGetSignature(SVD svd,Vec omega)
     174             : {
     175           1 :   PetscFunctionBegin;
     176           1 :   PetscValidHeaderSpecific(svd,SVD_CLASSID,1);
     177           1 :   PetscValidHeaderSpecific(omega,VEC_CLASSID,2);
     178           1 :   if (svd->omega) PetscCall(VecCopy(svd->omega,omega));
     179           0 :   else PetscCall(VecSet(omega,1.0));
     180           1 :   PetscFunctionReturn(PETSC_SUCCESS);
     181             : }
     182             : 
     183             : /*@
     184             :    SVDSetDSType - Sets the type of the internal DS object based on the current
     185             :    settings of the singular value solver.
     186             : 
     187             :    Collective
     188             : 
     189             :    Input Parameter:
     190             : .  svd - singular value solver context
     191             : 
     192             :    Note:
     193             :    This function need not be called explicitly, since it will be called at
     194             :    both SVDSetFromOptions() and SVDSetUp().
     195             : 
     196             :    Level: developer
     197             : 
     198             : .seealso: SVDSetFromOptions(), SVDSetUp()
     199             : @*/
     200         435 : PetscErrorCode SVDSetDSType(SVD svd)
     201             : {
     202         435 :   PetscFunctionBegin;
     203         435 :   PetscValidHeaderSpecific(svd,SVD_CLASSID,1);
     204         435 :   PetscTryTypeMethod(svd,setdstype);
     205         435 :   PetscFunctionReturn(PETSC_SUCCESS);
     206             : }
     207             : 
     208             : /*@
     209             :    SVDSetUp - Sets up all the internal data structures necessary for the
     210             :    execution of the singular value solver.
     211             : 
     212             :    Collective
     213             : 
     214             :    Input Parameter:
     215             : .  svd   - singular value solver context
     216             : 
     217             :    Notes:
     218             :    This function need not be called explicitly in most cases, since SVDSolve()
     219             :    calls it. It can be useful when one wants to measure the set-up time
     220             :    separately from the solve time.
     221             : 
     222             :    Level: developer
     223             : 
     224             : .seealso: SVDCreate(), SVDSolve(), SVDDestroy()
     225             : @*/
     226         245 : PetscErrorCode SVDSetUp(SVD svd)
     227             : {
     228         245 :   PetscBool      flg;
     229         245 :   PetscInt       M,N,P=0,k,maxnsol,m,Nom,nom;
     230         245 :   SlepcSC        sc;
     231         245 :   Vec            *T;
     232         245 :   BV             bv;
     233             : 
     234         245 :   PetscFunctionBegin;
     235         245 :   PetscValidHeaderSpecific(svd,SVD_CLASSID,1);
     236         245 :   if (svd->state) PetscFunctionReturn(PETSC_SUCCESS);
     237         245 :   PetscCall(PetscLogEventBegin(SVD_SetUp,svd,0,0,0));
     238             : 
     239             :   /* reset the convergence flag from the previous solves */
     240         245 :   svd->reason = SVD_CONVERGED_ITERATING;
     241             : 
     242             :   /* set default solver type (SVDSetFromOptions was not called) */
     243         245 :   if (!((PetscObject)svd)->type_name) PetscCall(SVDSetType(svd,SVDCROSS));
     244         245 :   if (!svd->ds) PetscCall(SVDGetDS(svd,&svd->ds));
     245             : 
     246             :   /* check matrices */
     247         245 :   PetscCheck(svd->OP,PetscObjectComm((PetscObject)svd),PETSC_ERR_ARG_WRONGSTATE,"SVDSetOperators() must be called first");
     248             : 
     249         245 :   if (!svd->problem_type) {  /* set default problem type */
     250         116 :     if (svd->OPb) {
     251          18 :       PetscCheck(!svd->omega,PetscObjectComm((PetscObject)svd),PETSC_ERR_SUP,"There is no support yet for generalized hyperbolic problems");
     252          18 :       PetscCall(SVDSetProblemType(svd,SVD_GENERALIZED));
     253             :     } else {
     254          98 :       if (svd->omega) PetscCall(SVDSetProblemType(svd,SVD_HYPERBOLIC));
     255          97 :       else PetscCall(SVDSetProblemType(svd,SVD_STANDARD));
     256             :     }
     257             :   } else {  /* check consistency of problem type set by user */
     258         129 :     if (svd->OPb) {
     259          67 :       PetscCheck(svd->isgeneralized,PetscObjectComm((PetscObject)svd),PETSC_ERR_ARG_INCOMP,"Inconsistent SVD state: the problem type does not match the number of matrices");
     260          67 :       PetscCheck(!svd->omega,PetscObjectComm((PetscObject)svd),PETSC_ERR_SUP,"There is no support yet for generalized hyperbolic problems");
     261             :     } else {
     262          62 :       PetscCheck(!svd->isgeneralized,PetscObjectComm((PetscObject)svd),PETSC_ERR_ARG_INCOMP,"Inconsistent SVD state: the problem type does not match the number of matrices");
     263          62 :       if (svd->omega) PetscCheck(svd->ishyperbolic,PetscObjectComm((PetscObject)svd),PETSC_ERR_ARG_INCOMP,"Inconsistent SVD state: the problem type must be set to hyperbolic when passing a signature with SVDSetSignature()");
     264          37 :       else PetscCheck(!svd->ishyperbolic,PetscObjectComm((PetscObject)svd),PETSC_ERR_ARG_INCOMP,"Inconsistent SVD state: a hyperbolic problem requires passing a signature with SVDSetSignature()");
     265             :     }
     266             :   }
     267             : 
     268             :   /* set DS type once the default problem type has been determined */
     269         245 :   PetscCall(SVDSetDSType(svd));
     270             : 
     271             :   /* determine how to handle the transpose */
     272         245 :   svd->expltrans = PETSC_TRUE;
     273         245 :   if (svd->impltrans) svd->expltrans = PETSC_FALSE;
     274             :   else {
     275         234 :     PetscCall(MatHasOperation(svd->OP,MATOP_TRANSPOSE,&flg));
     276         234 :     if (!flg) svd->expltrans = PETSC_FALSE;
     277             :     else {
     278         233 :       PetscCall(PetscObjectTypeCompareAny((PetscObject)svd,&flg,SVDLAPACK,SVDSCALAPACK,SVDKSVD,SVDELEMENTAL,""));
     279         233 :       if (flg) svd->expltrans = PETSC_FALSE;
     280             :     }
     281             :   }
     282             : 
     283             :   /* get matrix dimensions */
     284         245 :   PetscCall(MatGetSize(svd->OP,&M,&N));
     285         245 :   if (svd->isgeneralized) {
     286          85 :     PetscCall(MatGetSize(svd->OPb,&P,NULL));
     287          85 :     PetscCheck(M+P>=N,PetscObjectComm((PetscObject)svd),PETSC_ERR_SUP,"The case when [A;B] has less rows than columns is not supported");
     288         160 :   } else if (svd->ishyperbolic) {
     289          26 :     PetscCall(VecGetSize(svd->omega,&Nom));
     290          26 :     PetscCall(VecGetLocalSize(svd->omega,&nom));
     291          26 :     PetscCall(MatGetLocalSize(svd->OP,&m,NULL));
     292          26 :     PetscCheck(Nom==M,PetscObjectComm((PetscObject)svd),PETSC_ERR_ARG_SIZ,"Global size of signature (%" PetscInt_FMT ") does not match the row size of A (%" PetscInt_FMT ")",Nom,M);
     293          26 :     PetscCheck(nom==m,PetscObjectComm((PetscObject)svd),PETSC_ERR_ARG_SIZ,"Local size of signature (%" PetscInt_FMT ") does not match the local row size of A (%" PetscInt_FMT ")",nom,m);
     294             :   }
     295             : 
     296             :   /* build transpose matrix */
     297         245 :   PetscCall(MatDestroy(&svd->A));
     298         245 :   PetscCall(MatDestroy(&svd->AT));
     299         245 :   PetscCall(PetscObjectReference((PetscObject)svd->OP));
     300         245 :   if (svd->expltrans) {
     301         210 :     if (svd->isgeneralized || M>=N) {
     302         175 :       svd->A = svd->OP;
     303         175 :       PetscCall(MatHermitianTranspose(svd->OP,MAT_INITIAL_MATRIX,&svd->AT));
     304             :     } else {
     305          35 :       PetscCall(MatHermitianTranspose(svd->OP,MAT_INITIAL_MATRIX,&svd->A));
     306          35 :       svd->AT = svd->OP;
     307             :     }
     308             :   } else {
     309          35 :     if (svd->isgeneralized || M>=N) {
     310          31 :       svd->A = svd->OP;
     311          31 :       PetscCall(MatCreateHermitianTranspose(svd->OP,&svd->AT));
     312             :     } else {
     313           4 :       PetscCall(MatCreateHermitianTranspose(svd->OP,&svd->A));
     314           4 :       svd->AT = svd->OP;
     315             :     }
     316             :   }
     317             : 
     318             :   /* build transpose matrix B for GSVD */
     319         245 :   if (svd->isgeneralized) {
     320          85 :     PetscCall(MatDestroy(&svd->B));
     321          85 :     PetscCall(MatDestroy(&svd->BT));
     322          85 :     PetscCall(PetscObjectReference((PetscObject)svd->OPb));
     323          85 :     if (svd->expltrans) {
     324          78 :       svd->B = svd->OPb;
     325          78 :       PetscCall(MatHermitianTranspose(svd->OPb,MAT_INITIAL_MATRIX,&svd->BT));
     326             :     } else {
     327           7 :       svd->B = svd->OPb;
     328           7 :       PetscCall(MatCreateHermitianTranspose(svd->OPb,&svd->BT));
     329             :     }
     330             :   }
     331             : 
     332         245 :   if (!svd->isgeneralized && M<N) {
     333             :     /* swap initial vectors */
     334          39 :     if (svd->nini || svd->ninil) {
     335           0 :       T=svd->ISL; svd->ISL=svd->IS; svd->IS=T;
     336           0 :       k=svd->ninil; svd->ninil=svd->nini; svd->nini=k;
     337             :     }
     338             :     /* swap basis vectors */
     339          39 :     if (!svd->swapped) {  /* only the first time in case of multiple calls */
     340          32 :       bv=svd->V; svd->V=svd->U; svd->U=bv;
     341          32 :       svd->swapped = PETSC_TRUE;
     342             :     }
     343             :   }
     344             : 
     345         245 :   maxnsol = svd->isgeneralized? PetscMin(PetscMin(M,N),P): PetscMin(M,N);
     346         245 :   svd->ncv = PetscMin(svd->ncv,maxnsol);
     347         245 :   svd->nsv = PetscMin(svd->nsv,maxnsol);
     348         245 :   PetscCheck(svd->ncv==PETSC_DETERMINE || svd->nsv<=svd->ncv,PetscObjectComm((PetscObject)svd),PETSC_ERR_ARG_OUTOFRANGE,"nsv bigger than ncv");
     349             : 
     350             :   /* relative convergence criterion is not allowed in GSVD */
     351         355 :   if (svd->conv==(SVDConv)-1) PetscCall(SVDSetConvergenceTest(svd,svd->isgeneralized?SVD_CONV_NORM:SVD_CONV_REL));
     352         245 :   PetscCheck(!svd->isgeneralized || svd->conv!=SVD_CONV_REL,PetscObjectComm((PetscObject)svd),PETSC_ERR_SUP,"Relative convergence criterion is not allowed in GSVD");
     353             : 
     354             :   /* initialization of matrix norm (stardard case only, for GSVD it is done inside setup()) */
     355         245 :   if (!svd->isgeneralized && svd->conv==SVD_CONV_NORM && !svd->nrma) PetscCall(MatNorm(svd->OP,NORM_INFINITY,&svd->nrma));
     356             : 
     357             :   /* call specific solver setup */
     358         245 :   PetscUseTypeMethod(svd,setup);
     359             : 
     360             :   /* set tolerance if not yet set */
     361         245 :   if (svd->tol==(PetscReal)PETSC_DETERMINE) svd->tol = SLEPC_DEFAULT_TOL;
     362             : 
     363             :   /* fill sorting criterion context */
     364         245 :   PetscCall(DSGetSlepcSC(svd->ds,&sc));
     365         245 :   sc->comparison    = (svd->which==SVD_LARGEST)? SlepcCompareLargestReal: SlepcCompareSmallestReal;
     366         245 :   sc->comparisonctx = NULL;
     367         245 :   sc->map           = NULL;
     368         245 :   sc->mapobj        = NULL;
     369             : 
     370             :   /* process initial vectors */
     371         245 :   if (svd->nini<0) {
     372          25 :     k = -svd->nini;
     373          25 :     PetscCheck(k<=svd->ncv,PetscObjectComm((PetscObject)svd),PETSC_ERR_USER_INPUT,"The number of initial vectors is larger than ncv");
     374          25 :     PetscCall(BVInsertVecs(svd->V,0,&k,svd->IS,PETSC_TRUE));
     375          25 :     PetscCall(SlepcBasisDestroy_Private(&svd->nini,&svd->IS));
     376          25 :     svd->nini = k;
     377             :   }
     378         245 :   if (svd->ninil<0) {
     379          29 :     k = 0;
     380          29 :     if (svd->leftbasis) {
     381          23 :       k = -svd->ninil;
     382          23 :       PetscCheck(k<=svd->ncv,PetscObjectComm((PetscObject)svd),PETSC_ERR_USER_INPUT,"The number of left initial vectors is larger than ncv");
     383          23 :       PetscCall(BVInsertVecs(svd->U,0,&k,svd->ISL,PETSC_TRUE));
     384           6 :     } else PetscCall(PetscInfo(svd,"Ignoring initial left vectors\n"));
     385          29 :     PetscCall(SlepcBasisDestroy_Private(&svd->ninil,&svd->ISL));
     386          29 :     svd->ninil = k;
     387             :   }
     388             : 
     389         245 :   PetscCall(PetscLogEventEnd(SVD_SetUp,svd,0,0,0));
     390         245 :   svd->state = SVD_STATE_SETUP;
     391         245 :   PetscFunctionReturn(PETSC_SUCCESS);
     392             : }
     393             : 
     394             : /*@
     395             :    SVDSetInitialSpaces - Specify two basis of vectors that constitute the initial
     396             :    right and/or left spaces.
     397             : 
     398             :    Collective
     399             : 
     400             :    Input Parameters:
     401             : +  svd   - the singular value solver context
     402             : .  nr    - number of right vectors
     403             : .  isr   - set of basis vectors of the right initial space
     404             : .  nl    - number of left vectors
     405             : -  isl   - set of basis vectors of the left initial space
     406             : 
     407             :    Notes:
     408             :    The initial right and left spaces are rough approximations to the right and/or
     409             :    left singular subspaces from which the solver starts to iterate.
     410             :    It is not necessary to provide both sets of vectors.
     411             : 
     412             :    Some solvers start to iterate on a single vector (initial vector). In that case,
     413             :    the other vectors are ignored.
     414             : 
     415             :    These vectors do not persist from one SVDSolve() call to the other, so the
     416             :    initial space should be set every time.
     417             : 
     418             :    The vectors do not need to be mutually orthonormal, since they are explicitly
     419             :    orthonormalized internally.
     420             : 
     421             :    Common usage of this function is when the user can provide a rough approximation
     422             :    of the wanted singular space. Then, convergence may be faster.
     423             : 
     424             :    Level: intermediate
     425             : 
     426             : .seealso: SVDSetUp()
     427             : @*/
     428          33 : PetscErrorCode SVDSetInitialSpaces(SVD svd,PetscInt nr,Vec isr[],PetscInt nl,Vec isl[])
     429             : {
     430          33 :   PetscFunctionBegin;
     431          33 :   PetscValidHeaderSpecific(svd,SVD_CLASSID,1);
     432          99 :   PetscValidLogicalCollectiveInt(svd,nr,2);
     433          99 :   PetscValidLogicalCollectiveInt(svd,nl,4);
     434          33 :   PetscCheck(nr>=0,PetscObjectComm((PetscObject)svd),PETSC_ERR_ARG_OUTOFRANGE,"Argument nr cannot be negative");
     435          33 :   if (nr>0) {
     436          33 :     PetscAssertPointer(isr,3);
     437          33 :     PetscValidHeaderSpecific(*isr,VEC_CLASSID,3);
     438             :   }
     439          33 :   PetscCheck(nl>=0,PetscObjectComm((PetscObject)svd),PETSC_ERR_ARG_OUTOFRANGE,"Argument nl cannot be negative");
     440          33 :   if (nl>0) {
     441          33 :     PetscAssertPointer(isl,5);
     442          33 :     PetscValidHeaderSpecific(*isl,VEC_CLASSID,5);
     443             :   }
     444          33 :   PetscCall(SlepcBasisReference_Private(nr,isr,&svd->nini,&svd->IS));
     445          33 :   PetscCall(SlepcBasisReference_Private(nl,isl,&svd->ninil,&svd->ISL));
     446          33 :   if (nr>0 || nl>0) svd->state = SVD_STATE_INITIAL;
     447          33 :   PetscFunctionReturn(PETSC_SUCCESS);
     448             : }
     449             : 
     450             : /*
     451             :   SVDSetDimensions_Default - Set reasonable values for ncv, mpd if not set
     452             :   by the user. This is called at setup.
     453             :  */
     454         131 : PetscErrorCode SVDSetDimensions_Default(SVD svd)
     455             : {
     456         131 :   PetscInt       N,M,P,maxnsol;
     457             : 
     458         131 :   PetscFunctionBegin;
     459         131 :   PetscCall(MatGetSize(svd->OP,&M,&N));
     460         131 :   maxnsol = PetscMin(M,N);
     461         131 :   if (svd->isgeneralized) {
     462          56 :     PetscCall(MatGetSize(svd->OPb,&P,NULL));
     463          56 :     maxnsol = PetscMin(maxnsol,P);
     464             :   }
     465         131 :   if (svd->ncv!=PETSC_DETERMINE) { /* ncv set */
     466          52 :     PetscCheck(svd->ncv>=svd->nsv,PetscObjectComm((PetscObject)svd),PETSC_ERR_USER_INPUT,"The value of ncv must be at least nsv");
     467          79 :   } else if (svd->mpd!=PETSC_DETERMINE) { /* mpd set */
     468           2 :     svd->ncv = PetscMin(maxnsol,svd->nsv+svd->mpd);
     469             :   } else { /* neither set: defaults depend on nsv being small or large */
     470          77 :     if (svd->nsv<500) svd->ncv = PetscMin(maxnsol,PetscMax(2*svd->nsv,10));
     471             :     else {
     472           0 :       svd->mpd = 500;
     473           0 :       svd->ncv = PetscMin(maxnsol,svd->nsv+svd->mpd);
     474             :     }
     475             :   }
     476         131 :   if (svd->mpd==PETSC_DETERMINE) svd->mpd = svd->ncv;
     477         131 :   PetscFunctionReturn(PETSC_SUCCESS);
     478             : }
     479             : 
     480             : /*@
     481             :    SVDAllocateSolution - Allocate memory storage for common variables such
     482             :    as the singular values and the basis vectors.
     483             : 
     484             :    Collective
     485             : 
     486             :    Input Parameters:
     487             : +  svd   - eigensolver context
     488             : -  extra - number of additional positions, used for methods that require a
     489             :            working basis slightly larger than ncv
     490             : 
     491             :    Developer Notes:
     492             :    This is SLEPC_EXTERN because it may be required by user plugin SVD
     493             :    implementations.
     494             : 
     495             :    This is called at setup after setting the value of ncv and the flag leftbasis.
     496             : 
     497             :    Level: developer
     498             : 
     499             : .seealso: SVDSetUp()
     500             : @*/
     501         245 : PetscErrorCode SVDAllocateSolution(SVD svd,PetscInt extra)
     502             : {
     503         245 :   PetscInt       oldsize,requested;
     504         245 :   Vec            tr,tl;
     505             : 
     506         245 :   PetscFunctionBegin;
     507         245 :   requested = svd->ncv + extra;
     508             : 
     509             :   /* oldsize is zero if this is the first time setup is called */
     510         245 :   PetscCall(BVGetSizes(svd->V,NULL,NULL,&oldsize));
     511             : 
     512             :   /* allocate sigma */
     513         245 :   if (requested != oldsize || !svd->sigma) {
     514         210 :     PetscCall(PetscFree3(svd->sigma,svd->perm,svd->errest));
     515         210 :     if (svd->sign) PetscCall(PetscFree(svd->sign));
     516         210 :     PetscCall(PetscMalloc3(requested,&svd->sigma,requested,&svd->perm,requested,&svd->errest));
     517         210 :     if (svd->ishyperbolic) PetscCall(PetscMalloc1(requested,&svd->sign));
     518             :   }
     519             :   /* allocate V */
     520         245 :   if (!svd->V) PetscCall(SVDGetBV(svd,&svd->V,NULL));
     521         245 :   if (!oldsize) {
     522         201 :     if (!((PetscObject)svd->V)->type_name) PetscCall(BVSetType(svd->V,BVMAT));
     523         201 :     PetscCall(MatCreateVecsEmpty(svd->A,&tr,NULL));
     524         201 :     PetscCall(BVSetSizesFromVec(svd->V,tr,requested));
     525         201 :     PetscCall(VecDestroy(&tr));
     526          44 :   } else PetscCall(BVResize(svd->V,requested,PETSC_FALSE));
     527             :   /* allocate U */
     528         245 :   if (svd->leftbasis && !svd->isgeneralized) {
     529         122 :     if (!svd->U) PetscCall(SVDGetBV(svd,NULL,&svd->U));
     530         122 :     if (!oldsize) {
     531          97 :       if (!((PetscObject)svd->U)->type_name) PetscCall(BVSetType(svd->U,((PetscObject)svd->V)->type_name));
     532          97 :       PetscCall(MatCreateVecsEmpty(svd->A,NULL,&tl));
     533          97 :       PetscCall(BVSetSizesFromVec(svd->U,tl,requested));
     534          97 :       PetscCall(VecDestroy(&tl));
     535          25 :     } else PetscCall(BVResize(svd->U,requested,PETSC_FALSE));
     536         123 :   } else if (svd->isgeneralized) {  /* left basis for the GSVD */
     537          85 :     if (!svd->U) PetscCall(SVDGetBV(svd,NULL,&svd->U));
     538          85 :     if (!oldsize) {
     539          74 :       if (!((PetscObject)svd->U)->type_name) PetscCall(BVSetType(svd->U,((PetscObject)svd->V)->type_name));
     540          74 :       PetscCall(SVDCreateLeftTemplate(svd,&tl));
     541          74 :       PetscCall(BVSetSizesFromVec(svd->U,tl,requested));
     542          74 :       PetscCall(VecDestroy(&tl));
     543          11 :     } else PetscCall(BVResize(svd->U,requested,PETSC_FALSE));
     544             :   }
     545         245 :   PetscFunctionReturn(PETSC_SUCCESS);
     546             : }

Generated by: LCOV version 1.14