Line data Source code
1 : /*
2 : - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3 : SLEPc - Scalable Library for Eigenvalue Problem Computations
4 : Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
5 :
6 : This file is part of SLEPc.
7 : SLEPc is distributed under a 2-clause BSD license (see LICENSE).
8 : - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9 : */
10 : /*
11 : This example implements two of the problems found at
12 : NLEVP: A Collection of Nonlinear Eigenvalue Problems,
13 : The University of Manchester.
14 : The details of the collection can be found at:
15 : [1] T. Betcke et al., "NLEVP: A Collection of Nonlinear Eigenvalue
16 : Problems", ACM Trans. Math. Software 39(2), Article 7, 2013.
17 :
18 : WIRESAW1 is a gyroscopic QEP from vibration analysis of a wiresaw,
19 : where the parameter V represents the speed of the wire. When the
20 : parameter eta is nonzero, then it turns into the WIRESAW2 problem
21 : (with added viscous damping, e.g. eta=0.8).
22 :
23 : [2] S. Wei and I. Kao, "Vibration analysis of wire and frequency
24 : response in the modern wiresaw manufacturing process", J. Sound
25 : Vib. 213(5):1383-1395, 2000.
26 : */
27 :
28 : static char help[] = "Vibration analysis of a wiresaw.\n\n"
29 : "The command line options are:\n"
30 : " -n <n> ... dimension of the matrices (default 10).\n"
31 : " -v <value> ... velocity of the wire (default 0.01).\n"
32 : " -eta <value> ... viscous damping (default 0.0).\n\n";
33 :
34 : #include <slepcpep.h>
35 :
36 4 : int main(int argc,char **argv)
37 : {
38 4 : Mat M,D,K,A[3]; /* problem matrices */
39 4 : PEP pep; /* polynomial eigenproblem solver context */
40 4 : PetscInt n=10,Istart,Iend,j,k;
41 4 : PetscReal v=0.01,eta=0.0;
42 4 : PetscBool terse;
43 :
44 4 : PetscFunctionBeginUser;
45 4 : PetscCall(SlepcInitialize(&argc,&argv,NULL,help));
46 :
47 4 : PetscCall(PetscOptionsGetInt(NULL,NULL,"-n",&n,NULL));
48 4 : PetscCall(PetscOptionsGetReal(NULL,NULL,"-v",&v,NULL));
49 4 : PetscCall(PetscOptionsGetReal(NULL,NULL,"-eta",&eta,NULL));
50 4 : PetscCall(PetscPrintf(PETSC_COMM_WORLD,"\nVibration analysis of a wiresaw, n=%" PetscInt_FMT " v=%g eta=%g\n\n",n,(double)v,(double)eta));
51 :
52 : /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
53 : Compute the matrices that define the eigensystem, (k^2*M+k*D+K)x=0
54 : - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
55 :
56 : /* K is a diagonal matrix */
57 4 : PetscCall(MatCreate(PETSC_COMM_WORLD,&K));
58 4 : PetscCall(MatSetSizes(K,PETSC_DECIDE,PETSC_DECIDE,n,n));
59 4 : PetscCall(MatSetFromOptions(K));
60 :
61 4 : PetscCall(MatGetOwnershipRange(K,&Istart,&Iend));
62 44 : for (j=Istart;j<Iend;j++) PetscCall(MatSetValue(K,j,j,(j+1)*(j+1)*PETSC_PI*PETSC_PI*(1.0-v*v),INSERT_VALUES));
63 :
64 4 : PetscCall(MatAssemblyBegin(K,MAT_FINAL_ASSEMBLY));
65 4 : PetscCall(MatAssemblyEnd(K,MAT_FINAL_ASSEMBLY));
66 4 : PetscCall(MatScale(K,0.5));
67 :
68 : /* D is a tridiagonal */
69 4 : PetscCall(MatCreate(PETSC_COMM_WORLD,&D));
70 4 : PetscCall(MatSetSizes(D,PETSC_DECIDE,PETSC_DECIDE,n,n));
71 4 : PetscCall(MatSetFromOptions(D));
72 :
73 4 : PetscCall(MatGetOwnershipRange(D,&Istart,&Iend));
74 44 : for (j=Istart;j<Iend;j++) {
75 440 : for (k=0;k<n;k++) {
76 400 : if ((j+k)%2) PetscCall(MatSetValue(D,j,k,8.0*(j+1)*(k+1)*v/((j+1)*(j+1)-(k+1)*(k+1)),INSERT_VALUES));
77 : }
78 : }
79 :
80 4 : PetscCall(MatAssemblyBegin(D,MAT_FINAL_ASSEMBLY));
81 4 : PetscCall(MatAssemblyEnd(D,MAT_FINAL_ASSEMBLY));
82 4 : PetscCall(MatScale(D,0.5));
83 :
84 : /* M is a diagonal matrix */
85 4 : PetscCall(MatCreate(PETSC_COMM_WORLD,&M));
86 4 : PetscCall(MatSetSizes(M,PETSC_DECIDE,PETSC_DECIDE,n,n));
87 4 : PetscCall(MatSetFromOptions(M));
88 4 : PetscCall(MatGetOwnershipRange(M,&Istart,&Iend));
89 44 : for (j=Istart;j<Iend;j++) PetscCall(MatSetValue(M,j,j,1.0,INSERT_VALUES));
90 4 : PetscCall(MatAssemblyBegin(M,MAT_FINAL_ASSEMBLY));
91 4 : PetscCall(MatAssemblyEnd(M,MAT_FINAL_ASSEMBLY));
92 4 : PetscCall(MatScale(M,0.5));
93 :
94 : /* add damping */
95 4 : if (eta>0.0) {
96 0 : PetscCall(MatAXPY(K,eta,D,DIFFERENT_NONZERO_PATTERN)); /* K = K + eta*D */
97 0 : PetscCall(MatShift(D,eta)); /* D = D + eta*eye(n) */
98 : }
99 :
100 : /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
101 : Create the eigensolver and solve the problem
102 : - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
103 :
104 4 : PetscCall(PEPCreate(PETSC_COMM_WORLD,&pep));
105 4 : A[0] = K; A[1] = D; A[2] = M;
106 4 : PetscCall(PEPSetOperators(pep,3,A));
107 4 : if (eta==0.0) PetscCall(PEPSetProblemType(pep,PEP_GYROSCOPIC));
108 0 : else PetscCall(PEPSetProblemType(pep,PEP_GENERAL));
109 4 : PetscCall(PEPSetFromOptions(pep));
110 4 : PetscCall(PEPSolve(pep));
111 :
112 : /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
113 : Display solution and clean up
114 : - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
115 :
116 : /* show detailed info unless -terse option is given by user */
117 4 : PetscCall(PetscOptionsHasName(NULL,NULL,"-terse",&terse));
118 4 : if (terse) PetscCall(PEPErrorView(pep,PEP_ERROR_BACKWARD,NULL));
119 : else {
120 0 : PetscCall(PetscViewerPushFormat(PETSC_VIEWER_STDOUT_WORLD,PETSC_VIEWER_ASCII_INFO_DETAIL));
121 0 : PetscCall(PEPConvergedReasonView(pep,PETSC_VIEWER_STDOUT_WORLD));
122 0 : PetscCall(PEPErrorView(pep,PEP_ERROR_BACKWARD,PETSC_VIEWER_STDOUT_WORLD));
123 0 : PetscCall(PetscViewerPopFormat(PETSC_VIEWER_STDOUT_WORLD));
124 : }
125 4 : PetscCall(PEPDestroy(&pep));
126 4 : PetscCall(MatDestroy(&M));
127 4 : PetscCall(MatDestroy(&D));
128 4 : PetscCall(MatDestroy(&K));
129 4 : PetscCall(SlepcFinalize());
130 : return 0;
131 : }
132 :
133 : /*TEST
134 :
135 : testset:
136 : args: -pep_nev 4 -terse
137 : requires: double
138 : output_file: output/wiresaw_1.out
139 : test:
140 : suffix: 1
141 : args: -pep_type {{toar qarnoldi}}
142 : test:
143 : suffix: 1_linear_h1
144 : args: -pep_type linear -pep_linear_explicitmatrix -pep_linear_linearization 1,0 -pep_linear_st_ksp_type bcgs -pep_linear_st_pc_type kaczmarz
145 : test:
146 : suffix: 1_linear_h2
147 : args: -pep_type linear -pep_linear_explicitmatrix -pep_linear_linearization 0,1
148 :
149 : TEST*/
|