LCOV - code coverage report
Current view: top level - pep/tests - test4.c (source / functions) Hit Total Coverage
Test: SLEPc Lines: 79 79 100.0 %
Date: 2025-01-22 00:40:06 Functions: 1 1 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       3             :    SLEPc - Scalable Library for Eigenvalue Problem Computations
       4             :    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
       5             : 
       6             :    This file is part of SLEPc.
       7             :    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
       8             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       9             : */
      10             : 
      11             : static char help[] = "Solve a quadratic problem with PEPLINEAR with a user-provided EPS.\n\n"
      12             :   "The command line options are:\n"
      13             :   "  -n <n>, where <n> = number of grid subdivisions in x dimension.\n"
      14             :   "  -m <m>, where <m> = number of grid subdivisions in y dimension.\n\n";
      15             : 
      16             : #include <slepcpep.h>
      17             : 
      18           1 : int main(int argc,char **argv)
      19             : {
      20           1 :   Mat            M,C,K,A[3];
      21           1 :   PEP            pep;
      22           1 :   PetscInt       N,n=10,m,Istart,Iend,II,i,j;
      23           1 :   PetscBool      flag,expmat;
      24           1 :   PetscReal      alpha,beta;
      25           1 :   EPS            eps;
      26           1 :   ST             st;
      27           1 :   KSP            ksp;
      28           1 :   PC             pc;
      29             : 
      30           1 :   PetscFunctionBeginUser;
      31           1 :   PetscCall(SlepcInitialize(&argc,&argv,NULL,help));
      32           1 :   PetscCall(PetscOptionsGetInt(NULL,NULL,"-n",&n,NULL));
      33           1 :   PetscCall(PetscOptionsGetInt(NULL,NULL,"-m",&m,&flag));
      34           1 :   if (!flag) m=n;
      35           1 :   N = n*m;
      36           1 :   PetscCall(PetscPrintf(PETSC_COMM_WORLD,"\nQuadratic Eigenproblem, N=%" PetscInt_FMT " (%" PetscInt_FMT "x%" PetscInt_FMT " grid)\n\n",N,n,m));
      37             : 
      38             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      39             :      Compute the matrices that define the eigensystem, (k^2*M+k*C+K)x=0
      40             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
      41             : 
      42             :   /* K is the 2-D Laplacian */
      43           1 :   PetscCall(MatCreate(PETSC_COMM_WORLD,&K));
      44           1 :   PetscCall(MatSetSizes(K,PETSC_DECIDE,PETSC_DECIDE,N,N));
      45           1 :   PetscCall(MatSetFromOptions(K));
      46           1 :   PetscCall(MatGetOwnershipRange(K,&Istart,&Iend));
      47         101 :   for (II=Istart;II<Iend;II++) {
      48         100 :     i = II/n; j = II-i*n;
      49         100 :     if (i>0) PetscCall(MatSetValue(K,II,II-n,-1.0,INSERT_VALUES));
      50         100 :     if (i<m-1) PetscCall(MatSetValue(K,II,II+n,-1.0,INSERT_VALUES));
      51         100 :     if (j>0) PetscCall(MatSetValue(K,II,II-1,-1.0,INSERT_VALUES));
      52         100 :     if (j<n-1) PetscCall(MatSetValue(K,II,II+1,-1.0,INSERT_VALUES));
      53         100 :     PetscCall(MatSetValue(K,II,II,4.0,INSERT_VALUES));
      54             :   }
      55           1 :   PetscCall(MatAssemblyBegin(K,MAT_FINAL_ASSEMBLY));
      56           1 :   PetscCall(MatAssemblyEnd(K,MAT_FINAL_ASSEMBLY));
      57             : 
      58             :   /* C is the 1-D Laplacian on horizontal lines */
      59           1 :   PetscCall(MatCreate(PETSC_COMM_WORLD,&C));
      60           1 :   PetscCall(MatSetSizes(C,PETSC_DECIDE,PETSC_DECIDE,N,N));
      61           1 :   PetscCall(MatSetFromOptions(C));
      62           1 :   PetscCall(MatGetOwnershipRange(C,&Istart,&Iend));
      63         101 :   for (II=Istart;II<Iend;II++) {
      64         100 :     i = II/n; j = II-i*n;
      65         100 :     if (j>0) PetscCall(MatSetValue(C,II,II-1,-1.0,INSERT_VALUES));
      66         100 :     if (j<n-1) PetscCall(MatSetValue(C,II,II+1,-1.0,INSERT_VALUES));
      67         100 :     PetscCall(MatSetValue(C,II,II,2.0,INSERT_VALUES));
      68             :   }
      69           1 :   PetscCall(MatAssemblyBegin(C,MAT_FINAL_ASSEMBLY));
      70           1 :   PetscCall(MatAssemblyEnd(C,MAT_FINAL_ASSEMBLY));
      71             : 
      72             :   /* M is a diagonal matrix */
      73           1 :   PetscCall(MatCreate(PETSC_COMM_WORLD,&M));
      74           1 :   PetscCall(MatSetSizes(M,PETSC_DECIDE,PETSC_DECIDE,N,N));
      75           1 :   PetscCall(MatSetFromOptions(M));
      76           1 :   PetscCall(MatGetOwnershipRange(M,&Istart,&Iend));
      77         101 :   for (II=Istart;II<Iend;II++) PetscCall(MatSetValue(M,II,II,(PetscReal)(II+1),INSERT_VALUES));
      78           1 :   PetscCall(MatAssemblyBegin(M,MAT_FINAL_ASSEMBLY));
      79           1 :   PetscCall(MatAssemblyEnd(M,MAT_FINAL_ASSEMBLY));
      80             : 
      81             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      82             :              Create a standalone EPS with appropriate settings
      83             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
      84             : 
      85           1 :   PetscCall(EPSCreate(PETSC_COMM_WORLD,&eps));
      86           1 :   PetscCall(EPSSetWhichEigenpairs(eps,EPS_TARGET_MAGNITUDE));
      87             : #if defined(PETSC_USE_COMPLEX)
      88           1 :   PetscCall(EPSSetTarget(eps,0.01*PETSC_i));
      89             : #endif
      90           1 :   PetscCall(EPSGetST(eps,&st));
      91           1 :   PetscCall(STSetType(st,STSINVERT));
      92           1 :   PetscCall(STGetKSP(st,&ksp));
      93           1 :   PetscCall(KSPSetType(ksp,KSPBCGS));
      94           1 :   PetscCall(KSPGetPC(ksp,&pc));
      95           1 :   PetscCall(PCSetType(pc,PCJACOBI));
      96           1 :   PetscCall(EPSSetFromOptions(eps));
      97             : 
      98             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      99             :              Create the eigensolver and solve the eigensystem
     100             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
     101             : 
     102           1 :   PetscCall(PEPCreate(PETSC_COMM_WORLD,&pep));
     103           1 :   PetscCall(PetscObjectSetName((PetscObject)pep,"PEP_solver"));
     104           1 :   A[0] = K; A[1] = C; A[2] = M;
     105           1 :   PetscCall(PEPSetOperators(pep,3,A));
     106           1 :   PetscCall(PEPSetType(pep,PEPLINEAR));
     107           1 :   PetscCall(PEPSetProblemType(pep,PEP_GENERAL));
     108           1 :   PetscCall(PEPLinearSetEPS(pep,eps));
     109           1 :   PetscCall(PEPSetFromOptions(pep));
     110           1 :   PetscCall(PEPSolve(pep));
     111           1 :   PetscCall(PEPLinearGetLinearization(pep,&alpha,&beta));
     112           1 :   PetscCall(PetscPrintf(PETSC_COMM_WORLD," Linearization with alpha=%g, beta=%g",(double)alpha,(double)beta));
     113           1 :   PetscCall(PEPLinearGetExplicitMatrix(pep,&expmat));
     114           1 :   if (expmat) PetscCall(PetscPrintf(PETSC_COMM_WORLD," with explicit matrix"));
     115           1 :   PetscCall(PetscPrintf(PETSC_COMM_WORLD,"\n"));
     116             : 
     117             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     118             :                     Display solution and clean up
     119             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
     120             : 
     121           1 :   PetscCall(PEPErrorView(pep,PEP_ERROR_BACKWARD,NULL));
     122           1 :   PetscCall(PEPDestroy(&pep));
     123           1 :   PetscCall(EPSDestroy(&eps));
     124           1 :   PetscCall(MatDestroy(&M));
     125           1 :   PetscCall(MatDestroy(&C));
     126           1 :   PetscCall(MatDestroy(&K));
     127           1 :   PetscCall(SlepcFinalize());
     128             :   return 0;
     129             : }
     130             : 
     131             : /*TEST
     132             : 
     133             :    testset:
     134             :       args: -pep_linear_explicitmatrix -pep_view_vectors ::ascii_info
     135             :       test:
     136             :          suffix: 1_real
     137             :          requires: !single !complex
     138             :       test:
     139             :          suffix: 1
     140             :          requires: !single complex
     141             : 
     142             : TEST*/

Generated by: LCOV version 1.14