LCOV - code coverage report
Current view: top level - pep/tests - test13.c (source / functions) Hit Total Coverage
Test: SLEPc Lines: 74 74 100.0 %
Date: 2024-11-23 00:39:48 Functions: 1 1 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       3             :    SLEPc - Scalable Library for Eigenvalue Problem Computations
       4             :    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
       5             : 
       6             :    This file is part of SLEPc.
       7             :    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
       8             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       9             : */
      10             : 
      11             : static char help[] = "Solve a quadratic problem with CISS.\n\n"
      12             :   "The command line options are:\n"
      13             :   "  -n <n>, where <n> = number of grid subdivisions in x dimension.\n"
      14             :   "  -m <m>, where <m> = number of grid subdivisions in y dimension.\n\n";
      15             : 
      16             : #include <slepcpep.h>
      17             : 
      18           1 : int main(int argc,char **argv)
      19             : {
      20           1 :   Mat               M,C,K,A[3];
      21           1 :   PEP               pep;
      22           1 :   RG                rg;
      23           1 :   KSP               *ksp;
      24           1 :   PC                pc;
      25           1 :   PEPCISSExtraction ext;
      26           1 :   PetscInt          N,n=10,m,Istart,Iend,II,i,j,nsolve;
      27           1 :   PetscBool         flg;
      28             : 
      29           1 :   PetscFunctionBeginUser;
      30           1 :   PetscCall(SlepcInitialize(&argc,&argv,NULL,help));
      31           1 :   PetscCall(PetscOptionsGetInt(NULL,NULL,"-n",&n,NULL));
      32           1 :   PetscCall(PetscOptionsGetInt(NULL,NULL,"-m",&m,&flg));
      33           1 :   if (!flg) m=n;
      34           1 :   N = n*m;
      35           1 :   PetscCall(PetscPrintf(PETSC_COMM_WORLD,"\nQuadratic Eigenproblem, N=%" PetscInt_FMT " (%" PetscInt_FMT "x%" PetscInt_FMT " grid)\n\n",N,n,m));
      36             : 
      37             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      38             :      Compute the matrices that define the eigensystem, (k^2*M+k*C+K)x=0
      39             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
      40             : 
      41             :   /* K is the 2-D Laplacian */
      42           1 :   PetscCall(MatCreate(PETSC_COMM_WORLD,&K));
      43           1 :   PetscCall(MatSetSizes(K,PETSC_DECIDE,PETSC_DECIDE,N,N));
      44           1 :   PetscCall(MatSetFromOptions(K));
      45           1 :   PetscCall(MatGetOwnershipRange(K,&Istart,&Iend));
      46         101 :   for (II=Istart;II<Iend;II++) {
      47         100 :     i = II/n; j = II-i*n;
      48         100 :     if (i>0) PetscCall(MatSetValue(K,II,II-n,-1.0,INSERT_VALUES));
      49         100 :     if (i<m-1) PetscCall(MatSetValue(K,II,II+n,-1.0,INSERT_VALUES));
      50         100 :     if (j>0) PetscCall(MatSetValue(K,II,II-1,-1.0,INSERT_VALUES));
      51         100 :     if (j<n-1) PetscCall(MatSetValue(K,II,II+1,-1.0,INSERT_VALUES));
      52         100 :     PetscCall(MatSetValue(K,II,II,4.0,INSERT_VALUES));
      53             :   }
      54           1 :   PetscCall(MatAssemblyBegin(K,MAT_FINAL_ASSEMBLY));
      55           1 :   PetscCall(MatAssemblyEnd(K,MAT_FINAL_ASSEMBLY));
      56             : 
      57             :   /* C is the 1-D Laplacian on horizontal lines */
      58           1 :   PetscCall(MatCreate(PETSC_COMM_WORLD,&C));
      59           1 :   PetscCall(MatSetSizes(C,PETSC_DECIDE,PETSC_DECIDE,N,N));
      60           1 :   PetscCall(MatSetFromOptions(C));
      61           1 :   PetscCall(MatGetOwnershipRange(C,&Istart,&Iend));
      62         101 :   for (II=Istart;II<Iend;II++) {
      63         100 :     i = II/n; j = II-i*n;
      64         100 :     if (j>0) PetscCall(MatSetValue(C,II,II-1,-1.0,INSERT_VALUES));
      65         100 :     if (j<n-1) PetscCall(MatSetValue(C,II,II+1,-1.0,INSERT_VALUES));
      66         100 :     PetscCall(MatSetValue(C,II,II,2.0,INSERT_VALUES));
      67             :   }
      68           1 :   PetscCall(MatAssemblyBegin(C,MAT_FINAL_ASSEMBLY));
      69           1 :   PetscCall(MatAssemblyEnd(C,MAT_FINAL_ASSEMBLY));
      70             : 
      71             :   /* M is a diagonal matrix */
      72           1 :   PetscCall(MatCreate(PETSC_COMM_WORLD,&M));
      73           1 :   PetscCall(MatSetSizes(M,PETSC_DECIDE,PETSC_DECIDE,N,N));
      74           1 :   PetscCall(MatSetFromOptions(M));
      75           1 :   PetscCall(MatGetOwnershipRange(M,&Istart,&Iend));
      76         101 :   for (II=Istart;II<Iend;II++) PetscCall(MatSetValue(M,II,II,(PetscReal)(II+1),INSERT_VALUES));
      77           1 :   PetscCall(MatAssemblyBegin(M,MAT_FINAL_ASSEMBLY));
      78           1 :   PetscCall(MatAssemblyEnd(M,MAT_FINAL_ASSEMBLY));
      79             : 
      80             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      81             :              Create the eigensolver and solve the eigensystem
      82             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
      83             : 
      84           1 :   PetscCall(PEPCreate(PETSC_COMM_WORLD,&pep));
      85           1 :   A[0] = K; A[1] = C; A[2] = M;
      86           1 :   PetscCall(PEPSetOperators(pep,3,A));
      87           1 :   PetscCall(PEPSetProblemType(pep,PEP_GENERAL));
      88             : 
      89             :   /* customize polynomial eigensolver; set runtime options */
      90           1 :   PetscCall(PEPSetType(pep,PEPCISS));
      91           1 :   PetscCall(PEPGetRG(pep,&rg));
      92           1 :   PetscCall(RGSetType(rg,RGELLIPSE));
      93           1 :   PetscCall(RGEllipseSetParameters(rg,PetscCMPLX(-0.1,0.3),0.1,0.25));
      94           1 :   PetscCall(PEPCISSSetSizes(pep,24,PETSC_DETERMINE,PETSC_DETERMINE,1,PETSC_DETERMINE,PETSC_TRUE));
      95           1 :   PetscCall(PEPCISSGetKSPs(pep,&nsolve,&ksp));
      96          25 :   for (i=0;i<nsolve;i++) {
      97          24 :     PetscCall(KSPSetTolerances(ksp[i],1e-12,PETSC_CURRENT,PETSC_CURRENT,PETSC_CURRENT));
      98          24 :     PetscCall(KSPSetType(ksp[i],KSPPREONLY));
      99          24 :     PetscCall(KSPGetPC(ksp[i],&pc));
     100          24 :     PetscCall(PCSetType(pc,PCLU));
     101             :   }
     102           1 :   PetscCall(PEPSetFromOptions(pep));
     103             : 
     104             :   /* solve */
     105           1 :   PetscCall(PetscObjectTypeCompare((PetscObject)pep,PEPCISS,&flg));
     106           1 :   if (flg) {
     107           1 :     PetscCall(PEPCISSGetExtraction(pep,&ext));
     108           1 :     PetscCall(PetscPrintf(PETSC_COMM_WORLD," Running CISS with %" PetscInt_FMT " KSP solvers (%s extraction)\n",nsolve,PEPCISSExtractions[ext]));
     109             :   }
     110           1 :   PetscCall(PEPSolve(pep));
     111             : 
     112             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     113             :                     Display solution and clean up
     114             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
     115             : 
     116           1 :   PetscCall(PEPErrorView(pep,PEP_ERROR_BACKWARD,NULL));
     117           1 :   PetscCall(PEPDestroy(&pep));
     118           1 :   PetscCall(MatDestroy(&M));
     119           1 :   PetscCall(MatDestroy(&C));
     120           1 :   PetscCall(MatDestroy(&K));
     121           1 :   PetscCall(SlepcFinalize());
     122             :   return 0;
     123             : }
     124             : 
     125             : /*TEST
     126             : 
     127             :    build:
     128             :       requires: complex
     129             : 
     130             :    test:
     131             :       suffix: 1
     132             :       requires: complex
     133             : 
     134             : TEST*/

Generated by: LCOV version 1.14