Line data Source code
1 : /*
2 : - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3 : SLEPc - Scalable Library for Eigenvalue Problem Computations
4 : Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
5 :
6 : This file is part of SLEPc.
7 : SLEPc is distributed under a 2-clause BSD license (see LICENSE).
8 : - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9 : */
10 : /*
11 : SLEPc polynomial eigensolver: "jd"
12 :
13 : Method: Jacobi-Davidson
14 :
15 : Algorithm:
16 :
17 : Jacobi-Davidson for polynomial eigenvalue problems.
18 :
19 : References:
20 :
21 : [1] C. Campos and J.E. Roman, "A polynomial Jacobi-Davidson solver
22 : with support for non-monomial bases and deflation", BIT Numer.
23 : Math. 60:295-318, 2020.
24 :
25 : [2] G.L.G. Sleijpen et al., "Jacobi-Davidson type methods for
26 : generalized eigenproblems and polynomial eigenproblems", BIT
27 : 36(3):595-633, 1996.
28 :
29 : [3] Feng-Nan Hwang, Zih-Hao Wei, Tsung-Ming Huang, Weichung Wang,
30 : "A Parallel Additive Schwarz Preconditioned Jacobi-Davidson
31 : Algorithm for Polynomial Eigenvalue Problems in Quantum Dot
32 : Simulation", J. Comput. Phys. 229(8):2932-2947, 2010.
33 : */
34 :
35 : #include <slepc/private/pepimpl.h> /*I "slepcpep.h" I*/
36 : #include <slepcblaslapack.h>
37 :
38 : static PetscBool cited = PETSC_FALSE;
39 : static const char citation[] =
40 : "@Article{slepc-slice-qep,\n"
41 : " author = \"C. Campos and J. E. Roman\",\n"
42 : " title = \"A polynomial {Jacobi-Davidson} solver with support for non-monomial bases and deflation\",\n"
43 : " journal = \"{BIT} Numer. Math.\",\n"
44 : " volume = \"60\",\n"
45 : " pages = \"295--318\",\n"
46 : " year = \"2020,\"\n"
47 : " doi = \"https://doi.org/10.1007/s10543-019-00778-z\"\n"
48 : "}\n";
49 :
50 : typedef struct {
51 : PetscReal keep; /* restart parameter */
52 : PetscReal fix; /* fix parameter */
53 : PetscBool reusepc; /* flag indicating whether pc is rebuilt or not */
54 : BV V; /* work basis vectors to store the search space */
55 : BV W; /* work basis vectors to store the test space */
56 : BV *TV; /* work basis vectors to store T*V (each TV[i] is the coefficient for \lambda^i of T*V for the extended T) */
57 : BV *AX; /* work basis vectors to store A_i*X for locked eigenvectors */
58 : BV N[2]; /* auxiliary work BVs */
59 : BV X; /* locked eigenvectors */
60 : PetscScalar *T; /* matrix of the invariant pair */
61 : PetscScalar *Tj; /* matrix containing the powers of the invariant pair matrix */
62 : PetscScalar *XpX; /* X^H*X */
63 : PetscInt ld; /* leading dimension for Tj and XpX */
64 : PC pcshell; /* preconditioner including basic precond+projector */
65 : Mat Pshell; /* auxiliary shell matrix */
66 : PetscInt nlock; /* number of locked vectors in the invariant pair */
67 : Vec vtempl; /* reference nested vector */
68 : PetscInt midx; /* minimality index */
69 : PetscInt mmidx; /* maximum allowed minimality index */
70 : PEPJDProjection proj; /* projection type (orthogonal, harmonic) */
71 : } PEP_JD;
72 :
73 : typedef struct {
74 : PEP pep;
75 : PC pc; /* basic preconditioner */
76 : Vec Bp[2]; /* preconditioned residual of derivative polynomial, B\p */
77 : Vec u[2]; /* Ritz vector */
78 : PetscScalar gamma[2]; /* precomputed scalar u'*B\p */
79 : PetscScalar theta;
80 : PetscScalar *M;
81 : PetscScalar *ps;
82 : PetscInt ld;
83 : Vec *work;
84 : Mat PPr;
85 : BV X;
86 : PetscInt n;
87 : } PEP_JD_PCSHELL;
88 :
89 : typedef struct {
90 : Mat Pr,Pi; /* matrix polynomial evaluated at theta */
91 : PEP pep;
92 : Vec *work;
93 : PetscScalar theta[2];
94 : } PEP_JD_MATSHELL;
95 :
96 : /*
97 : Duplicate and resize auxiliary basis
98 : */
99 59 : static PetscErrorCode PEPJDDuplicateBasis(PEP pep,BV *basis)
100 : {
101 59 : PEP_JD *pjd = (PEP_JD*)pep->data;
102 59 : PetscInt nloc,m;
103 59 : BVType type;
104 59 : BVOrthogType otype;
105 59 : BVOrthogRefineType oref;
106 59 : PetscReal oeta;
107 59 : BVOrthogBlockType oblock;
108 59 : VecType vtype;
109 :
110 59 : PetscFunctionBegin;
111 59 : if (pjd->ld>1) {
112 55 : PetscCall(BVCreate(PetscObjectComm((PetscObject)pep),basis));
113 55 : PetscCall(BVGetSizes(pep->V,&nloc,NULL,&m));
114 55 : nloc += pjd->ld-1;
115 55 : PetscCall(BVSetSizes(*basis,nloc,PETSC_DECIDE,m));
116 55 : PetscCall(BVGetType(pep->V,&type));
117 55 : PetscCall(BVSetType(*basis,type));
118 55 : PetscCall(BVGetVecType(pep->V,&vtype));
119 55 : PetscCall(BVSetVecType(*basis,vtype));
120 55 : PetscCall(BVGetOrthogonalization(pep->V,&otype,&oref,&oeta,&oblock));
121 55 : PetscCall(BVSetOrthogonalization(*basis,otype,oref,oeta,oblock));
122 55 : PetscCall(PetscObjectStateIncrease((PetscObject)*basis));
123 4 : } else PetscCall(BVDuplicate(pep->V,basis));
124 59 : PetscFunctionReturn(PETSC_SUCCESS);
125 : }
126 :
127 12 : static PetscErrorCode PEPSetUp_JD(PEP pep)
128 : {
129 12 : PEP_JD *pjd = (PEP_JD*)pep->data;
130 12 : PetscBool isprecond,flg;
131 12 : PetscRandom rand;
132 12 : PetscInt i;
133 :
134 12 : PetscFunctionBegin;
135 12 : PetscCall(PEPSetDimensions_Default(pep,pep->nev,&pep->ncv,&pep->mpd));
136 12 : if (pep->max_it==PETSC_DETERMINE) pep->max_it = PetscMax(100,2*pep->n/pep->ncv);
137 12 : if (!pep->which) pep->which = PEP_TARGET_MAGNITUDE;
138 12 : PetscCheck(pep->which==PEP_TARGET_MAGNITUDE || pep->which==PEP_TARGET_REAL || pep->which==PEP_TARGET_IMAGINARY,PetscObjectComm((PetscObject)pep),PETSC_ERR_SUP,"The JD solver supports only target which, see PEPSetWhichEigenpairs()");
139 :
140 12 : PetscCall(PetscObjectTypeCompare((PetscObject)pep->st,STPRECOND,&isprecond));
141 12 : PetscCheck(isprecond,PetscObjectComm((PetscObject)pep),PETSC_ERR_SUP,"The JD solver only works with PRECOND spectral transformation");
142 :
143 12 : PetscCall(STGetTransform(pep->st,&flg));
144 12 : PetscCheck(!flg,PetscObjectComm((PetscObject)pep),PETSC_ERR_SUP,"The JD solver requires the ST transform flag unset, see STSetTransform()");
145 12 : PEPCheckIgnored(pep,PEP_FEATURE_EXTRACT);
146 :
147 12 : if (!pjd->mmidx) pjd->mmidx = pep->nmat-1;
148 12 : pjd->mmidx = PetscMin(pjd->mmidx,pep->nmat-1);
149 12 : if (!pjd->keep) pjd->keep = 0.5;
150 12 : PetscCall(PEPBasisCoefficients(pep,pep->pbc));
151 12 : PetscCall(PEPAllocateSolution(pep,0));
152 12 : PetscCall(BVGetRandomContext(pep->V,&rand)); /* make sure the random context is available when duplicating */
153 12 : PetscCall(PEPSetWorkVecs(pep,5));
154 12 : pjd->ld = pep->nev;
155 : #if !defined (PETSC_USE_COMPLEX)
156 : pjd->ld++;
157 : #endif
158 12 : PetscCall(PetscMalloc2(pep->nmat,&pjd->TV,pep->nmat,&pjd->AX));
159 50 : for (i=0;i<pep->nmat;i++) PetscCall(PEPJDDuplicateBasis(pep,pjd->TV+i));
160 12 : if (pjd->ld>1) {
161 11 : PetscCall(PEPJDDuplicateBasis(pep,&pjd->V));
162 11 : PetscCall(BVSetFromOptions(pjd->V));
163 46 : for (i=0;i<pep->nmat;i++) PetscCall(BVDuplicateResize(pep->V,pjd->ld-1,pjd->AX+i));
164 11 : PetscCall(BVDuplicateResize(pep->V,pjd->ld-1,pjd->N));
165 11 : PetscCall(BVDuplicateResize(pep->V,pjd->ld-1,pjd->N+1));
166 11 : pjd->X = pep->V;
167 11 : PetscCall(PetscCalloc3(pjd->ld*pjd->ld,&pjd->XpX,pep->ncv*pep->ncv,&pjd->T,pjd->ld*pjd->ld*pep->nmat,&pjd->Tj));
168 1 : } else pjd->V = pep->V;
169 12 : if (pjd->proj==PEP_JD_PROJECTION_HARMONIC) PetscCall(PEPJDDuplicateBasis(pep,&pjd->W));
170 2 : else pjd->W = pjd->V;
171 12 : PetscCall(DSSetType(pep->ds,DSPEP));
172 12 : PetscCall(DSPEPSetDegree(pep->ds,pep->nmat-1));
173 12 : if (pep->basis!=PEP_BASIS_MONOMIAL) PetscCall(DSPEPSetCoefficients(pep->ds,pep->pbc));
174 12 : PetscCall(DSAllocate(pep->ds,pep->ncv));
175 12 : PetscFunctionReturn(PETSC_SUCCESS);
176 : }
177 :
178 : /*
179 : Updates columns (low to (high-1)) of TV[i]
180 : */
181 301 : static PetscErrorCode PEPJDUpdateTV(PEP pep,PetscInt low,PetscInt high,Vec *w)
182 : {
183 301 : PEP_JD *pjd = (PEP_JD*)pep->data;
184 301 : PetscInt pp,col,i,nloc,nconv;
185 301 : Vec v1,v2,t1,t2;
186 301 : PetscScalar *array1,*array2,*x2,*xx,*N,*Np,*y2=NULL,zero=0.0,sone=1.0,*pT,fact,*psc;
187 301 : PetscReal *cg,*ca,*cb;
188 301 : PetscMPIInt rk,np;
189 301 : PetscBLASInt n_,ld_,one=1;
190 301 : Mat T;
191 301 : BV pbv;
192 :
193 301 : PetscFunctionBegin;
194 301 : ca = pep->pbc; cb = ca+pep->nmat; cg = cb + pep->nmat;
195 301 : nconv = pjd->nlock;
196 301 : PetscCall(PetscMalloc5(nconv,&x2,nconv,&xx,nconv*nconv,&pT,nconv*nconv,&N,nconv*nconv,&Np));
197 301 : PetscCallMPI(MPI_Comm_rank(PetscObjectComm((PetscObject)pep),&rk));
198 301 : PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)pep),&np));
199 301 : PetscCall(BVGetSizes(pep->V,&nloc,NULL,NULL));
200 301 : t1 = w[0];
201 301 : t2 = w[1];
202 301 : PetscCall(PetscBLASIntCast(pjd->nlock,&n_));
203 301 : PetscCall(PetscBLASIntCast(pjd->ld,&ld_));
204 301 : if (nconv) {
205 239 : for (i=0;i<nconv;i++) PetscCall(PetscArraycpy(pT+i*nconv,pjd->T+i*pep->ncv,nconv));
206 85 : PetscCall(MatCreateSeqDense(PETSC_COMM_SELF,nconv,nconv,pT,&T));
207 : }
208 959 : for (col=low;col<high;col++) {
209 658 : PetscCall(BVGetColumn(pjd->V,col,&v1));
210 658 : PetscCall(VecGetArray(v1,&array1));
211 658 : if (nconv>0) {
212 999 : for (i=0;i<nconv;i++) x2[i] = array1[nloc+i]* PetscSqrtReal(np);
213 : }
214 658 : PetscCall(VecPlaceArray(t1,array1));
215 658 : if (nconv) {
216 347 : PetscCall(BVSetActiveColumns(pjd->N[0],0,nconv));
217 347 : PetscCall(BVSetActiveColumns(pjd->N[1],0,nconv));
218 347 : PetscCall(BVDotVec(pjd->X,t1,xx));
219 : }
220 2687 : for (pp=pep->nmat-1;pp>=0;pp--) {
221 2029 : PetscCall(BVGetColumn(pjd->TV[pp],col,&v2));
222 2029 : PetscCall(VecGetArray(v2,&array2));
223 2029 : PetscCall(VecPlaceArray(t2,array2));
224 2029 : PetscCall(MatMult(pep->A[pp],t1,t2));
225 2029 : if (nconv) {
226 1079 : if (pp<pep->nmat-3) {
227 38 : PetscCall(BVMult(pjd->N[0],1.0,-cg[pp+2],pjd->AX[pp+1],NULL));
228 38 : PetscCall(MatShift(T,-cb[pp+1]));
229 38 : PetscCall(BVMult(pjd->N[0],1.0/ca[pp],1.0/ca[pp],pjd->N[1],T));
230 38 : pbv = pjd->N[0]; pjd->N[0] = pjd->N[1]; pjd->N[1] = pbv;
231 38 : PetscCall(BVMultVec(pjd->N[1],1.0,1.0,t2,x2));
232 38 : PetscCall(MatShift(T,cb[pp+1]));
233 1041 : } else if (pp==pep->nmat-3) {
234 347 : PetscCall(BVCopy(pjd->AX[pp+2],pjd->N[0]));
235 347 : PetscCall(BVScale(pjd->N[0],1/ca[pp+1]));
236 347 : PetscCall(BVCopy(pjd->AX[pp+1],pjd->N[1]));
237 347 : PetscCall(MatShift(T,-cb[pp+1]));
238 347 : PetscCall(BVMult(pjd->N[1],1.0/ca[pp],1.0/ca[pp],pjd->N[0],T));
239 347 : PetscCall(BVMultVec(pjd->N[1],1.0,1.0,t2,x2));
240 347 : PetscCall(MatShift(T,cb[pp+1]));
241 694 : } else if (pp==pep->nmat-2) PetscCall(BVMultVec(pjd->AX[pp+1],1.0/ca[pp],1.0,t2,x2));
242 1079 : if (pp<pjd->midx) {
243 504 : y2 = array2+nloc;
244 504 : PetscCallBLAS("BLASgemv",BLASgemv_("C",&n_,&n_,&sone,pjd->Tj+pjd->ld*pjd->ld*pp,&ld_,xx,&one,&zero,y2,&one));
245 504 : if (pp<pjd->midx-2) {
246 0 : fact = -cg[pp+2];
247 0 : PetscCallBLAS("BLASgemm",BLASgemm_("C","N",&n_,&n_,&n_,&sone,pjd->Tj+(pp+1)*pjd->ld*pjd->ld,&ld_,pjd->XpX,&ld_,&fact,Np,&n_));
248 0 : fact = 1/ca[pp];
249 0 : PetscCall(MatShift(T,-cb[pp+1]));
250 0 : PetscCallBLAS("BLASgemm",BLASgemm_("N","N",&n_,&n_,&n_,&fact,N,&n_,pT,&n_,&fact,Np,&n_));
251 0 : PetscCall(MatShift(T,cb[pp+1]));
252 0 : psc = Np; Np = N; N = psc;
253 0 : PetscCallBLAS("BLASgemv",BLASgemv_("N",&n_,&n_,&sone,N,&n_,x2,&one,&sone,y2,&one));
254 504 : } else if (pp==pjd->midx-2) {
255 157 : fact = 1/ca[pp];
256 157 : PetscCallBLAS("BLASgemm",BLASgemm_("C","N",&n_,&n_,&n_,&fact,pjd->Tj+(pp+1)*pjd->ld*pjd->ld,&ld_,pjd->XpX,&ld_,&zero,N,&n_));
257 157 : PetscCallBLAS("BLASgemv",BLASgemv_("N",&n_,&n_,&sone,N,&n_,x2,&one,&sone,y2,&one));
258 347 : } else if (pp==pjd->midx-1) PetscCall(PetscArrayzero(Np,nconv*nconv));
259 : }
260 3073 : for (i=0;i<nconv;i++) array2[nloc+i] /= PetscSqrtReal(np);
261 : }
262 2029 : PetscCall(VecResetArray(t2));
263 2029 : PetscCall(VecRestoreArray(v2,&array2));
264 2029 : PetscCall(BVRestoreColumn(pjd->TV[pp],col,&v2));
265 : }
266 658 : PetscCall(VecResetArray(t1));
267 658 : PetscCall(VecRestoreArray(v1,&array1));
268 658 : PetscCall(BVRestoreColumn(pjd->V,col,&v1));
269 : }
270 301 : if (nconv) PetscCall(MatDestroy(&T));
271 301 : PetscCall(PetscFree5(x2,xx,pT,N,Np));
272 301 : PetscFunctionReturn(PETSC_SUCCESS);
273 : }
274 :
275 : /*
276 : RRQR of X. Xin*P=Xou*R. Rank of R is rk
277 : */
278 54 : static PetscErrorCode PEPJDOrthogonalize(PetscInt row,PetscInt col,PetscScalar *X,PetscInt ldx,PetscInt *rk,PetscInt *P,PetscScalar *R,PetscInt ldr)
279 : {
280 54 : PetscInt i,j,n,r;
281 54 : PetscBLASInt row_,col_,ldx_,*p,lwork,info,n_;
282 54 : PetscScalar *tau,*work;
283 54 : PetscReal tol,*rwork;
284 :
285 54 : PetscFunctionBegin;
286 54 : PetscCall(PetscBLASIntCast(row,&row_));
287 54 : PetscCall(PetscBLASIntCast(col,&col_));
288 54 : PetscCall(PetscBLASIntCast(ldx,&ldx_));
289 54 : PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
290 54 : n = PetscMin(row,col);
291 54 : PetscCall(PetscBLASIntCast(n,&n_));
292 54 : lwork = 3*col_+1;
293 54 : PetscCall(PetscMalloc4(col,&p,n,&tau,lwork,&work,2*col,&rwork));
294 532 : for (i=1;i<col;i++) p[i] = 0;
295 54 : p[0] = 1;
296 :
297 : /* rank revealing QR */
298 : #if defined(PETSC_USE_COMPLEX)
299 54 : PetscCallBLAS("LAPACKgeqp3",LAPACKgeqp3_(&row_,&col_,X,&ldx_,p,tau,work,&lwork,rwork,&info));
300 : #else
301 : PetscCallBLAS("LAPACKgeqp3",LAPACKgeqp3_(&row_,&col_,X,&ldx_,p,tau,work,&lwork,&info));
302 : #endif
303 54 : SlepcCheckLapackInfo("geqp3",info);
304 314 : if (P) for (i=0;i<col;i++) P[i] = p[i]-1;
305 :
306 : /* rank computation */
307 54 : tol = PetscMax(row,col)*PETSC_MACHINE_EPSILON*PetscAbsScalar(X[0]);
308 54 : r = 1;
309 532 : for (i=1;i<n;i++) {
310 478 : if (PetscAbsScalar(X[i+ldx*i])>tol) r++;
311 : else break;
312 : }
313 54 : if (rk) *rk=r;
314 :
315 : /* copy upper triangular matrix if requested */
316 54 : if (R) {
317 282 : for (i=0;i<r;i++) {
318 260 : PetscCall(PetscArrayzero(R+i*ldr,r));
319 2115 : for (j=0;j<=i;j++) R[i*ldr+j] = X[i*ldx+j];
320 : }
321 : }
322 54 : PetscCallBLAS("LAPACKorgqr",LAPACKorgqr_(&row_,&n_,&n_,X,&ldx_,tau,work,&lwork,&info));
323 54 : SlepcCheckLapackInfo("orgqr",info);
324 54 : PetscCall(PetscFPTrapPop());
325 54 : PetscCall(PetscFree4(p,tau,work,rwork));
326 54 : PetscFunctionReturn(PETSC_SUCCESS);
327 : }
328 :
329 : /*
330 : Application of extended preconditioner
331 : */
332 5702 : static PetscErrorCode PEPJDExtendedPCApply(PC pc,Vec x,Vec y)
333 : {
334 5702 : PetscInt i,j,nloc,n,ld=0;
335 5702 : PetscMPIInt np;
336 5702 : Vec tx,ty;
337 5702 : PEP_JD_PCSHELL *ctx;
338 5702 : const PetscScalar *array1;
339 5702 : PetscScalar *x2=NULL,*t=NULL,*ps=NULL,*array2,zero=0.0,sone=1.0;
340 5702 : PetscBLASInt one=1,ld_,n_,ncv_;
341 5702 : PEP_JD *pjd=NULL;
342 :
343 5702 : PetscFunctionBegin;
344 5702 : PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)pc),&np));
345 5702 : PetscCall(PCShellGetContext(pc,&ctx));
346 5702 : n = ctx->n;
347 5702 : if (n) {
348 2492 : pjd = (PEP_JD*)ctx->pep->data;
349 2492 : ps = ctx->ps;
350 2492 : ld = pjd->ld;
351 2492 : PetscCall(PetscMalloc2(n,&x2,n,&t));
352 2492 : PetscCall(VecGetLocalSize(ctx->work[0],&nloc));
353 2492 : PetscCall(VecGetArrayRead(x,&array1));
354 5704 : for (i=0;i<n;i++) x2[i] = array1[nloc+i]* PetscSqrtReal(np);
355 2492 : PetscCall(VecRestoreArrayRead(x,&array1));
356 : }
357 :
358 : /* y = B\x apply PC */
359 5702 : tx = ctx->work[0];
360 5702 : ty = ctx->work[1];
361 5702 : PetscCall(VecGetArrayRead(x,&array1));
362 5702 : PetscCall(VecPlaceArray(tx,array1));
363 5702 : PetscCall(VecGetArray(y,&array2));
364 5702 : PetscCall(VecPlaceArray(ty,array2));
365 5702 : PetscCall(PCApply(ctx->pc,tx,ty));
366 5702 : if (n) {
367 2492 : PetscCall(PetscBLASIntCast(ld,&ld_));
368 2492 : PetscCall(PetscBLASIntCast(n,&n_));
369 5704 : for (i=0;i<n;i++) {
370 3212 : t[i] = 0.0;
371 8440 : for (j=0;j<n;j++) t[i] += ctx->M[i+j*ld]*x2[j];
372 : }
373 2492 : if (pjd->midx==1) {
374 2096 : PetscCall(PetscBLASIntCast(ctx->pep->ncv,&ncv_));
375 4240 : for (i=0;i<n;i++) pjd->T[i*(1+ctx->pep->ncv)] -= ctx->theta;
376 2096 : PetscCallBLAS("BLASgemv",BLASgemv_("N",&n_,&n_,&sone,pjd->T,&ncv_,t,&one,&zero,x2,&one));
377 4240 : for (i=0;i<n;i++) pjd->T[i*(1+ctx->pep->ncv)] += ctx->theta;
378 4240 : for (i=0;i<n;i++) array2[nloc+i] = x2[i];
379 4240 : for (i=0;i<n;i++) x2[i] = -t[i];
380 : } else {
381 1464 : for (i=0;i<n;i++) array2[nloc+i] = t[i];
382 396 : PetscCallBLAS("BLASgemv",BLASgemv_("N",&n_,&n_,&sone,ps,&ld_,t,&one,&zero,x2,&one));
383 : }
384 5704 : for (i=0;i<n;i++) array2[nloc+i] /= PetscSqrtReal(np);
385 2492 : PetscCall(BVSetActiveColumns(pjd->X,0,n));
386 2492 : PetscCall(BVMultVec(pjd->X,-1.0,1.0,ty,x2));
387 2492 : PetscCall(PetscFree2(x2,t));
388 : }
389 5702 : PetscCall(VecResetArray(tx));
390 5702 : PetscCall(VecResetArray(ty));
391 5702 : PetscCall(VecRestoreArrayRead(x,&array1));
392 5702 : PetscCall(VecRestoreArray(y,&array2));
393 5702 : PetscFunctionReturn(PETSC_SUCCESS);
394 : }
395 :
396 : /*
397 : Application of shell preconditioner:
398 : y = B\x - eta*B\p, with eta = (u'*B\x)/(u'*B\p)
399 : */
400 5429 : static PetscErrorCode PCShellApply_PEPJD(PC pc,Vec x,Vec y)
401 : {
402 5429 : PetscScalar rr,eta;
403 5429 : PEP_JD_PCSHELL *ctx;
404 5429 : PetscInt sz;
405 5429 : const Vec *xs,*ys;
406 : #if !defined(PETSC_USE_COMPLEX)
407 : PetscScalar rx,xr,xx;
408 : #endif
409 :
410 5429 : PetscFunctionBegin;
411 5429 : PetscCall(PCShellGetContext(pc,&ctx));
412 5429 : PetscCall(VecCompGetSubVecs(x,&sz,&xs));
413 5429 : PetscCall(VecCompGetSubVecs(y,NULL,&ys));
414 : /* y = B\x apply extended PC */
415 5429 : PetscCall(PEPJDExtendedPCApply(pc,xs[0],ys[0]));
416 : #if !defined(PETSC_USE_COMPLEX)
417 : if (sz==2) PetscCall(PEPJDExtendedPCApply(pc,xs[1],ys[1]));
418 : #endif
419 :
420 : /* Compute eta = u'*y / u'*Bp */
421 5429 : PetscCall(VecDot(ys[0],ctx->u[0],&rr));
422 5429 : eta = -rr*ctx->gamma[0];
423 : #if !defined(PETSC_USE_COMPLEX)
424 : if (sz==2) {
425 : PetscCall(VecDot(ys[0],ctx->u[1],&xr));
426 : PetscCall(VecDot(ys[1],ctx->u[0],&rx));
427 : PetscCall(VecDot(ys[1],ctx->u[1],&xx));
428 : eta += -ctx->gamma[0]*xx-ctx->gamma[1]*(-xr+rx);
429 : }
430 : #endif
431 5429 : eta /= ctx->gamma[0]*ctx->gamma[0]+ctx->gamma[1]*ctx->gamma[1];
432 :
433 : /* y = y - eta*Bp */
434 5429 : PetscCall(VecAXPY(ys[0],eta,ctx->Bp[0]));
435 : #if !defined(PETSC_USE_COMPLEX)
436 : if (sz==2) {
437 : PetscCall(VecAXPY(ys[1],eta,ctx->Bp[1]));
438 : eta = -ctx->gamma[1]*(rr+xx)+ctx->gamma[0]*(-xr+rx);
439 : eta /= ctx->gamma[0]*ctx->gamma[0]+ctx->gamma[1]*ctx->gamma[1];
440 : PetscCall(VecAXPY(ys[0],eta,ctx->Bp[1]));
441 : PetscCall(VecAXPY(ys[1],-eta,ctx->Bp[0]));
442 : }
443 : #endif
444 5429 : PetscFunctionReturn(PETSC_SUCCESS);
445 : }
446 :
447 283 : static PetscErrorCode PEPJDCopyToExtendedVec(PEP pep,Vec v,PetscScalar *a,PetscInt na,PetscInt off,Vec vex,PetscBool back)
448 : {
449 283 : PetscMPIInt np,rk,count;
450 283 : PetscScalar *array1,*array2;
451 283 : PetscInt nloc;
452 :
453 283 : PetscFunctionBegin;
454 283 : PetscCallMPI(MPI_Comm_rank(PetscObjectComm((PetscObject)pep),&rk));
455 283 : PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)pep),&np));
456 283 : PetscCall(BVGetSizes(pep->V,&nloc,NULL,NULL));
457 283 : if (v) {
458 34 : PetscCall(VecGetArray(v,&array1));
459 34 : PetscCall(VecGetArray(vex,&array2));
460 34 : if (back) PetscCall(PetscArraycpy(array1,array2,nloc));
461 0 : else PetscCall(PetscArraycpy(array2,array1,nloc));
462 34 : PetscCall(VecRestoreArray(v,&array1));
463 34 : PetscCall(VecRestoreArray(vex,&array2));
464 : }
465 283 : if (a) {
466 282 : PetscCall(VecGetArray(vex,&array2));
467 282 : if (back) {
468 34 : PetscCall(PetscArraycpy(a,array2+nloc+off,na));
469 34 : PetscCall(PetscMPIIntCast(na,&count));
470 68 : PetscCallMPI(MPI_Bcast(a,count,MPIU_SCALAR,np-1,PetscObjectComm((PetscObject)pep)));
471 : } else {
472 248 : PetscCall(PetscArraycpy(array2+nloc+off,a,na));
473 248 : PetscCall(PetscMPIIntCast(na,&count));
474 496 : PetscCallMPI(MPI_Bcast(array2+nloc+off,count,MPIU_SCALAR,np-1,PetscObjectComm((PetscObject)pep)));
475 : }
476 282 : PetscCall(VecRestoreArray(vex,&array2));
477 : }
478 283 : PetscFunctionReturn(PETSC_SUCCESS);
479 : }
480 :
481 : /* Computes Phi^hat(lambda) times a vector or its derivative (depends on beval)
482 : if no vector is provided returns a matrix
483 : */
484 10395 : static PetscErrorCode PEPJDEvaluateHatBasis(PEP pep,PetscInt n,PetscScalar *H,PetscInt ldh,PetscScalar *beval,PetscScalar *t,PetscInt idx,PetscScalar *qpp,PetscScalar *qp,PetscScalar *q)
485 : {
486 10395 : PetscInt j,i;
487 10395 : PetscBLASInt n_,ldh_,one=1;
488 10395 : PetscReal *a,*b,*g;
489 10395 : PetscScalar sone=1.0,zero=0.0;
490 :
491 10395 : PetscFunctionBegin;
492 10395 : a = pep->pbc; b=a+pep->nmat; g=b+pep->nmat;
493 10395 : PetscCall(PetscBLASIntCast(n,&n_));
494 10395 : PetscCall(PetscBLASIntCast(ldh,&ldh_));
495 10395 : if (idx<1) PetscCall(PetscArrayzero(q,t?n:n*n));
496 7569 : else if (idx==1) {
497 6600 : if (t) {for (j=0;j<n;j++) q[j] = t[j]*beval[idx-1]/a[0];}
498 : else {
499 0 : PetscCall(PetscArrayzero(q,n*n));
500 0 : for (j=0;j<n;j++) q[(j+1)*n] = beval[idx-1]/a[0];
501 : }
502 : } else {
503 4743 : if (t) {
504 4714 : PetscCallBLAS("BLASgemv",BLASgemv_("N",&n_,&n_,&sone,H,&ldh_,qp,&one,&zero,q,&one));
505 10376 : for (j=0;j<n;j++) {
506 5662 : q[j] += beval[idx-1]*t[j]-b[idx-1]*qp[j]-g[idx-1]*qpp[j];
507 5662 : q[j] /= a[idx-1];
508 : }
509 : } else {
510 29 : PetscCallBLAS("BLASgemm",BLASgemm_("N","N",&n_,&n_,&n_,&sone,H,&ldh_,qp,&n_,&zero,q,&n_));
511 107 : for (j=0;j<n;j++) {
512 78 : q[j+n*j] += beval[idx-1];
513 294 : for (i=0;i<n;i++) {
514 216 : q[i+n*j] += -b[idx-1]*qp[j*n+i]-g[idx-1]*qpp[j*n+i];
515 216 : q[i+n*j] /= a[idx-1];
516 : }
517 : }
518 : }
519 : }
520 10395 : PetscFunctionReturn(PETSC_SUCCESS);
521 : }
522 :
523 845 : static PetscErrorCode PEPJDComputeResidual(PEP pep,PetscBool derivative,PetscInt sz,Vec *u,PetscScalar *theta,Vec *p,Vec *work)
524 : {
525 845 : PEP_JD *pjd = (PEP_JD*)pep->data;
526 845 : PetscMPIInt rk,np,count;
527 845 : Vec tu,tp,w;
528 845 : PetscScalar *dval,*dvali,*array1,*array2,*x2=NULL,*y2,*qj=NULL,*tt=NULL,*xx=NULL,*xxi=NULL,sone=1.0;
529 845 : PetscInt i,j,nconv,nloc;
530 845 : PetscBLASInt n,ld,one=1;
531 : #if !defined(PETSC_USE_COMPLEX)
532 : Vec tui=NULL,tpi=NULL;
533 : PetscScalar *x2i=NULL,*qji=NULL,*qq,*y2i,*arrayi1,*arrayi2;
534 : #endif
535 :
536 845 : PetscFunctionBegin;
537 845 : nconv = pjd->nlock;
538 845 : if (!nconv) PetscCall(PetscMalloc1(2*sz*pep->nmat,&dval));
539 : else {
540 828 : PetscCall(PetscMalloc5(2*pep->nmat,&dval,2*nconv,&xx,nconv,&tt,sz*nconv,&x2,(sz==2?3:1)*nconv*pep->nmat,&qj));
541 414 : PetscCallMPI(MPI_Comm_rank(PetscObjectComm((PetscObject)pep),&rk));
542 414 : PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)pep),&np));
543 414 : PetscCall(BVGetSizes(pep->V,&nloc,NULL,NULL));
544 414 : PetscCall(VecGetArray(u[0],&array1));
545 1184 : for (i=0;i<nconv;i++) x2[i] = array1[nloc+i]*PetscSqrtReal(np);
546 414 : PetscCall(VecRestoreArray(u[0],&array1));
547 : #if !defined(PETSC_USE_COMPLEX)
548 : if (sz==2) {
549 : x2i = x2+nconv;
550 : PetscCall(VecGetArray(u[1],&arrayi1));
551 : for (i=0;i<nconv;i++) x2i[i] = arrayi1[nloc+i]*PetscSqrtReal(np);
552 : PetscCall(VecRestoreArray(u[1],&arrayi1));
553 : }
554 : #endif
555 : }
556 845 : dvali = dval+pep->nmat;
557 845 : tu = work[0];
558 845 : tp = work[1];
559 845 : w = work[2];
560 845 : PetscCall(VecGetArray(u[0],&array1));
561 845 : PetscCall(VecPlaceArray(tu,array1));
562 845 : PetscCall(VecGetArray(p[0],&array2));
563 845 : PetscCall(VecPlaceArray(tp,array2));
564 845 : PetscCall(VecSet(tp,0.0));
565 : #if !defined(PETSC_USE_COMPLEX)
566 : if (sz==2) {
567 : tui = work[3];
568 : tpi = work[4];
569 : PetscCall(VecGetArray(u[1],&arrayi1));
570 : PetscCall(VecPlaceArray(tui,arrayi1));
571 : PetscCall(VecGetArray(p[1],&arrayi2));
572 : PetscCall(VecPlaceArray(tpi,arrayi2));
573 : PetscCall(VecSet(tpi,0.0));
574 : }
575 : #endif
576 845 : if (derivative) PetscCall(PEPEvaluateBasisDerivative(pep,theta[0],theta[1],dval,dvali));
577 562 : else PetscCall(PEPEvaluateBasis(pep,theta[0],theta[1],dval,dvali));
578 3181 : for (i=derivative?1:0;i<pep->nmat;i++) {
579 2336 : PetscCall(MatMult(pep->A[i],tu,w));
580 2336 : PetscCall(VecAXPY(tp,dval[i],w));
581 : #if !defined(PETSC_USE_COMPLEX)
582 : if (sz==2) {
583 : PetscCall(VecAXPY(tpi,dvali[i],w));
584 : PetscCall(MatMult(pep->A[i],tui,w));
585 : PetscCall(VecAXPY(tpi,dval[i],w));
586 : PetscCall(VecAXPY(tp,-dvali[i],w));
587 : }
588 : #endif
589 : }
590 845 : if (nconv) {
591 1704 : for (i=0;i<pep->nmat;i++) PetscCall(PEPJDEvaluateHatBasis(pep,nconv,pjd->T,pep->ncv,dval,x2,i,i>1?qj+(i-2)*nconv:NULL,i>0?qj+(i-1)*nconv:NULL,qj+i*nconv));
592 : #if !defined(PETSC_USE_COMPLEX)
593 : if (sz==2) {
594 : qji = qj+nconv*pep->nmat;
595 : qq = qji+nconv*pep->nmat;
596 : for (i=0;i<pep->nmat;i++) PetscCall(PEPJDEvaluateHatBasis(pep,nconv,pjd->T,pep->ncv,dvali,x2i,i,i>1?qji+(i-2)*nconv:NULL,i>0?qji+(i-1)*nconv:NULL,qji+i*nconv));
597 : for (i=0;i<nconv*pep->nmat;i++) qj[i] -= qji[i];
598 : for (i=0;i<pep->nmat;i++) {
599 : PetscCall(PEPJDEvaluateHatBasis(pep,nconv,pjd->T,pep->ncv,dval,x2i,i,i>1?qji+(i-2)*nconv:NULL,i>0?qji+(i-1)*nconv:NULL,qji+i*nconv));
600 : PetscCall(PEPJDEvaluateHatBasis(pep,nconv,pjd->T,pep->ncv,dvali,x2,i,i>1?qq+(i-2)*nconv:NULL,i>0?qq+(i-1)*nconv:NULL,qq+i*nconv));
601 : }
602 : for (i=0;i<nconv*pep->nmat;i++) qji[i] += qq[i];
603 : for (i=derivative?2:1;i<pep->nmat;i++) PetscCall(BVMultVec(pjd->AX[i],1.0,1.0,tpi,qji+i*nconv));
604 : }
605 : #endif
606 1624 : for (i=derivative?2:1;i<pep->nmat;i++) PetscCall(BVMultVec(pjd->AX[i],1.0,1.0,tp,qj+i*nconv));
607 :
608 : /* extended vector part */
609 414 : PetscCall(BVSetActiveColumns(pjd->X,0,nconv));
610 414 : PetscCall(BVDotVec(pjd->X,tu,xx));
611 414 : xxi = xx+nconv;
612 : #if !defined(PETSC_USE_COMPLEX)
613 : if (sz==2) PetscCall(BVDotVec(pjd->X,tui,xxi));
614 : #endif
615 414 : if (sz==1) PetscCall(PetscArrayzero(xxi,nconv));
616 414 : if (rk==np-1) {
617 364 : PetscCall(PetscBLASIntCast(nconv,&n));
618 364 : PetscCall(PetscBLASIntCast(pjd->ld,&ld));
619 364 : y2 = array2+nloc;
620 364 : PetscCall(PetscArrayzero(y2,nconv));
621 809 : for (j=derivative?1:0;j<pjd->midx;j++) {
622 1381 : for (i=0;i<nconv;i++) tt[i] = dval[j]*xx[i]-dvali[j]*xxi[i];
623 445 : PetscCallBLAS("BLASgemv",BLASgemv_("N",&n,&n,&sone,pjd->XpX,&ld,qj+j*nconv,&one,&sone,tt,&one));
624 445 : PetscCallBLAS("BLASgemv",BLASgemv_("C",&n,&n,&sone,pjd->Tj+j*ld*ld,&ld,tt,&one,&sone,y2,&one));
625 : }
626 1030 : for (i=0;i<nconv;i++) array2[nloc+i] /= PetscSqrtReal(np);
627 : #if !defined(PETSC_USE_COMPLEX)
628 : if (sz==2) {
629 : y2i = arrayi2+nloc;
630 : PetscCall(PetscArrayzero(y2i,nconv));
631 : for (j=derivative?1:0;j<pjd->midx;j++) {
632 : for (i=0;i<nconv;i++) tt[i] = dval[j]*xxi[i]+dvali[j]*xx[i];
633 : PetscCallBLAS("BLASgemv",BLASgemv_("N",&n,&n,&sone,pjd->XpX,&ld,qji+j*nconv,&one,&sone,tt,&one));
634 : PetscCallBLAS("BLASgemv",BLASgemv_("C",&n,&n,&sone,pjd->Tj+j*ld*ld,&ld,tt,&one,&sone,y2i,&one));
635 : }
636 : for (i=0;i<nconv;i++) arrayi2[nloc+i] /= PetscSqrtReal(np);
637 : }
638 : #endif
639 : }
640 414 : PetscCall(PetscMPIIntCast(nconv,&count));
641 828 : PetscCallMPI(MPI_Bcast(array2+nloc,count,MPIU_SCALAR,np-1,PetscObjectComm((PetscObject)pep)));
642 : #if !defined(PETSC_USE_COMPLEX)
643 : if (sz==2) PetscCallMPI(MPI_Bcast(arrayi2+nloc,count,MPIU_SCALAR,np-1,PetscObjectComm((PetscObject)pep)));
644 : #endif
645 : }
646 845 : if (nconv) PetscCall(PetscFree5(dval,xx,tt,x2,qj));
647 431 : else PetscCall(PetscFree(dval));
648 845 : PetscCall(VecResetArray(tu));
649 845 : PetscCall(VecRestoreArray(u[0],&array1));
650 845 : PetscCall(VecResetArray(tp));
651 845 : PetscCall(VecRestoreArray(p[0],&array2));
652 : #if !defined(PETSC_USE_COMPLEX)
653 : if (sz==2) {
654 : PetscCall(VecResetArray(tui));
655 : PetscCall(VecRestoreArray(u[1],&arrayi1));
656 : PetscCall(VecResetArray(tpi));
657 : PetscCall(VecRestoreArray(p[1],&arrayi2));
658 : }
659 : #endif
660 845 : PetscFunctionReturn(PETSC_SUCCESS);
661 : }
662 :
663 12 : static PetscErrorCode PEPJDProcessInitialSpace(PEP pep,Vec *w)
664 : {
665 12 : PEP_JD *pjd = (PEP_JD*)pep->data;
666 12 : PetscScalar *tt,target[2];
667 12 : Vec vg,wg;
668 12 : PetscInt i;
669 12 : PetscReal norm;
670 :
671 12 : PetscFunctionBegin;
672 12 : PetscCall(PetscMalloc1(pjd->ld-1,&tt));
673 12 : PetscCheck(pep->nini==0,PETSC_COMM_SELF,PETSC_ERR_SUP,"Support for initial vectors not implemented yet");
674 12 : PetscCall(BVSetRandomColumn(pjd->V,0));
675 35 : for (i=0;i<pjd->ld-1;i++) tt[i] = 0.0;
676 12 : PetscCall(BVGetColumn(pjd->V,0,&vg));
677 12 : PetscCall(PEPJDCopyToExtendedVec(pep,NULL,tt,pjd->ld-1,0,vg,PETSC_FALSE));
678 12 : PetscCall(BVRestoreColumn(pjd->V,0,&vg));
679 12 : PetscCall(BVNormColumn(pjd->V,0,NORM_2,&norm));
680 12 : PetscCall(BVScaleColumn(pjd->V,0,1.0/norm));
681 12 : if (pjd->proj==PEP_JD_PROJECTION_HARMONIC) {
682 10 : PetscCall(BVGetColumn(pjd->V,0,&vg));
683 10 : PetscCall(BVGetColumn(pjd->W,0,&wg));
684 10 : PetscCall(VecSet(wg,0.0));
685 10 : target[0] = pep->target; target[1] = 0.0;
686 10 : PetscCall(PEPJDComputeResidual(pep,PETSC_TRUE,1,&vg,target,&wg,w));
687 10 : PetscCall(BVRestoreColumn(pjd->W,0,&wg));
688 10 : PetscCall(BVRestoreColumn(pjd->V,0,&vg));
689 10 : PetscCall(BVNormColumn(pjd->W,0,NORM_2,&norm));
690 10 : PetscCall(BVScaleColumn(pjd->W,0,1.0/norm));
691 : }
692 12 : PetscCall(PetscFree(tt));
693 12 : PetscFunctionReturn(PETSC_SUCCESS);
694 : }
695 :
696 5156 : static PetscErrorCode MatMult_PEPJD(Mat P,Vec x,Vec y)
697 : {
698 5156 : PEP_JD_MATSHELL *matctx;
699 5156 : PEP_JD *pjd;
700 5156 : PetscInt i,j,nconv,nloc,nmat,ldt,ncv,sz;
701 5156 : Vec tx,ty;
702 5156 : const Vec *xs,*ys;
703 5156 : PetscScalar *array1,*array2,*x2=NULL,*y2,*tt=NULL,*xx=NULL,*xxi,theta[2],sone=1.0,*qj,*val,*vali=NULL;
704 5156 : PetscBLASInt n,ld,one=1;
705 5156 : PetscMPIInt np;
706 : #if !defined(PETSC_USE_COMPLEX)
707 : Vec txi=NULL,tyi=NULL;
708 : PetscScalar *x2i=NULL,*qji=NULL,*qq,*y2i,*arrayi1,*arrayi2;
709 : #endif
710 :
711 5156 : PetscFunctionBegin;
712 5156 : PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)P),&np));
713 5156 : PetscCall(MatShellGetContext(P,&matctx));
714 5156 : pjd = (PEP_JD*)matctx->pep->data;
715 5156 : nconv = pjd->nlock;
716 5156 : nmat = matctx->pep->nmat;
717 5156 : ncv = matctx->pep->ncv;
718 5156 : ldt = pjd->ld;
719 5156 : PetscCall(VecCompGetSubVecs(x,&sz,&xs));
720 5156 : PetscCall(VecCompGetSubVecs(y,NULL,&ys));
721 5156 : theta[0] = matctx->theta[0];
722 5156 : theta[1] = (sz==2)?matctx->theta[1]:0.0;
723 5156 : if (nconv>0) {
724 4824 : PetscCall(PetscMalloc5(nconv,&tt,sz*nconv,&x2,(sz==2?3:1)*nconv*nmat,&qj,2*nconv,&xx,2*nmat,&val));
725 2412 : PetscCall(BVGetSizes(matctx->pep->V,&nloc,NULL,NULL));
726 2412 : PetscCall(VecGetArray(xs[0],&array1));
727 5416 : for (i=0;i<nconv;i++) x2[i] = array1[nloc+i]* PetscSqrtReal(np);
728 2412 : PetscCall(VecRestoreArray(xs[0],&array1));
729 : #if !defined(PETSC_USE_COMPLEX)
730 : if (sz==2) {
731 : x2i = x2+nconv;
732 : PetscCall(VecGetArray(xs[1],&arrayi1));
733 : for (i=0;i<nconv;i++) x2i[i] = arrayi1[nloc+i]* PetscSqrtReal(np);
734 : PetscCall(VecRestoreArray(xs[1],&arrayi1));
735 : }
736 : #endif
737 2412 : vali = val+nmat;
738 : }
739 5156 : tx = matctx->work[0];
740 5156 : ty = matctx->work[1];
741 5156 : PetscCall(VecGetArray(xs[0],&array1));
742 5156 : PetscCall(VecPlaceArray(tx,array1));
743 5156 : PetscCall(VecGetArray(ys[0],&array2));
744 5156 : PetscCall(VecPlaceArray(ty,array2));
745 5156 : PetscCall(MatMult(matctx->Pr,tx,ty));
746 : #if !defined(PETSC_USE_COMPLEX)
747 : if (sz==2) {
748 : txi = matctx->work[2];
749 : tyi = matctx->work[3];
750 : PetscCall(VecGetArray(xs[1],&arrayi1));
751 : PetscCall(VecPlaceArray(txi,arrayi1));
752 : PetscCall(VecGetArray(ys[1],&arrayi2));
753 : PetscCall(VecPlaceArray(tyi,arrayi2));
754 : PetscCall(MatMult(matctx->Pr,txi,tyi));
755 : if (theta[1]!=0.0) {
756 : PetscCall(MatMult(matctx->Pi,txi,matctx->work[4]));
757 : PetscCall(VecAXPY(ty,-1.0,matctx->work[4]));
758 : PetscCall(MatMult(matctx->Pi,tx,matctx->work[4]));
759 : PetscCall(VecAXPY(tyi,1.0,matctx->work[4]));
760 : }
761 : }
762 : #endif
763 5156 : if (nconv>0) {
764 2412 : PetscCall(PEPEvaluateBasis(matctx->pep,theta[0],theta[1],val,vali));
765 11488 : for (i=0;i<nmat;i++) PetscCall(PEPJDEvaluateHatBasis(matctx->pep,nconv,pjd->T,ncv,val,x2,i,i>1?qj+(i-2)*nconv:NULL,i>0?qj+(i-1)*nconv:NULL,qj+i*nconv));
766 : #if !defined(PETSC_USE_COMPLEX)
767 : if (sz==2) {
768 : qji = qj+nconv*nmat;
769 : qq = qji+nconv*nmat;
770 : for (i=0;i<nmat;i++) PetscCall(PEPJDEvaluateHatBasis(matctx->pep,nconv,pjd->T,matctx->pep->ncv,vali,x2i,i,i>1?qji+(i-2)*nconv:NULL,i>0?qji+(i-1)*nconv:NULL,qji+i*nconv));
771 : for (i=0;i<nconv*nmat;i++) qj[i] -= qji[i];
772 : for (i=0;i<nmat;i++) {
773 : PetscCall(PEPJDEvaluateHatBasis(matctx->pep,nconv,pjd->T,matctx->pep->ncv,val,x2i,i,i>1?qji+(i-2)*nconv:NULL,i>0?qji+(i-1)*nconv:NULL,qji+i*nconv));
774 : PetscCall(PEPJDEvaluateHatBasis(matctx->pep,nconv,pjd->T,matctx->pep->ncv,vali,x2,i,i>1?qq+(i-2)*nconv:NULL,i>0?qq+(i-1)*nconv:NULL,qq+i*nconv));
775 : }
776 : for (i=0;i<nconv*nmat;i++) qji[i] += qq[i];
777 : for (i=1;i<matctx->pep->nmat;i++) PetscCall(BVMultVec(pjd->AX[i],1.0,1.0,tyi,qji+i*nconv));
778 : }
779 : #endif
780 9076 : for (i=1;i<nmat;i++) PetscCall(BVMultVec(pjd->AX[i],1.0,1.0,ty,qj+i*nconv));
781 :
782 : /* extended vector part */
783 2412 : PetscCall(BVSetActiveColumns(pjd->X,0,nconv));
784 2412 : PetscCall(BVDotVec(pjd->X,tx,xx));
785 2412 : xxi = xx+nconv;
786 : #if !defined(PETSC_USE_COMPLEX)
787 : if (sz==2) PetscCall(BVDotVec(pjd->X,txi,xxi));
788 : #endif
789 2412 : if (sz==1) PetscCall(PetscArrayzero(xxi,nconv));
790 2412 : PetscCall(PetscBLASIntCast(pjd->nlock,&n));
791 2412 : PetscCall(PetscBLASIntCast(ldt,&ld));
792 2412 : y2 = array2+nloc;
793 2412 : PetscCall(PetscArrayzero(y2,nconv));
794 5152 : for (j=0;j<pjd->midx;j++) {
795 6632 : for (i=0;i<nconv;i++) tt[i] = val[j]*xx[i]-vali[j]*xxi[i];
796 2740 : PetscCallBLAS("BLASgemv",BLASgemv_("N",&n,&n,&sone,pjd->XpX,&ld,qj+j*nconv,&one,&sone,tt,&one));
797 2740 : PetscCallBLAS("BLASgemv",BLASgemv_("C",&n,&n,&sone,pjd->Tj+j*ld*ld,&ld,tt,&one,&sone,y2,&one));
798 : }
799 : #if !defined(PETSC_USE_COMPLEX)
800 : if (sz==2) {
801 : y2i = arrayi2+nloc;
802 : PetscCall(PetscArrayzero(y2i,nconv));
803 : for (j=0;j<pjd->midx;j++) {
804 : for (i=0;i<nconv;i++) tt[i] = val[j]*xxi[i]+vali[j]*xx[i];
805 : PetscCallBLAS("BLASgemv",BLASgemv_("N",&n,&n,&sone,pjd->XpX,&ld,qji+j*nconv,&one,&sone,tt,&one));
806 : PetscCallBLAS("BLASgemv",BLASgemv_("C",&n,&n,&sone,pjd->Tj+j*ld*ld,&ld,tt,&one,&sone,y2i,&one));
807 : }
808 : for (i=0;i<nconv;i++) arrayi2[nloc+i] /= PetscSqrtReal(np);
809 : }
810 : #endif
811 5416 : for (i=0;i<nconv;i++) array2[nloc+i] /= PetscSqrtReal(np);
812 2412 : PetscCall(PetscFree5(tt,x2,qj,xx,val));
813 : }
814 5156 : PetscCall(VecResetArray(tx));
815 5156 : PetscCall(VecRestoreArray(xs[0],&array1));
816 5156 : PetscCall(VecResetArray(ty));
817 5156 : PetscCall(VecRestoreArray(ys[0],&array2));
818 : #if !defined(PETSC_USE_COMPLEX)
819 : if (sz==2) {
820 : PetscCall(VecResetArray(txi));
821 : PetscCall(VecRestoreArray(xs[1],&arrayi1));
822 : PetscCall(VecResetArray(tyi));
823 : PetscCall(VecRestoreArray(ys[1],&arrayi2));
824 : }
825 : #endif
826 5156 : PetscFunctionReturn(PETSC_SUCCESS);
827 : }
828 :
829 12 : static PetscErrorCode MatCreateVecs_PEPJD(Mat A,Vec *right,Vec *left)
830 : {
831 12 : PEP_JD_MATSHELL *matctx;
832 12 : PEP_JD *pjd;
833 12 : PetscInt kspsf=1,i;
834 12 : Vec v[2];
835 :
836 12 : PetscFunctionBegin;
837 12 : PetscCall(MatShellGetContext(A,&matctx));
838 12 : pjd = (PEP_JD*)matctx->pep->data;
839 : #if !defined (PETSC_USE_COMPLEX)
840 : kspsf = 2;
841 : #endif
842 24 : for (i=0;i<kspsf;i++) PetscCall(BVCreateVec(pjd->V,v+i));
843 12 : if (right) PetscCall(VecCreateCompWithVecs(v,kspsf,pjd->vtempl,right));
844 12 : if (left) PetscCall(VecCreateCompWithVecs(v,kspsf,pjd->vtempl,left));
845 24 : for (i=0;i<kspsf;i++) PetscCall(VecDestroy(&v[i]));
846 12 : PetscFunctionReturn(PETSC_SUCCESS);
847 : }
848 :
849 132 : static PetscErrorCode PEPJDUpdateExtendedPC(PEP pep,PetscScalar theta)
850 : {
851 132 : PEP_JD *pjd = (PEP_JD*)pep->data;
852 132 : PEP_JD_PCSHELL *pcctx;
853 132 : PetscInt i,j,k,n=pjd->nlock,ld=pjd->ld,deg=pep->nmat-1;
854 132 : PetscScalar *M,*ps,*work,*U,*V,*S,*Sp,*Spp,snone=-1.0,sone=1.0,zero=0.0,*val;
855 132 : PetscReal tol,maxeig=0.0,*sg,*rwork;
856 132 : PetscBLASInt n_,info,ld_,*p,lw_,rk=0;
857 :
858 132 : PetscFunctionBegin;
859 132 : if (n) {
860 60 : PetscCall(PCShellGetContext(pjd->pcshell,&pcctx));
861 60 : pcctx->theta = theta;
862 60 : pcctx->n = n;
863 60 : M = pcctx->M;
864 60 : PetscCall(PetscBLASIntCast(n,&n_));
865 60 : PetscCall(PetscBLASIntCast(ld,&ld_));
866 60 : PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
867 60 : if (pjd->midx==1) {
868 31 : PetscCall(PetscArraycpy(M,pjd->XpX,ld*ld));
869 31 : PetscCall(PetscCalloc2(10*n,&work,n,&p));
870 : } else {
871 29 : ps = pcctx->ps;
872 29 : PetscCall(PetscCalloc7(2*n*n,&U,3*n*n,&S,n,&sg,10*n,&work,5*n,&rwork,n,&p,deg+1,&val));
873 29 : V = U+n*n;
874 : /* pseudo-inverse */
875 107 : for (j=0;j<n;j++) {
876 294 : for (i=0;i<n;i++) S[n*j+i] = -pjd->T[pep->ncv*j+i];
877 78 : S[n*j+j] += theta;
878 : }
879 29 : lw_ = 10*n_;
880 : #if !defined (PETSC_USE_COMPLEX)
881 : PetscCallBLAS("LAPACKgesvd",LAPACKgesvd_("S","S",&n_,&n_,S,&n_,sg,U,&n_,V,&n_,work,&lw_,&info));
882 : #else
883 29 : PetscCallBLAS("LAPACKgesvd",LAPACKgesvd_("S","S",&n_,&n_,S,&n_,sg,U,&n_,V,&n_,work,&lw_,rwork,&info));
884 : #endif
885 29 : SlepcCheckLapackInfo("gesvd",info);
886 107 : for (i=0;i<n;i++) maxeig = PetscMax(maxeig,sg[i]);
887 29 : tol = 10*PETSC_MACHINE_EPSILON*n*maxeig;
888 107 : for (j=0;j<n;j++) {
889 78 : if (sg[j]>tol) {
890 294 : for (i=0;i<n;i++) U[j*n+i] /= sg[j];
891 78 : rk++;
892 : } else break;
893 : }
894 29 : PetscCallBLAS("BLASgemm",BLASgemm_("N","N",&n_,&n_,&rk,&sone,U,&n_,V,&n_,&zero,ps,&ld_));
895 :
896 : /* compute M */
897 29 : PetscCall(PEPEvaluateBasis(pep,theta,0.0,val,NULL));
898 29 : PetscCallBLAS("BLASgemm",BLASgemm_("N","N",&n_,&n_,&n_,&snone,pjd->XpX,&ld_,ps,&ld_,&zero,M,&ld_));
899 29 : PetscCall(PetscArrayzero(S,2*n*n));
900 29 : Sp = S+n*n;
901 107 : for (j=0;j<n;j++) S[j*(n+1)] = 1.0;
902 58 : for (k=1;k<pjd->midx;k++) {
903 323 : for (j=0;j<n;j++) for (i=0;i<n;i++) V[j*n+i] = S[j*n+i] - ps[j*ld+i]*val[k];
904 29 : PetscCallBLAS("BLASgemm",BLASgemm_("N","N",&n_,&n_,&n_,&sone,pjd->XpX,&ld_,V,&n_,&zero,U,&n_));
905 29 : PetscCallBLAS("BLASgemm",BLASgemm_("C","N",&n_,&n_,&n_,&sone,pjd->Tj+k*ld*ld,&ld_,U,&n_,&sone,M,&ld_));
906 29 : Spp = Sp; Sp = S;
907 29 : PetscCall(PEPJDEvaluateHatBasis(pep,n,pjd->T,pep->ncv,val,NULL,k+1,Spp,Sp,S));
908 : }
909 : }
910 : /* inverse */
911 60 : PetscCallBLAS("LAPACKgetrf",LAPACKgetrf_(&n_,&n_,M,&ld_,p,&info));
912 60 : SlepcCheckLapackInfo("getrf",info);
913 60 : PetscCallBLAS("LAPACKgetri",LAPACKgetri_(&n_,M,&ld_,p,work,&n_,&info));
914 60 : SlepcCheckLapackInfo("getri",info);
915 60 : PetscCall(PetscFPTrapPop());
916 60 : if (pjd->midx==1) PetscCall(PetscFree2(work,p));
917 29 : else PetscCall(PetscFree7(U,S,sg,work,rwork,p,val));
918 : }
919 132 : PetscFunctionReturn(PETSC_SUCCESS);
920 : }
921 :
922 285 : static PetscErrorCode PEPJDMatSetUp(PEP pep,PetscInt sz,PetscScalar *theta)
923 : {
924 285 : PEP_JD *pjd = (PEP_JD*)pep->data;
925 285 : PEP_JD_MATSHELL *matctx;
926 285 : PEP_JD_PCSHELL *pcctx;
927 285 : MatStructure str;
928 285 : PetscScalar *vals,*valsi;
929 285 : PetscBool skipmat=PETSC_FALSE;
930 285 : PetscInt i;
931 285 : Mat Pr=NULL;
932 :
933 285 : PetscFunctionBegin;
934 285 : if (sz==2 && theta[1]==0.0) sz = 1;
935 285 : PetscCall(MatShellGetContext(pjd->Pshell,&matctx));
936 285 : PetscCall(PCShellGetContext(pjd->pcshell,&pcctx));
937 285 : if (matctx->Pr && matctx->theta[0]==theta[0] && ((!matctx->Pi && sz==1) || (sz==2 && matctx->theta[1]==theta[1]))) {
938 148 : if (pcctx->n == pjd->nlock) PetscFunctionReturn(PETSC_SUCCESS);
939 : skipmat = PETSC_TRUE;
940 : }
941 : if (!skipmat) {
942 137 : PetscCall(PetscMalloc2(pep->nmat,&vals,pep->nmat,&valsi));
943 137 : PetscCall(STGetMatStructure(pep->st,&str));
944 137 : PetscCall(PEPEvaluateBasis(pep,theta[0],theta[1],vals,valsi));
945 137 : if (!matctx->Pr) PetscCall(MatDuplicate(pep->A[0],MAT_COPY_VALUES,&matctx->Pr));
946 125 : else PetscCall(MatCopy(pep->A[0],matctx->Pr,str));
947 425 : for (i=1;i<pep->nmat;i++) PetscCall(MatAXPY(matctx->Pr,vals[i],pep->A[i],str));
948 137 : if (!pjd->reusepc) {
949 132 : if (pcctx->PPr && sz==2) {
950 0 : PetscCall(MatCopy(matctx->Pr,pcctx->PPr,str));
951 0 : Pr = pcctx->PPr;
952 132 : } else Pr = matctx->Pr;
953 : }
954 137 : matctx->theta[0] = theta[0];
955 : #if !defined(PETSC_USE_COMPLEX)
956 : if (sz==2) {
957 : if (!matctx->Pi) PetscCall(MatDuplicate(pep->A[0],MAT_COPY_VALUES,&matctx->Pi));
958 : else PetscCall(MatCopy(pep->A[1],matctx->Pi,str));
959 : PetscCall(MatScale(matctx->Pi,valsi[1]));
960 : for (i=2;i<pep->nmat;i++) PetscCall(MatAXPY(matctx->Pi,valsi[i],pep->A[i],str));
961 : matctx->theta[1] = theta[1];
962 : }
963 : #endif
964 137 : PetscCall(PetscFree2(vals,valsi));
965 : }
966 138 : if (!pjd->reusepc) {
967 132 : if (!skipmat) {
968 132 : PetscCall(PCSetOperators(pcctx->pc,Pr,Pr));
969 132 : PetscCall(PCSetUp(pcctx->pc));
970 : }
971 132 : PetscCall(PEPJDUpdateExtendedPC(pep,theta[0]));
972 : }
973 138 : PetscFunctionReturn(PETSC_SUCCESS);
974 : }
975 :
976 12 : static PetscErrorCode PEPJDCreateShellPC(PEP pep,Vec *ww)
977 : {
978 12 : PEP_JD *pjd = (PEP_JD*)pep->data;
979 12 : PEP_JD_PCSHELL *pcctx;
980 12 : PEP_JD_MATSHELL *matctx;
981 12 : KSP ksp;
982 12 : PetscInt nloc,mloc,kspsf=1;
983 12 : Vec v[2];
984 12 : PetscScalar target[2];
985 12 : Mat Pr;
986 :
987 12 : PetscFunctionBegin;
988 : /* Create the reference vector */
989 12 : PetscCall(BVGetColumn(pjd->V,0,&v[0]));
990 12 : v[1] = v[0];
991 : #if !defined (PETSC_USE_COMPLEX)
992 : kspsf = 2;
993 : #endif
994 12 : PetscCall(VecCreateCompWithVecs(v,kspsf,NULL,&pjd->vtempl));
995 12 : PetscCall(BVRestoreColumn(pjd->V,0,&v[0]));
996 :
997 : /* Replace preconditioner with one containing projectors */
998 12 : PetscCall(PCCreate(PetscObjectComm((PetscObject)pep),&pjd->pcshell));
999 12 : PetscCall(PCSetType(pjd->pcshell,PCSHELL));
1000 12 : PetscCall(PCShellSetName(pjd->pcshell,"PCPEPJD"));
1001 12 : PetscCall(PCShellSetApply(pjd->pcshell,PCShellApply_PEPJD));
1002 12 : PetscCall(PetscNew(&pcctx));
1003 12 : PetscCall(PCShellSetContext(pjd->pcshell,pcctx));
1004 12 : PetscCall(STGetKSP(pep->st,&ksp));
1005 12 : PetscCall(BVCreateVec(pjd->V,&pcctx->Bp[0]));
1006 12 : PetscCall(VecDuplicate(pcctx->Bp[0],&pcctx->Bp[1]));
1007 12 : PetscCall(KSPGetPC(ksp,&pcctx->pc));
1008 12 : PetscCall(PetscObjectReference((PetscObject)pcctx->pc));
1009 12 : PetscCall(MatGetLocalSize(pep->A[0],&mloc,&nloc));
1010 12 : if (pjd->ld>1) {
1011 11 : nloc += pjd->ld-1; mloc += pjd->ld-1;
1012 : }
1013 12 : PetscCall(PetscNew(&matctx));
1014 12 : PetscCall(MatCreateShell(PetscObjectComm((PetscObject)pep),kspsf*nloc,kspsf*mloc,PETSC_DETERMINE,PETSC_DETERMINE,matctx,&pjd->Pshell));
1015 12 : PetscCall(MatShellSetOperation(pjd->Pshell,MATOP_MULT,(void(*)(void))MatMult_PEPJD));
1016 12 : PetscCall(MatShellSetOperation(pjd->Pshell,MATOP_CREATE_VECS,(void(*)(void))MatCreateVecs_PEPJD));
1017 12 : matctx->pep = pep;
1018 12 : target[0] = pep->target; target[1] = 0.0;
1019 12 : PetscCall(PEPJDMatSetUp(pep,1,target));
1020 12 : Pr = matctx->Pr;
1021 12 : pcctx->PPr = NULL;
1022 : #if !defined(PETSC_USE_COMPLEX)
1023 : if (!pjd->reusepc) {
1024 : PetscCall(MatDuplicate(matctx->Pr,MAT_COPY_VALUES,&pcctx->PPr));
1025 : Pr = pcctx->PPr;
1026 : }
1027 : #endif
1028 12 : PetscCall(PCSetOperators(pcctx->pc,Pr,Pr));
1029 12 : PetscCall(PCSetErrorIfFailure(pcctx->pc,PETSC_TRUE));
1030 12 : PetscCall(KSPSetPC(ksp,pjd->pcshell));
1031 12 : if (pjd->reusepc) {
1032 1 : PetscCall(PCSetReusePreconditioner(pcctx->pc,PETSC_TRUE));
1033 1 : PetscCall(KSPSetReusePreconditioner(ksp,PETSC_TRUE));
1034 : }
1035 12 : PetscCall(PEP_KSPSetOperators(ksp,pjd->Pshell,pjd->Pshell));
1036 12 : PetscCall(KSPSetUp(ksp));
1037 12 : if (pjd->ld>1) {
1038 11 : PetscCall(PetscMalloc2(pjd->ld*pjd->ld,&pcctx->M,pjd->ld*pjd->ld,&pcctx->ps));
1039 11 : pcctx->pep = pep;
1040 : }
1041 12 : matctx->work = ww;
1042 12 : pcctx->work = ww;
1043 12 : PetscFunctionReturn(PETSC_SUCCESS);
1044 : }
1045 :
1046 11 : static PetscErrorCode PEPJDEigenvectors(PEP pep)
1047 : {
1048 11 : PEP_JD *pjd = (PEP_JD*)pep->data;
1049 11 : PetscBLASInt ld,nconv,info,nc;
1050 11 : PetscScalar *Z;
1051 11 : PetscReal *wr;
1052 11 : Mat U;
1053 : #if defined(PETSC_USE_COMPLEX)
1054 11 : PetscScalar *w;
1055 : #endif
1056 :
1057 11 : PetscFunctionBegin;
1058 11 : PetscCall(PetscBLASIntCast(pep->ncv,&ld));
1059 11 : PetscCall(PetscBLASIntCast(pep->nconv,&nconv));
1060 11 : PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
1061 : #if !defined(PETSC_USE_COMPLEX)
1062 : PetscCall(PetscMalloc2(pep->nconv*pep->nconv,&Z,3*pep->ncv,&wr));
1063 : PetscCallBLAS("LAPACKtrevc",LAPACKtrevc_("R","A",NULL,&nconv,pjd->T,&ld,NULL,&nconv,Z,&nconv,&nconv,&nc,wr,&info));
1064 : #else
1065 11 : PetscCall(PetscMalloc3(pep->nconv*pep->nconv,&Z,3*pep->ncv,&wr,2*pep->ncv,&w));
1066 11 : PetscCallBLAS("LAPACKtrevc",LAPACKtrevc_("R","A",NULL,&nconv,pjd->T,&ld,NULL,&nconv,Z,&nconv,&nconv,&nc,w,wr,&info));
1067 : #endif
1068 11 : PetscCall(PetscFPTrapPop());
1069 11 : SlepcCheckLapackInfo("trevc",info);
1070 11 : PetscCall(MatCreateSeqDense(PETSC_COMM_SELF,nconv,nconv,Z,&U));
1071 11 : PetscCall(BVSetActiveColumns(pjd->X,0,pep->nconv));
1072 11 : PetscCall(BVMultInPlace(pjd->X,U,0,pep->nconv));
1073 11 : PetscCall(BVNormalize(pjd->X,pep->eigi));
1074 11 : PetscCall(MatDestroy(&U));
1075 : #if !defined(PETSC_USE_COMPLEX)
1076 : PetscCall(PetscFree2(Z,wr));
1077 : #else
1078 11 : PetscCall(PetscFree3(Z,wr,w));
1079 : #endif
1080 11 : PetscFunctionReturn(PETSC_SUCCESS);
1081 : }
1082 :
1083 22 : static PetscErrorCode PEPJDLockConverged(PEP pep,PetscInt *nv,PetscInt sz)
1084 : {
1085 22 : PEP_JD *pjd = (PEP_JD*)pep->data;
1086 22 : PetscInt j,i,*P,ldds,rk=0,nvv=*nv;
1087 22 : Vec v,x,w;
1088 22 : PetscScalar *R,*r,*pX,target[2];
1089 22 : Mat X;
1090 22 : PetscBLASInt sz_,rk_,nv_,info;
1091 22 : PetscMPIInt np;
1092 :
1093 22 : PetscFunctionBegin;
1094 : /* update AX and XpX */
1095 45 : for (i=sz;i>0;i--) {
1096 23 : PetscCall(BVGetColumn(pjd->X,pjd->nlock-i,&x));
1097 94 : for (j=0;j<pep->nmat;j++) {
1098 71 : PetscCall(BVGetColumn(pjd->AX[j],pjd->nlock-i,&v));
1099 71 : PetscCall(MatMult(pep->A[j],x,v));
1100 71 : PetscCall(BVRestoreColumn(pjd->AX[j],pjd->nlock-i,&v));
1101 71 : PetscCall(BVSetActiveColumns(pjd->AX[j],0,pjd->nlock-i+1));
1102 : }
1103 23 : PetscCall(BVRestoreColumn(pjd->X,pjd->nlock-i,&x));
1104 23 : PetscCall(BVDotColumn(pjd->X,(pjd->nlock-i),pjd->XpX+(pjd->nlock-i)*pjd->ld));
1105 23 : pjd->XpX[(pjd->nlock-i)*(1+pjd->ld)] = 1.0;
1106 41 : for (j=0;j<pjd->nlock-i;j++) pjd->XpX[j*pjd->ld+pjd->nlock-i] = PetscConj(pjd->XpX[(pjd->nlock-i)*pjd->ld+j]);
1107 : }
1108 :
1109 : /* minimality index */
1110 22 : pjd->midx = PetscMin(pjd->mmidx,pjd->nlock);
1111 :
1112 : /* evaluate the polynomial basis in T */
1113 22 : PetscCall(PetscArrayzero(pjd->Tj,pjd->ld*pjd->ld*pep->nmat));
1114 90 : for (j=0;j<pep->nmat;j++) PetscCall(PEPEvaluateBasisMat(pep,pjd->nlock,pjd->T,pep->ncv,j,(j>1)?pjd->Tj+(j-2)*pjd->ld*pjd->ld:NULL,pjd->ld,j?pjd->Tj+(j-1)*pjd->ld*pjd->ld:NULL,pjd->ld,pjd->Tj+j*pjd->ld*pjd->ld,pjd->ld));
1115 :
1116 : /* Extend search space */
1117 22 : PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)pep),&np));
1118 22 : PetscCall(PetscCalloc3(nvv,&P,nvv*nvv,&R,nvv*sz,&r));
1119 22 : PetscCall(DSGetLeadingDimension(pep->ds,&ldds));
1120 22 : PetscCall(DSGetArray(pep->ds,DS_MAT_X,&pX));
1121 22 : PetscCall(PEPJDOrthogonalize(nvv,nvv,pX,ldds,&rk,P,R,nvv));
1122 45 : for (j=0;j<sz;j++) {
1123 287 : for (i=0;i<rk;i++) r[i*sz+j] = PetscConj(R[nvv*i+j]*pep->eigr[P[i]]); /* first row scaled with permuted diagonal */
1124 : }
1125 22 : PetscCall(PetscBLASIntCast(rk,&rk_));
1126 22 : PetscCall(PetscBLASIntCast(sz,&sz_));
1127 22 : PetscCall(PetscBLASIntCast(nvv,&nv_));
1128 22 : PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
1129 22 : PetscCallBLAS("LAPACKtrtri",LAPACKtrtri_("U","N",&rk_,R,&nv_,&info));
1130 22 : PetscCall(PetscFPTrapPop());
1131 22 : SlepcCheckLapackInfo("trtri",info);
1132 45 : for (i=0;i<sz;i++) PetscCallBLAS("BLAStrmv",BLAStrmv_("U","C","N",&rk_,R,&nv_,r+i,&sz_));
1133 286 : for (i=0;i<sz*rk;i++) r[i] = PetscConj(r[i])/PetscSqrtReal(np); /* revert */
1134 22 : PetscCall(BVSetActiveColumns(pjd->V,0,nvv));
1135 22 : rk -= sz;
1136 259 : for (j=0;j<rk;j++) PetscCall(PetscArraycpy(R+j*nvv,pX+(j+sz)*ldds,nvv));
1137 22 : PetscCall(DSRestoreArray(pep->ds,DS_MAT_X,&pX));
1138 22 : PetscCall(MatCreateSeqDense(PETSC_COMM_SELF,nvv,rk,R,&X));
1139 22 : PetscCall(BVMultInPlace(pjd->V,X,0,rk));
1140 22 : PetscCall(MatDestroy(&X));
1141 22 : PetscCall(BVSetActiveColumns(pjd->V,0,rk));
1142 259 : for (j=0;j<rk;j++) {
1143 237 : PetscCall(BVGetColumn(pjd->V,j,&v));
1144 237 : PetscCall(PEPJDCopyToExtendedVec(pep,NULL,r+sz*(j+sz),sz,pjd->nlock-sz,v,PETSC_FALSE));
1145 237 : PetscCall(BVRestoreColumn(pjd->V,j,&v));
1146 : }
1147 22 : PetscCall(BVOrthogonalize(pjd->V,NULL));
1148 :
1149 22 : if (pjd->proj==PEP_JD_PROJECTION_HARMONIC) {
1150 245 : for (j=0;j<rk;j++) {
1151 : /* W = P(target)*V */
1152 226 : PetscCall(BVGetColumn(pjd->W,j,&w));
1153 226 : PetscCall(BVGetColumn(pjd->V,j,&v));
1154 226 : target[0] = pep->target; target[1] = 0.0;
1155 226 : PetscCall(PEPJDComputeResidual(pep,PETSC_FALSE,1,&v,target,&w,pep->work));
1156 226 : PetscCall(BVRestoreColumn(pjd->V,j,&v));
1157 226 : PetscCall(BVRestoreColumn(pjd->W,j,&w));
1158 : }
1159 19 : PetscCall(BVSetActiveColumns(pjd->W,0,rk));
1160 19 : PetscCall(BVOrthogonalize(pjd->W,NULL));
1161 : }
1162 22 : *nv = rk;
1163 22 : PetscCall(PetscFree3(P,R,r));
1164 22 : PetscFunctionReturn(PETSC_SUCCESS);
1165 : }
1166 :
1167 273 : static PetscErrorCode PEPJDSystemSetUp(PEP pep,PetscInt sz,PetscScalar *theta,Vec *u,Vec *p,Vec *ww)
1168 : {
1169 273 : PEP_JD *pjd = (PEP_JD*)pep->data;
1170 273 : PEP_JD_PCSHELL *pcctx;
1171 : #if !defined(PETSC_USE_COMPLEX)
1172 : PetscScalar s[2];
1173 : #endif
1174 :
1175 273 : PetscFunctionBegin;
1176 273 : PetscCall(PCShellGetContext(pjd->pcshell,&pcctx));
1177 273 : PetscCall(PEPJDMatSetUp(pep,sz,theta));
1178 273 : pcctx->u[0] = u[0]; pcctx->u[1] = u[1];
1179 : /* Compute r'. p is a work space vector */
1180 273 : PetscCall(PEPJDComputeResidual(pep,PETSC_TRUE,sz,u,theta,p,ww));
1181 273 : PetscCall(PEPJDExtendedPCApply(pjd->pcshell,p[0],pcctx->Bp[0]));
1182 273 : PetscCall(VecDot(pcctx->Bp[0],u[0],pcctx->gamma));
1183 : #if !defined(PETSC_USE_COMPLEX)
1184 : if (sz==2) {
1185 : PetscCall(PEPJDExtendedPCApply(pjd->pcshell,p[1],pcctx->Bp[1]));
1186 : PetscCall(VecDot(pcctx->Bp[0],u[1],pcctx->gamma+1));
1187 : PetscCall(VecMDot(pcctx->Bp[1],2,u,s));
1188 : pcctx->gamma[0] += s[1];
1189 : pcctx->gamma[1] = -pcctx->gamma[1]+s[0];
1190 : }
1191 : #endif
1192 273 : if (sz==1) {
1193 273 : PetscCall(VecZeroEntries(pcctx->Bp[1]));
1194 273 : pcctx->gamma[1] = 0.0;
1195 : }
1196 273 : PetscFunctionReturn(PETSC_SUCCESS);
1197 : }
1198 :
1199 12 : static PetscErrorCode PEPSolve_JD(PEP pep)
1200 : {
1201 12 : PEP_JD *pjd = (PEP_JD*)pep->data;
1202 12 : PetscInt k,nv,nvc,ld,minv,dim,bupdated=0,sz=1,kspsf=1,idx,off,maxits,nloc;
1203 12 : PetscMPIInt np,count;
1204 12 : PetscScalar theta[2]={0.0,0.0},ritz[2]={0.0,0.0},*pX,*eig,*eigi,*array;
1205 12 : PetscReal norm,*res,tol=0.0,rtol,abstol, dtol;
1206 12 : PetscBool lindep,ini=PETSC_TRUE;
1207 12 : Vec tc,t[2]={NULL,NULL},u[2]={NULL,NULL},p[2]={NULL,NULL};
1208 12 : Vec rc,rr[2],r[2]={NULL,NULL},*ww=pep->work,v[2];
1209 12 : Mat G,X,Y;
1210 12 : KSP ksp;
1211 12 : PEP_JD_PCSHELL *pcctx;
1212 12 : PEP_JD_MATSHELL *matctx;
1213 : #if !defined(PETSC_USE_COMPLEX)
1214 : PetscReal norm1;
1215 : #endif
1216 :
1217 12 : PetscFunctionBegin;
1218 12 : PetscCall(PetscCitationsRegister(citation,&cited));
1219 12 : PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)pep),&np));
1220 12 : PetscCall(BVGetSizes(pep->V,&nloc,NULL,NULL));
1221 12 : PetscCall(DSGetLeadingDimension(pep->ds,&ld));
1222 12 : PetscCall(PetscCalloc3(pep->ncv+pep->nev,&eig,pep->ncv+pep->nev,&eigi,pep->ncv+pep->nev,&res));
1223 12 : pjd->nlock = 0;
1224 12 : PetscCall(STGetKSP(pep->st,&ksp));
1225 12 : PetscCall(KSPGetTolerances(ksp,&rtol,&abstol,&dtol,&maxits));
1226 : #if !defined (PETSC_USE_COMPLEX)
1227 : kspsf = 2;
1228 : #endif
1229 12 : PetscCall(PEPJDProcessInitialSpace(pep,ww));
1230 12 : nv = (pep->nini)?pep->nini:1;
1231 :
1232 : /* Replace preconditioner with one containing projectors */
1233 12 : PetscCall(PEPJDCreateShellPC(pep,ww));
1234 12 : PetscCall(PCShellGetContext(pjd->pcshell,&pcctx));
1235 :
1236 : /* Create auxiliary vectors */
1237 12 : PetscCall(BVCreateVec(pjd->V,&u[0]));
1238 12 : PetscCall(VecDuplicate(u[0],&p[0]));
1239 12 : PetscCall(VecDuplicate(u[0],&r[0]));
1240 : #if !defined (PETSC_USE_COMPLEX)
1241 : PetscCall(VecDuplicate(u[0],&u[1]));
1242 : PetscCall(VecDuplicate(u[0],&p[1]));
1243 : PetscCall(VecDuplicate(u[0],&r[1]));
1244 : #endif
1245 :
1246 : /* Restart loop */
1247 313 : while (pep->reason == PEP_CONVERGED_ITERATING) {
1248 301 : pep->its++;
1249 301 : PetscCall(DSSetDimensions(pep->ds,nv,0,0));
1250 301 : PetscCall(BVSetActiveColumns(pjd->V,bupdated,nv));
1251 301 : PetscCall(PEPJDUpdateTV(pep,bupdated,nv,ww));
1252 301 : if (pjd->proj==PEP_JD_PROJECTION_HARMONIC) PetscCall(BVSetActiveColumns(pjd->W,bupdated,nv));
1253 1237 : for (k=0;k<pep->nmat;k++) {
1254 936 : PetscCall(BVSetActiveColumns(pjd->TV[k],bupdated,nv));
1255 936 : PetscCall(DSGetMat(pep->ds,DSMatExtra[k],&G));
1256 936 : PetscCall(BVMatProject(pjd->TV[k],NULL,pjd->W,G));
1257 936 : PetscCall(DSRestoreMat(pep->ds,DSMatExtra[k],&G));
1258 : }
1259 301 : PetscCall(BVSetActiveColumns(pjd->V,0,nv));
1260 301 : PetscCall(BVSetActiveColumns(pjd->W,0,nv));
1261 :
1262 : /* Solve projected problem */
1263 301 : PetscCall(DSSetState(pep->ds,DS_STATE_RAW));
1264 301 : PetscCall(DSSolve(pep->ds,pep->eigr,pep->eigi));
1265 301 : PetscCall(DSSort(pep->ds,pep->eigr,pep->eigi,NULL,NULL,NULL));
1266 301 : PetscCall(DSSynchronize(pep->ds,pep->eigr,pep->eigi));
1267 : idx = 0;
1268 336 : do {
1269 336 : ritz[0] = pep->eigr[idx];
1270 : #if !defined(PETSC_USE_COMPLEX)
1271 : ritz[1] = pep->eigi[idx];
1272 : sz = (ritz[1]==0.0)?1:2;
1273 : #endif
1274 : /* Compute Ritz vector u=V*X(:,1) */
1275 336 : PetscCall(DSGetArray(pep->ds,DS_MAT_X,&pX));
1276 336 : PetscCall(BVSetActiveColumns(pjd->V,0,nv));
1277 336 : PetscCall(BVMultVec(pjd->V,1.0,0.0,u[0],pX+idx*ld));
1278 : #if !defined(PETSC_USE_COMPLEX)
1279 : if (sz==2) PetscCall(BVMultVec(pjd->V,1.0,0.0,u[1],pX+(idx+1)*ld));
1280 : #endif
1281 336 : PetscCall(DSRestoreArray(pep->ds,DS_MAT_X,&pX));
1282 336 : PetscCall(PEPJDComputeResidual(pep,PETSC_FALSE,sz,u,ritz,r,ww));
1283 : /* Check convergence */
1284 336 : PetscCall(VecNorm(r[0],NORM_2,&norm));
1285 : #if !defined(PETSC_USE_COMPLEX)
1286 : if (sz==2) {
1287 : PetscCall(VecNorm(r[1],NORM_2,&norm1));
1288 : norm = SlepcAbs(norm,norm1);
1289 : }
1290 : #endif
1291 336 : PetscCall((*pep->converged)(pep,ritz[0],ritz[1],norm,&pep->errest[pep->nconv],pep->convergedctx));
1292 336 : if (sz==2) pep->errest[pep->nconv+1] = pep->errest[pep->nconv];
1293 336 : if (ini) {
1294 47 : tol = PetscMin(.1,pep->errest[pep->nconv]); ini = PETSC_FALSE;
1295 289 : } else tol = PetscMin(pep->errest[pep->nconv],tol/2);
1296 336 : PetscCall((*pep->stopping)(pep,pep->its,pep->max_it,(pep->errest[pep->nconv]<pep->tol)?pep->nconv+sz:pep->nconv,pep->nev,&pep->reason,pep->stoppingctx));
1297 336 : if (pep->errest[pep->nconv]<pep->tol) {
1298 : /* Ritz pair converged */
1299 35 : ini = PETSC_TRUE;
1300 35 : minv = PetscMin(nv,(PetscInt)(pjd->keep*pep->ncv));
1301 35 : if (pjd->ld>1) {
1302 34 : PetscCall(BVGetColumn(pjd->X,pep->nconv,&v[0]));
1303 34 : PetscCall(PEPJDCopyToExtendedVec(pep,v[0],pjd->T+pep->ncv*pep->nconv,pjd->ld-1,0,u[0],PETSC_TRUE));
1304 34 : PetscCall(BVRestoreColumn(pjd->X,pep->nconv,&v[0]));
1305 34 : PetscCall(BVSetActiveColumns(pjd->X,0,pep->nconv+1));
1306 34 : PetscCall(BVNormColumn(pjd->X,pep->nconv,NORM_2,&norm));
1307 34 : PetscCall(BVScaleColumn(pjd->X,pep->nconv,1.0/norm));
1308 75 : for (k=0;k<pep->nconv;k++) pjd->T[pep->ncv*pep->nconv+k] *= PetscSqrtReal(np)/norm;
1309 34 : pjd->T[(pep->ncv+1)*pep->nconv] = ritz[0];
1310 34 : eig[pep->nconv] = ritz[0];
1311 34 : idx++;
1312 : #if !defined(PETSC_USE_COMPLEX)
1313 : if (sz==2) {
1314 : PetscCall(BVGetColumn(pjd->X,pep->nconv+1,&v[0]));
1315 : PetscCall(PEPJDCopyToExtendedVec(pep,v[0],pjd->T+pep->ncv*(pep->nconv+1),pjd->ld-1,0,u[1],PETSC_TRUE));
1316 : PetscCall(BVRestoreColumn(pjd->X,pep->nconv+1,&v[0]));
1317 : PetscCall(BVSetActiveColumns(pjd->X,0,pep->nconv+2));
1318 : PetscCall(BVNormColumn(pjd->X,pep->nconv+1,NORM_2,&norm1));
1319 : PetscCall(BVScaleColumn(pjd->X,pep->nconv+1,1.0/norm1));
1320 : for (k=0;k<pep->nconv;k++) pjd->T[pep->ncv*(pep->nconv+1)+k] *= PetscSqrtReal(np)/norm1;
1321 : pjd->T[(pep->ncv+1)*(pep->nconv+1)] = ritz[0];
1322 : pjd->T[(pep->ncv+1)*pep->nconv+1] = -ritz[1]*norm1/norm;
1323 : pjd->T[(pep->ncv+1)*(pep->nconv+1)-1] = ritz[1]*norm/norm1;
1324 : eig[pep->nconv+1] = ritz[0];
1325 : eigi[pep->nconv] = ritz[1]; eigi[pep->nconv+1] = -ritz[1];
1326 : idx++;
1327 : }
1328 : #endif
1329 1 : } else PetscCall(BVInsertVec(pep->V,pep->nconv,u[0]));
1330 35 : pep->nconv += sz;
1331 : }
1332 336 : } while (pep->errest[pep->nconv]<pep->tol && pep->nconv<nv);
1333 :
1334 301 : if (pep->reason==PEP_CONVERGED_ITERATING) {
1335 289 : nvc = nv;
1336 289 : if (idx) {
1337 22 : pjd->nlock +=idx;
1338 22 : PetscCall(PEPJDLockConverged(pep,&nv,idx));
1339 : }
1340 289 : if (nv+sz>=pep->ncv-1) {
1341 : /* Basis full, force restart */
1342 16 : minv = PetscMin(nv,(PetscInt)(pjd->keep*pep->ncv));
1343 16 : PetscCall(DSGetDimensions(pep->ds,&dim,NULL,NULL,NULL));
1344 16 : PetscCall(DSGetArray(pep->ds,DS_MAT_X,&pX));
1345 16 : PetscCall(PEPJDOrthogonalize(dim,minv,pX,ld,&minv,NULL,NULL,ld));
1346 16 : PetscCall(DSRestoreArray(pep->ds,DS_MAT_X,&pX));
1347 16 : PetscCall(DSGetArray(pep->ds,DS_MAT_Y,&pX));
1348 16 : PetscCall(PEPJDOrthogonalize(dim,minv,pX,ld,&minv,NULL,NULL,ld));
1349 16 : PetscCall(DSRestoreArray(pep->ds,DS_MAT_Y,&pX));
1350 16 : PetscCall(DSGetMat(pep->ds,DS_MAT_X,&X));
1351 16 : PetscCall(BVMultInPlace(pjd->V,X,0,minv));
1352 16 : PetscCall(DSRestoreMat(pep->ds,DS_MAT_X,&X));
1353 16 : if (pjd->proj==PEP_JD_PROJECTION_HARMONIC) {
1354 13 : PetscCall(DSGetMat(pep->ds,DS_MAT_Y,&Y));
1355 13 : PetscCall(BVMultInPlace(pjd->W,Y,pep->nconv,minv));
1356 13 : PetscCall(DSRestoreMat(pep->ds,DS_MAT_Y,&Y));
1357 : }
1358 16 : nv = minv;
1359 16 : bupdated = 0;
1360 : } else {
1361 273 : if (!idx && pep->errest[pep->nconv]<pjd->fix) {theta[0] = ritz[0]; theta[1] = ritz[1];}
1362 174 : else {theta[0] = pep->target; theta[1] = 0.0;}
1363 : /* Update system mat */
1364 273 : PetscCall(PEPJDSystemSetUp(pep,sz,theta,u,p,ww));
1365 : /* Solve correction equation to expand basis */
1366 273 : PetscCall(BVGetColumn(pjd->V,nv,&t[0]));
1367 273 : rr[0] = r[0];
1368 273 : if (sz==2) {
1369 : PetscCall(BVGetColumn(pjd->V,nv+1,&t[1]));
1370 : rr[1] = r[1];
1371 : } else {
1372 273 : t[1] = NULL;
1373 273 : rr[1] = NULL;
1374 : }
1375 273 : PetscCall(VecCreateCompWithVecs(t,kspsf,pjd->vtempl,&tc));
1376 273 : PetscCall(VecCreateCompWithVecs(rr,kspsf,pjd->vtempl,&rc));
1377 273 : PetscCall(VecCompSetSubVecs(pjd->vtempl,sz,NULL));
1378 273 : tol = PetscMax(rtol,tol/2);
1379 273 : PetscCall(KSPSetTolerances(ksp,tol,abstol,dtol,maxits));
1380 273 : PetscCall(KSPSolve(ksp,rc,tc));
1381 273 : PetscCall(VecDestroy(&tc));
1382 273 : PetscCall(VecDestroy(&rc));
1383 273 : PetscCall(VecGetArray(t[0],&array));
1384 273 : PetscCall(PetscMPIIntCast(pep->nconv,&count));
1385 546 : PetscCallMPI(MPI_Bcast(array+nloc,count,MPIU_SCALAR,np-1,PetscObjectComm((PetscObject)pep)));
1386 273 : PetscCall(VecRestoreArray(t[0],&array));
1387 273 : PetscCall(BVRestoreColumn(pjd->V,nv,&t[0]));
1388 273 : PetscCall(BVOrthogonalizeColumn(pjd->V,nv,NULL,&norm,&lindep));
1389 273 : if (lindep || norm==0.0) {
1390 0 : PetscCheck(sz!=1,PETSC_COMM_SELF,PETSC_ERR_CONV_FAILED,"Linearly dependent continuation vector");
1391 : off = 1;
1392 : } else {
1393 273 : off = 0;
1394 273 : PetscCall(BVScaleColumn(pjd->V,nv,1.0/norm));
1395 : }
1396 : #if !defined(PETSC_USE_COMPLEX)
1397 : if (sz==2) {
1398 : PetscCall(VecGetArray(t[1],&array));
1399 : PetscCallMPI(MPI_Bcast(array+nloc,count,MPIU_SCALAR,np-1,PetscObjectComm((PetscObject)pep)));
1400 : PetscCall(VecRestoreArray(t[1],&array));
1401 : PetscCall(BVRestoreColumn(pjd->V,nv+1,&t[1]));
1402 : if (off) PetscCall(BVCopyColumn(pjd->V,nv+1,nv));
1403 : PetscCall(BVOrthogonalizeColumn(pjd->V,nv+1-off,NULL,&norm,&lindep));
1404 : if (lindep || norm==0.0) {
1405 : PetscCheck(off==0,PETSC_COMM_SELF,PETSC_ERR_CONV_FAILED,"Linearly dependent continuation vector");
1406 : off = 1;
1407 : } else PetscCall(BVScaleColumn(pjd->V,nv+1-off,1.0/norm));
1408 : }
1409 : #endif
1410 273 : if (pjd->proj==PEP_JD_PROJECTION_HARMONIC) {
1411 241 : PetscCall(BVInsertVec(pjd->W,nv,r[0]));
1412 241 : if (sz==2 && !off) PetscCall(BVInsertVec(pjd->W,nv+1,r[1]));
1413 241 : PetscCall(BVOrthogonalizeColumn(pjd->W,nv,NULL,&norm,&lindep));
1414 241 : PetscCheck(!lindep && norm>0.0,PETSC_COMM_SELF,PETSC_ERR_CONV_FAILED,"Linearly dependent continuation vector");
1415 241 : PetscCall(BVScaleColumn(pjd->W,nv,1.0/norm));
1416 : if (sz==2 && !off) {
1417 : PetscCall(BVOrthogonalizeColumn(pjd->W,nv+1,NULL,&norm,&lindep));
1418 : PetscCheck(!lindep && norm>0.0,PETSC_COMM_SELF,PETSC_ERR_CONV_FAILED,"Linearly dependent continuation vector");
1419 273 : PetscCall(BVScaleColumn(pjd->W,nv+1,1.0/norm));
1420 : }
1421 : }
1422 273 : bupdated = idx?0:nv;
1423 273 : nv += sz-off;
1424 : }
1425 3156 : for (k=0;k<nvc;k++) {
1426 2867 : eig[pep->nconv-idx+k] = pep->eigr[k];
1427 : #if !defined(PETSC_USE_COMPLEX)
1428 : eigi[pep->nconv-idx+k] = pep->eigi[k];
1429 : #endif
1430 : }
1431 602 : PetscCall(PEPMonitor(pep,pep->its,pep->nconv,eig,eigi,pep->errest,pep->nconv+1));
1432 : }
1433 : }
1434 12 : if (pjd->ld>1) {
1435 45 : for (k=0;k<pep->nconv;k++) {
1436 34 : pep->eigr[k] = eig[k];
1437 34 : pep->eigi[k] = eigi[k];
1438 : }
1439 11 : if (pep->nconv>0) PetscCall(PEPJDEigenvectors(pep));
1440 11 : PetscCall(PetscFree2(pcctx->M,pcctx->ps));
1441 : }
1442 12 : PetscCall(VecDestroy(&u[0]));
1443 12 : PetscCall(VecDestroy(&r[0]));
1444 12 : PetscCall(VecDestroy(&p[0]));
1445 : #if !defined (PETSC_USE_COMPLEX)
1446 : PetscCall(VecDestroy(&u[1]));
1447 : PetscCall(VecDestroy(&r[1]));
1448 : PetscCall(VecDestroy(&p[1]));
1449 : #endif
1450 12 : PetscCall(KSPSetTolerances(ksp,rtol,abstol,dtol,maxits));
1451 12 : PetscCall(KSPSetPC(ksp,pcctx->pc));
1452 12 : PetscCall(VecDestroy(&pcctx->Bp[0]));
1453 12 : PetscCall(VecDestroy(&pcctx->Bp[1]));
1454 12 : PetscCall(MatShellGetContext(pjd->Pshell,&matctx));
1455 12 : PetscCall(MatDestroy(&matctx->Pr));
1456 12 : PetscCall(MatDestroy(&matctx->Pi));
1457 12 : PetscCall(MatDestroy(&pjd->Pshell));
1458 12 : PetscCall(MatDestroy(&pcctx->PPr));
1459 12 : PetscCall(PCDestroy(&pcctx->pc));
1460 12 : PetscCall(PetscFree(pcctx));
1461 12 : PetscCall(PetscFree(matctx));
1462 12 : PetscCall(PCDestroy(&pjd->pcshell));
1463 12 : PetscCall(PetscFree3(eig,eigi,res));
1464 12 : PetscCall(VecDestroy(&pjd->vtempl));
1465 12 : PetscFunctionReturn(PETSC_SUCCESS);
1466 : }
1467 :
1468 3 : static PetscErrorCode PEPJDSetRestart_JD(PEP pep,PetscReal keep)
1469 : {
1470 3 : PEP_JD *pjd = (PEP_JD*)pep->data;
1471 :
1472 3 : PetscFunctionBegin;
1473 3 : if (keep==(PetscReal)PETSC_DEFAULT || keep==(PetscReal)PETSC_DECIDE) pjd->keep = 0.5;
1474 : else {
1475 3 : PetscCheck(keep>=0.1 && keep<=0.9,PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"The keep argument must be in the range [0.1,0.9]");
1476 3 : pjd->keep = keep;
1477 : }
1478 3 : PetscFunctionReturn(PETSC_SUCCESS);
1479 : }
1480 :
1481 : /*@
1482 : PEPJDSetRestart - Sets the restart parameter for the Jacobi-Davidson
1483 : method, in particular the proportion of basis vectors that must be kept
1484 : after restart.
1485 :
1486 : Logically Collective
1487 :
1488 : Input Parameters:
1489 : + pep - the eigenproblem solver context
1490 : - keep - the number of vectors to be kept at restart
1491 :
1492 : Options Database Key:
1493 : . -pep_jd_restart - Sets the restart parameter
1494 :
1495 : Notes:
1496 : Allowed values are in the range [0.1,0.9]. The default is 0.5.
1497 :
1498 : Level: advanced
1499 :
1500 : .seealso: PEPJDGetRestart()
1501 : @*/
1502 3 : PetscErrorCode PEPJDSetRestart(PEP pep,PetscReal keep)
1503 : {
1504 3 : PetscFunctionBegin;
1505 3 : PetscValidHeaderSpecific(pep,PEP_CLASSID,1);
1506 9 : PetscValidLogicalCollectiveReal(pep,keep,2);
1507 3 : PetscTryMethod(pep,"PEPJDSetRestart_C",(PEP,PetscReal),(pep,keep));
1508 3 : PetscFunctionReturn(PETSC_SUCCESS);
1509 : }
1510 :
1511 2 : static PetscErrorCode PEPJDGetRestart_JD(PEP pep,PetscReal *keep)
1512 : {
1513 2 : PEP_JD *pjd = (PEP_JD*)pep->data;
1514 :
1515 2 : PetscFunctionBegin;
1516 2 : *keep = pjd->keep;
1517 2 : PetscFunctionReturn(PETSC_SUCCESS);
1518 : }
1519 :
1520 : /*@
1521 : PEPJDGetRestart - Gets the restart parameter used in the Jacobi-Davidson method.
1522 :
1523 : Not Collective
1524 :
1525 : Input Parameter:
1526 : . pep - the eigenproblem solver context
1527 :
1528 : Output Parameter:
1529 : . keep - the restart parameter
1530 :
1531 : Level: advanced
1532 :
1533 : .seealso: PEPJDSetRestart()
1534 : @*/
1535 2 : PetscErrorCode PEPJDGetRestart(PEP pep,PetscReal *keep)
1536 : {
1537 2 : PetscFunctionBegin;
1538 2 : PetscValidHeaderSpecific(pep,PEP_CLASSID,1);
1539 2 : PetscAssertPointer(keep,2);
1540 2 : PetscUseMethod(pep,"PEPJDGetRestart_C",(PEP,PetscReal*),(pep,keep));
1541 2 : PetscFunctionReturn(PETSC_SUCCESS);
1542 : }
1543 :
1544 2 : static PetscErrorCode PEPJDSetFix_JD(PEP pep,PetscReal fix)
1545 : {
1546 2 : PEP_JD *pjd = (PEP_JD*)pep->data;
1547 :
1548 2 : PetscFunctionBegin;
1549 2 : if (fix == (PetscReal)PETSC_DEFAULT || fix == (PetscReal)PETSC_DECIDE) pjd->fix = 0.01;
1550 : else {
1551 2 : PetscCheck(fix>=0.0,PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"Invalid fix value, must be >0");
1552 2 : pjd->fix = fix;
1553 : }
1554 2 : PetscFunctionReturn(PETSC_SUCCESS);
1555 : }
1556 :
1557 : /*@
1558 : PEPJDSetFix - Sets the threshold for changing the target in the correction
1559 : equation.
1560 :
1561 : Logically Collective
1562 :
1563 : Input Parameters:
1564 : + pep - the eigenproblem solver context
1565 : - fix - threshold for changing the target
1566 :
1567 : Options Database Key:
1568 : . -pep_jd_fix - the fix value
1569 :
1570 : Note:
1571 : The target in the correction equation is fixed at the first iterations.
1572 : When the norm of the residual vector is lower than the fix value,
1573 : the target is set to the corresponding eigenvalue.
1574 :
1575 : Level: advanced
1576 :
1577 : .seealso: PEPJDGetFix()
1578 : @*/
1579 2 : PetscErrorCode PEPJDSetFix(PEP pep,PetscReal fix)
1580 : {
1581 2 : PetscFunctionBegin;
1582 2 : PetscValidHeaderSpecific(pep,PEP_CLASSID,1);
1583 6 : PetscValidLogicalCollectiveReal(pep,fix,2);
1584 2 : PetscTryMethod(pep,"PEPJDSetFix_C",(PEP,PetscReal),(pep,fix));
1585 2 : PetscFunctionReturn(PETSC_SUCCESS);
1586 : }
1587 :
1588 2 : static PetscErrorCode PEPJDGetFix_JD(PEP pep,PetscReal *fix)
1589 : {
1590 2 : PEP_JD *pjd = (PEP_JD*)pep->data;
1591 :
1592 2 : PetscFunctionBegin;
1593 2 : *fix = pjd->fix;
1594 2 : PetscFunctionReturn(PETSC_SUCCESS);
1595 : }
1596 :
1597 : /*@
1598 : PEPJDGetFix - Returns the threshold for changing the target in the correction
1599 : equation.
1600 :
1601 : Not Collective
1602 :
1603 : Input Parameter:
1604 : . pep - the eigenproblem solver context
1605 :
1606 : Output Parameter:
1607 : . fix - threshold for changing the target
1608 :
1609 : Note:
1610 : The target in the correction equation is fixed at the first iterations.
1611 : When the norm of the residual vector is lower than the fix value,
1612 : the target is set to the corresponding eigenvalue.
1613 :
1614 : Level: advanced
1615 :
1616 : .seealso: PEPJDSetFix()
1617 : @*/
1618 2 : PetscErrorCode PEPJDGetFix(PEP pep,PetscReal *fix)
1619 : {
1620 2 : PetscFunctionBegin;
1621 2 : PetscValidHeaderSpecific(pep,PEP_CLASSID,1);
1622 2 : PetscAssertPointer(fix,2);
1623 2 : PetscUseMethod(pep,"PEPJDGetFix_C",(PEP,PetscReal*),(pep,fix));
1624 2 : PetscFunctionReturn(PETSC_SUCCESS);
1625 : }
1626 :
1627 1 : static PetscErrorCode PEPJDSetReusePreconditioner_JD(PEP pep,PetscBool reusepc)
1628 : {
1629 1 : PEP_JD *pjd = (PEP_JD*)pep->data;
1630 :
1631 1 : PetscFunctionBegin;
1632 1 : pjd->reusepc = reusepc;
1633 1 : PetscFunctionReturn(PETSC_SUCCESS);
1634 : }
1635 :
1636 : /*@
1637 : PEPJDSetReusePreconditioner - Sets a flag indicating whether the preconditioner
1638 : must be reused or not.
1639 :
1640 : Logically Collective
1641 :
1642 : Input Parameters:
1643 : + pep - the eigenproblem solver context
1644 : - reusepc - the reuse flag
1645 :
1646 : Options Database Key:
1647 : . -pep_jd_reuse_preconditioner - the reuse flag
1648 :
1649 : Note:
1650 : The default value is False. If set to True, the preconditioner is built
1651 : only at the beginning, using the target value. Otherwise, it may be rebuilt
1652 : (depending on the fix parameter) at each iteration from the Ritz value.
1653 :
1654 : Level: advanced
1655 :
1656 : .seealso: PEPJDGetReusePreconditioner(), PEPJDSetFix()
1657 : @*/
1658 1 : PetscErrorCode PEPJDSetReusePreconditioner(PEP pep,PetscBool reusepc)
1659 : {
1660 1 : PetscFunctionBegin;
1661 1 : PetscValidHeaderSpecific(pep,PEP_CLASSID,1);
1662 3 : PetscValidLogicalCollectiveBool(pep,reusepc,2);
1663 1 : PetscTryMethod(pep,"PEPJDSetReusePreconditioner_C",(PEP,PetscBool),(pep,reusepc));
1664 1 : PetscFunctionReturn(PETSC_SUCCESS);
1665 : }
1666 :
1667 2 : static PetscErrorCode PEPJDGetReusePreconditioner_JD(PEP pep,PetscBool *reusepc)
1668 : {
1669 2 : PEP_JD *pjd = (PEP_JD*)pep->data;
1670 :
1671 2 : PetscFunctionBegin;
1672 2 : *reusepc = pjd->reusepc;
1673 2 : PetscFunctionReturn(PETSC_SUCCESS);
1674 : }
1675 :
1676 : /*@
1677 : PEPJDGetReusePreconditioner - Returns the flag for reusing the preconditioner.
1678 :
1679 : Not Collective
1680 :
1681 : Input Parameter:
1682 : . pep - the eigenproblem solver context
1683 :
1684 : Output Parameter:
1685 : . reusepc - the reuse flag
1686 :
1687 : Level: advanced
1688 :
1689 : .seealso: PEPJDSetReusePreconditioner()
1690 : @*/
1691 2 : PetscErrorCode PEPJDGetReusePreconditioner(PEP pep,PetscBool *reusepc)
1692 : {
1693 2 : PetscFunctionBegin;
1694 2 : PetscValidHeaderSpecific(pep,PEP_CLASSID,1);
1695 2 : PetscAssertPointer(reusepc,2);
1696 2 : PetscUseMethod(pep,"PEPJDGetReusePreconditioner_C",(PEP,PetscBool*),(pep,reusepc));
1697 2 : PetscFunctionReturn(PETSC_SUCCESS);
1698 : }
1699 :
1700 2 : static PetscErrorCode PEPJDSetMinimalityIndex_JD(PEP pep,PetscInt mmidx)
1701 : {
1702 2 : PEP_JD *pjd = (PEP_JD*)pep->data;
1703 :
1704 2 : PetscFunctionBegin;
1705 2 : if (mmidx == PETSC_DEFAULT || mmidx == PETSC_DECIDE) {
1706 0 : if (pjd->mmidx != 1) pep->state = PEP_STATE_INITIAL;
1707 0 : pjd->mmidx = 1;
1708 : } else {
1709 2 : PetscCheck(mmidx>0,PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"Invalid mmidx value, should be >0");
1710 2 : if (pjd->mmidx != mmidx) pep->state = PEP_STATE_INITIAL;
1711 2 : pjd->mmidx = mmidx;
1712 : }
1713 2 : PetscFunctionReturn(PETSC_SUCCESS);
1714 : }
1715 :
1716 : /*@
1717 : PEPJDSetMinimalityIndex - Sets the maximum allowed value for the minimality index.
1718 :
1719 : Logically Collective
1720 :
1721 : Input Parameters:
1722 : + pep - the eigenproblem solver context
1723 : - mmidx - maximum minimality index
1724 :
1725 : Options Database Key:
1726 : . -pep_jd_minimality_index - the minimality index value
1727 :
1728 : Note:
1729 : The default value is equal to the degree of the polynomial. A smaller value
1730 : can be used if the wanted eigenvectors are known to be linearly independent.
1731 :
1732 : Level: advanced
1733 :
1734 : .seealso: PEPJDGetMinimalityIndex()
1735 : @*/
1736 2 : PetscErrorCode PEPJDSetMinimalityIndex(PEP pep,PetscInt mmidx)
1737 : {
1738 2 : PetscFunctionBegin;
1739 2 : PetscValidHeaderSpecific(pep,PEP_CLASSID,1);
1740 6 : PetscValidLogicalCollectiveInt(pep,mmidx,2);
1741 2 : PetscTryMethod(pep,"PEPJDSetMinimalityIndex_C",(PEP,PetscInt),(pep,mmidx));
1742 2 : PetscFunctionReturn(PETSC_SUCCESS);
1743 : }
1744 :
1745 2 : static PetscErrorCode PEPJDGetMinimalityIndex_JD(PEP pep,PetscInt *mmidx)
1746 : {
1747 2 : PEP_JD *pjd = (PEP_JD*)pep->data;
1748 :
1749 2 : PetscFunctionBegin;
1750 2 : *mmidx = pjd->mmidx;
1751 2 : PetscFunctionReturn(PETSC_SUCCESS);
1752 : }
1753 :
1754 : /*@
1755 : PEPJDGetMinimalityIndex - Returns the maximum allowed value of the minimality
1756 : index.
1757 :
1758 : Not Collective
1759 :
1760 : Input Parameter:
1761 : . pep - the eigenproblem solver context
1762 :
1763 : Output Parameter:
1764 : . mmidx - minimality index
1765 :
1766 : Level: advanced
1767 :
1768 : .seealso: PEPJDSetMinimalityIndex()
1769 : @*/
1770 2 : PetscErrorCode PEPJDGetMinimalityIndex(PEP pep,PetscInt *mmidx)
1771 : {
1772 2 : PetscFunctionBegin;
1773 2 : PetscValidHeaderSpecific(pep,PEP_CLASSID,1);
1774 2 : PetscAssertPointer(mmidx,2);
1775 2 : PetscUseMethod(pep,"PEPJDGetMinimalityIndex_C",(PEP,PetscInt*),(pep,mmidx));
1776 2 : PetscFunctionReturn(PETSC_SUCCESS);
1777 : }
1778 :
1779 2 : static PetscErrorCode PEPJDSetProjection_JD(PEP pep,PEPJDProjection proj)
1780 : {
1781 2 : PEP_JD *pjd = (PEP_JD*)pep->data;
1782 :
1783 2 : PetscFunctionBegin;
1784 2 : switch (proj) {
1785 2 : case PEP_JD_PROJECTION_HARMONIC:
1786 : case PEP_JD_PROJECTION_ORTHOGONAL:
1787 2 : if (pjd->proj != proj) {
1788 2 : pep->state = PEP_STATE_INITIAL;
1789 2 : pjd->proj = proj;
1790 : }
1791 2 : break;
1792 0 : default:
1793 0 : SETERRQ(PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"Invalid 'proj' value");
1794 : }
1795 2 : PetscFunctionReturn(PETSC_SUCCESS);
1796 : }
1797 :
1798 : /*@
1799 : PEPJDSetProjection - Sets the type of projection to be used in the Jacobi-Davidson solver.
1800 :
1801 : Logically Collective
1802 :
1803 : Input Parameters:
1804 : + pep - the eigenproblem solver context
1805 : - proj - the type of projection
1806 :
1807 : Options Database Key:
1808 : . -pep_jd_projection - the projection type, either orthogonal or harmonic
1809 :
1810 : Level: advanced
1811 :
1812 : .seealso: PEPJDGetProjection()
1813 : @*/
1814 2 : PetscErrorCode PEPJDSetProjection(PEP pep,PEPJDProjection proj)
1815 : {
1816 2 : PetscFunctionBegin;
1817 2 : PetscValidHeaderSpecific(pep,PEP_CLASSID,1);
1818 6 : PetscValidLogicalCollectiveEnum(pep,proj,2);
1819 2 : PetscTryMethod(pep,"PEPJDSetProjection_C",(PEP,PEPJDProjection),(pep,proj));
1820 2 : PetscFunctionReturn(PETSC_SUCCESS);
1821 : }
1822 :
1823 2 : static PetscErrorCode PEPJDGetProjection_JD(PEP pep,PEPJDProjection *proj)
1824 : {
1825 2 : PEP_JD *pjd = (PEP_JD*)pep->data;
1826 :
1827 2 : PetscFunctionBegin;
1828 2 : *proj = pjd->proj;
1829 2 : PetscFunctionReturn(PETSC_SUCCESS);
1830 : }
1831 :
1832 : /*@
1833 : PEPJDGetProjection - Returns the type of projection used by the Jacobi-Davidson solver.
1834 :
1835 : Not Collective
1836 :
1837 : Input Parameter:
1838 : . pep - the eigenproblem solver context
1839 :
1840 : Output Parameter:
1841 : . proj - the type of projection
1842 :
1843 : Level: advanced
1844 :
1845 : .seealso: PEPJDSetProjection()
1846 : @*/
1847 2 : PetscErrorCode PEPJDGetProjection(PEP pep,PEPJDProjection *proj)
1848 : {
1849 2 : PetscFunctionBegin;
1850 2 : PetscValidHeaderSpecific(pep,PEP_CLASSID,1);
1851 2 : PetscAssertPointer(proj,2);
1852 2 : PetscUseMethod(pep,"PEPJDGetProjection_C",(PEP,PEPJDProjection*),(pep,proj));
1853 2 : PetscFunctionReturn(PETSC_SUCCESS);
1854 : }
1855 :
1856 11 : static PetscErrorCode PEPSetFromOptions_JD(PEP pep,PetscOptionItems *PetscOptionsObject)
1857 : {
1858 11 : PetscBool flg,b1;
1859 11 : PetscReal r1;
1860 11 : PetscInt i1;
1861 11 : PEPJDProjection proj;
1862 :
1863 11 : PetscFunctionBegin;
1864 11 : PetscOptionsHeadBegin(PetscOptionsObject,"PEP JD Options");
1865 :
1866 11 : PetscCall(PetscOptionsReal("-pep_jd_restart","Proportion of vectors kept after restart","PEPJDSetRestart",0.5,&r1,&flg));
1867 11 : if (flg) PetscCall(PEPJDSetRestart(pep,r1));
1868 :
1869 11 : PetscCall(PetscOptionsReal("-pep_jd_fix","Tolerance for changing the target in the correction equation","PEPJDSetFix",0.01,&r1,&flg));
1870 11 : if (flg) PetscCall(PEPJDSetFix(pep,r1));
1871 :
1872 11 : PetscCall(PetscOptionsBool("-pep_jd_reuse_preconditioner","Whether to reuse the preconditioner","PEPJDSetReusePreconditoiner",PETSC_FALSE,&b1,&flg));
1873 11 : if (flg) PetscCall(PEPJDSetReusePreconditioner(pep,b1));
1874 :
1875 11 : PetscCall(PetscOptionsInt("-pep_jd_minimality_index","Maximum allowed minimality index","PEPJDSetMinimalityIndex",1,&i1,&flg));
1876 11 : if (flg) PetscCall(PEPJDSetMinimalityIndex(pep,i1));
1877 :
1878 11 : PetscCall(PetscOptionsEnum("-pep_jd_projection","Type of projection","PEPJDSetProjection",PEPJDProjectionTypes,(PetscEnum)PEP_JD_PROJECTION_HARMONIC,(PetscEnum*)&proj,&flg));
1879 11 : if (flg) PetscCall(PEPJDSetProjection(pep,proj));
1880 :
1881 11 : PetscOptionsHeadEnd();
1882 11 : PetscFunctionReturn(PETSC_SUCCESS);
1883 : }
1884 :
1885 0 : static PetscErrorCode PEPView_JD(PEP pep,PetscViewer viewer)
1886 : {
1887 0 : PEP_JD *pjd = (PEP_JD*)pep->data;
1888 0 : PetscBool isascii;
1889 :
1890 0 : PetscFunctionBegin;
1891 0 : PetscCall(PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&isascii));
1892 0 : if (isascii) {
1893 0 : PetscCall(PetscViewerASCIIPrintf(viewer," %d%% of basis vectors kept after restart\n",(int)(100*pjd->keep)));
1894 0 : PetscCall(PetscViewerASCIIPrintf(viewer," threshold for changing the target in the correction equation (fix): %g\n",(double)pjd->fix));
1895 0 : PetscCall(PetscViewerASCIIPrintf(viewer," projection type: %s\n",PEPJDProjectionTypes[pjd->proj]));
1896 0 : PetscCall(PetscViewerASCIIPrintf(viewer," maximum allowed minimality index: %" PetscInt_FMT "\n",pjd->mmidx));
1897 0 : if (pjd->reusepc) PetscCall(PetscViewerASCIIPrintf(viewer," reusing the preconditioner\n"));
1898 : }
1899 0 : PetscFunctionReturn(PETSC_SUCCESS);
1900 : }
1901 :
1902 23 : static PetscErrorCode PEPSetDefaultST_JD(PEP pep)
1903 : {
1904 23 : KSP ksp;
1905 :
1906 23 : PetscFunctionBegin;
1907 23 : if (!((PetscObject)pep->st)->type_name) {
1908 11 : PetscCall(STSetType(pep->st,STPRECOND));
1909 11 : PetscCall(STPrecondSetKSPHasMat(pep->st,PETSC_TRUE));
1910 : }
1911 23 : PetscCall(STSetTransform(pep->st,PETSC_FALSE));
1912 23 : PetscCall(STGetKSP(pep->st,&ksp));
1913 23 : if (!((PetscObject)ksp)->type_name) {
1914 11 : PetscCall(KSPSetType(ksp,KSPBCGSL));
1915 11 : PetscCall(KSPSetTolerances(ksp,1e-5,PETSC_CURRENT,PETSC_CURRENT,100));
1916 : }
1917 23 : PetscFunctionReturn(PETSC_SUCCESS);
1918 : }
1919 :
1920 13 : static PetscErrorCode PEPReset_JD(PEP pep)
1921 : {
1922 13 : PEP_JD *pjd = (PEP_JD*)pep->data;
1923 13 : PetscInt i;
1924 :
1925 13 : PetscFunctionBegin;
1926 51 : for (i=0;i<pep->nmat;i++) PetscCall(BVDestroy(pjd->TV+i));
1927 13 : if (pjd->proj==PEP_JD_PROJECTION_HARMONIC) PetscCall(BVDestroy(&pjd->W));
1928 13 : if (pjd->ld>1) {
1929 12 : PetscCall(BVDestroy(&pjd->V));
1930 47 : for (i=0;i<pep->nmat;i++) PetscCall(BVDestroy(pjd->AX+i));
1931 12 : PetscCall(BVDestroy(&pjd->N[0]));
1932 12 : PetscCall(BVDestroy(&pjd->N[1]));
1933 12 : PetscCall(PetscFree3(pjd->XpX,pjd->T,pjd->Tj));
1934 : }
1935 13 : PetscCall(PetscFree2(pjd->TV,pjd->AX));
1936 13 : PetscFunctionReturn(PETSC_SUCCESS);
1937 : }
1938 :
1939 11 : static PetscErrorCode PEPDestroy_JD(PEP pep)
1940 : {
1941 11 : PetscFunctionBegin;
1942 11 : PetscCall(PetscFree(pep->data));
1943 11 : PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPJDSetRestart_C",NULL));
1944 11 : PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPJDGetRestart_C",NULL));
1945 11 : PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPJDSetFix_C",NULL));
1946 11 : PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPJDGetFix_C",NULL));
1947 11 : PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPJDSetReusePreconditioner_C",NULL));
1948 11 : PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPJDGetReusePreconditioner_C",NULL));
1949 11 : PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPJDSetMinimalityIndex_C",NULL));
1950 11 : PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPJDGetMinimalityIndex_C",NULL));
1951 11 : PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPJDSetProjection_C",NULL));
1952 11 : PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPJDGetProjection_C",NULL));
1953 11 : PetscFunctionReturn(PETSC_SUCCESS);
1954 : }
1955 :
1956 11 : SLEPC_EXTERN PetscErrorCode PEPCreate_JD(PEP pep)
1957 : {
1958 11 : PEP_JD *pjd;
1959 :
1960 11 : PetscFunctionBegin;
1961 11 : PetscCall(PetscNew(&pjd));
1962 11 : pep->data = (void*)pjd;
1963 :
1964 11 : pep->lineariz = PETSC_FALSE;
1965 11 : pjd->fix = 0.01;
1966 11 : pjd->mmidx = 0;
1967 :
1968 11 : pep->ops->solve = PEPSolve_JD;
1969 11 : pep->ops->setup = PEPSetUp_JD;
1970 11 : pep->ops->setfromoptions = PEPSetFromOptions_JD;
1971 11 : pep->ops->destroy = PEPDestroy_JD;
1972 11 : pep->ops->reset = PEPReset_JD;
1973 11 : pep->ops->view = PEPView_JD;
1974 11 : pep->ops->setdefaultst = PEPSetDefaultST_JD;
1975 :
1976 11 : PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPJDSetRestart_C",PEPJDSetRestart_JD));
1977 11 : PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPJDGetRestart_C",PEPJDGetRestart_JD));
1978 11 : PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPJDSetFix_C",PEPJDSetFix_JD));
1979 11 : PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPJDGetFix_C",PEPJDGetFix_JD));
1980 11 : PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPJDSetReusePreconditioner_C",PEPJDSetReusePreconditioner_JD));
1981 11 : PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPJDGetReusePreconditioner_C",PEPJDGetReusePreconditioner_JD));
1982 11 : PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPJDSetMinimalityIndex_C",PEPJDSetMinimalityIndex_JD));
1983 11 : PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPJDGetMinimalityIndex_C",PEPJDGetMinimalityIndex_JD));
1984 11 : PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPJDSetProjection_C",PEPJDSetProjection_JD));
1985 11 : PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPJDGetProjection_C",PEPJDGetProjection_JD));
1986 11 : PetscFunctionReturn(PETSC_SUCCESS);
1987 : }
|