Line data Source code
1 : /*
2 : - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3 : SLEPc - Scalable Library for Eigenvalue Problem Computations
4 : Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
5 :
6 : This file is part of SLEPc.
7 : SLEPc is distributed under a 2-clause BSD license (see LICENSE).
8 : - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9 : */
10 : /*
11 : SLEPc eigensolver: "ciss"
12 :
13 : Method: Contour Integral Spectral Slicing
14 :
15 : Algorithm:
16 :
17 : Contour integral based on Sakurai-Sugiura method to construct a
18 : subspace, with various eigenpair extractions (Rayleigh-Ritz,
19 : explicit moment).
20 :
21 : Based on code contributed by Y. Maeda, T. Sakurai.
22 :
23 : References:
24 :
25 : [1] J. Asakura, T. Sakurai, H. Tadano, T. Ikegami, K. Kimura, "A
26 : numerical method for polynomial eigenvalue problems using contour
27 : integral", Japan J. Indust. Appl. Math. 27:73-90, 2010.
28 : */
29 :
30 : #include <slepc/private/pepimpl.h> /*I "slepcpep.h" I*/
31 : #include <slepc/private/slepccontour.h>
32 :
33 : typedef struct {
34 : /* parameters */
35 : PetscInt N; /* number of integration points (32) */
36 : PetscInt L; /* block size (16) */
37 : PetscInt M; /* moment degree (N/4 = 4) */
38 : PetscReal delta; /* threshold of singular value (1e-12) */
39 : PetscInt L_max; /* maximum number of columns of the source matrix V */
40 : PetscReal spurious_threshold; /* discard spurious eigenpairs */
41 : PetscBool isreal; /* T(z) is real for real z */
42 : PetscInt npart; /* number of partitions */
43 : PetscInt refine_inner;
44 : PetscInt refine_blocksize;
45 : PEPCISSExtraction extraction;
46 : /* private data */
47 : SlepcContourData contour;
48 : PetscReal *sigma; /* threshold for numerical rank */
49 : PetscScalar *weight;
50 : PetscScalar *omega;
51 : PetscScalar *pp;
52 : BV V;
53 : BV S;
54 : BV Y;
55 : PetscBool useconj;
56 : Mat J,*Psplit; /* auxiliary matrices */
57 : BV pV;
58 : PetscObjectId rgid;
59 : PetscObjectState rgstate;
60 : } PEP_CISS;
61 :
62 872 : static PetscErrorCode PEPComputeFunction(PEP pep,PetscScalar lambda,Mat T,Mat P,PetscBool deriv)
63 : {
64 872 : PetscInt i;
65 872 : PetscScalar *coeff;
66 872 : Mat *A,*K;
67 872 : MatStructure str,strp;
68 872 : PEP_CISS *ctx = (PEP_CISS*)pep->data;
69 872 : SlepcContourData contour = ctx->contour;
70 :
71 872 : PetscFunctionBegin;
72 872 : A = (contour->pA)?contour->pA:pep->A;
73 872 : K = (contour->pP)?contour->pP:ctx->Psplit;
74 872 : PetscCall(PetscMalloc1(pep->nmat,&coeff));
75 872 : if (deriv) PetscCall(PEPEvaluateBasisDerivative(pep,lambda,0,coeff,NULL));
76 372 : else PetscCall(PEPEvaluateBasis(pep,lambda,0,coeff,NULL));
77 872 : PetscCall(STGetMatStructure(pep->st,&str));
78 872 : PetscCall(MatZeroEntries(T));
79 872 : if (!deriv && T != P) {
80 64 : PetscCall(STGetSplitPreconditionerInfo(pep->st,NULL,&strp));
81 64 : PetscCall(MatZeroEntries(P));
82 : }
83 872 : i = deriv?1:0;
84 4252 : for (;i<pep->nmat;i++) {
85 3380 : PetscCall(MatAXPY(T,coeff[i],A[i],str));
86 3380 : if (!deriv && T != P) PetscCall(MatAXPY(P,coeff[i],K[i],strp));
87 : }
88 872 : PetscCall(PetscFree(coeff));
89 872 : PetscFunctionReturn(PETSC_SUCCESS);
90 : }
91 :
92 : /*
93 : Set up KSP solvers for every integration point
94 : */
95 13 : static PetscErrorCode PEPCISSSetUp(PEP pep,Mat T,Mat P)
96 : {
97 13 : PEP_CISS *ctx = (PEP_CISS*)pep->data;
98 13 : SlepcContourData contour;
99 13 : PetscInt i,p_id;
100 13 : Mat Amat,Pmat;
101 :
102 13 : PetscFunctionBegin;
103 13 : if (!ctx->contour || !ctx->contour->ksp) PetscCall(PEPCISSGetKSPs(pep,NULL,NULL));
104 13 : contour = ctx->contour;
105 13 : PetscAssert(ctx->contour && ctx->contour->ksp,PetscObjectComm((PetscObject)pep),PETSC_ERR_PLIB,"Something went wrong with PEPCISSGetKSPs()");
106 385 : for (i=0;i<contour->npoints;i++) {
107 372 : p_id = i*contour->subcomm->n + contour->subcomm->color;
108 372 : PetscCall(MatDuplicate(T,MAT_DO_NOT_COPY_VALUES,&Amat));
109 372 : if (T != P) PetscCall(MatDuplicate(P,MAT_DO_NOT_COPY_VALUES,&Pmat)); else Pmat = Amat;
110 372 : PetscCall(PEPComputeFunction(pep,ctx->omega[p_id],Amat,Pmat,PETSC_FALSE));
111 372 : PetscCall(PEP_KSPSetOperators(contour->ksp[i],Amat,Pmat));
112 372 : PetscCall(MatDestroy(&Amat));
113 372 : if (T != P) PetscCall(MatDestroy(&Pmat));
114 : }
115 13 : PetscFunctionReturn(PETSC_SUCCESS);
116 : }
117 :
118 : /*
119 : Y_i = F(z_i)^{-1}Fp(z_i)V for every integration point, Y=[Y_i] is in the context
120 : */
121 17 : static PetscErrorCode PEPCISSSolve(PEP pep,Mat dT,BV V,PetscInt L_start,PetscInt L_end)
122 : {
123 17 : PEP_CISS *ctx = (PEP_CISS*)pep->data;
124 17 : SlepcContourData contour;
125 17 : PetscInt i,p_id;
126 17 : Mat MV,BMV=NULL,MC;
127 :
128 17 : PetscFunctionBegin;
129 17 : contour = ctx->contour;
130 17 : PetscCall(BVSetActiveColumns(V,L_start,L_end));
131 17 : PetscCall(BVGetMat(V,&MV));
132 517 : for (i=0;i<contour->npoints;i++) {
133 500 : p_id = i*contour->subcomm->n + contour->subcomm->color;
134 500 : PetscCall(PEPComputeFunction(pep,ctx->omega[p_id],dT,NULL,PETSC_TRUE));
135 500 : PetscCall(BVSetActiveColumns(ctx->Y,i*ctx->L+L_start,i*ctx->L+L_end));
136 500 : PetscCall(BVGetMat(ctx->Y,&MC));
137 500 : if (!i) {
138 17 : PetscCall(MatProductCreate(dT,MV,NULL,&BMV));
139 17 : PetscCall(MatProductSetType(BMV,MATPRODUCT_AB));
140 17 : PetscCall(MatProductSetFromOptions(BMV));
141 17 : PetscCall(MatProductSymbolic(BMV));
142 : }
143 500 : PetscCall(MatProductNumeric(BMV));
144 500 : PetscCall(KSPMatSolve(contour->ksp[i],BMV,MC));
145 500 : PetscCall(BVRestoreMat(ctx->Y,&MC));
146 : }
147 17 : PetscCall(MatDestroy(&BMV));
148 17 : PetscCall(BVRestoreMat(V,&MV));
149 17 : PetscFunctionReturn(PETSC_SUCCESS);
150 : }
151 :
152 13 : static PetscErrorCode PEPSetUp_CISS(PEP pep)
153 : {
154 13 : PEP_CISS *ctx = (PEP_CISS*)pep->data;
155 13 : SlepcContourData contour;
156 13 : PetscInt i,nwork,nsplit;
157 13 : PetscBool istrivial,isellipse,flg;
158 13 : PetscObjectId id;
159 13 : PetscObjectState state;
160 13 : Vec v0;
161 :
162 13 : PetscFunctionBegin;
163 13 : if (pep->ncv==PETSC_DETERMINE) pep->ncv = ctx->L_max*ctx->M;
164 : else {
165 0 : ctx->L_max = pep->ncv/ctx->M;
166 0 : if (!ctx->L_max) {
167 0 : ctx->L_max = 1;
168 0 : pep->ncv = ctx->L_max*ctx->M;
169 : }
170 : }
171 13 : ctx->L = PetscMin(ctx->L,ctx->L_max);
172 13 : if (pep->max_it==PETSC_DETERMINE) pep->max_it = 5;
173 13 : if (pep->mpd==PETSC_DETERMINE) pep->mpd = pep->ncv;
174 13 : if (!pep->which) pep->which = PEP_ALL;
175 13 : PetscCheck(pep->which==PEP_ALL,PetscObjectComm((PetscObject)pep),PETSC_ERR_SUP,"This solver supports only computing all eigenvalues");
176 13 : PEPCheckUnsupported(pep,PEP_FEATURE_STOPPING);
177 13 : PEPCheckIgnored(pep,PEP_FEATURE_SCALE);
178 :
179 : /* check region */
180 13 : PetscCall(RGIsTrivial(pep->rg,&istrivial));
181 13 : PetscCheck(!istrivial,PetscObjectComm((PetscObject)pep),PETSC_ERR_SUP,"CISS requires a nontrivial region, e.g. -rg_type ellipse ...");
182 13 : PetscCall(RGGetComplement(pep->rg,&flg));
183 13 : PetscCheck(!flg,PetscObjectComm((PetscObject)pep),PETSC_ERR_SUP,"A region with complement flag set is not allowed");
184 13 : PetscCall(PetscObjectTypeCompare((PetscObject)pep->rg,RGELLIPSE,&isellipse));
185 13 : PetscCheck(isellipse,PetscObjectComm((PetscObject)pep),PETSC_ERR_SUP,"Currently only implemented for elliptic regions");
186 :
187 : /* if the region has changed, then reset contour data */
188 13 : PetscCall(PetscObjectGetId((PetscObject)pep->rg,&id));
189 13 : PetscCall(PetscObjectStateGet((PetscObject)pep->rg,&state));
190 13 : if (ctx->rgid && (id != ctx->rgid || state != ctx->rgstate)) {
191 0 : PetscCall(SlepcContourDataDestroy(&ctx->contour));
192 0 : PetscCall(PetscInfo(pep,"Resetting the contour data structure due to a change of region\n"));
193 0 : ctx->rgid = id; ctx->rgstate = state;
194 : }
195 :
196 : /* create contour data structure */
197 13 : if (!ctx->contour) {
198 0 : PetscCall(RGCanUseConjugates(pep->rg,ctx->isreal,&ctx->useconj));
199 0 : PetscCall(SlepcContourDataCreate(ctx->useconj?ctx->N/2:ctx->N,ctx->npart,(PetscObject)pep,&ctx->contour));
200 : }
201 :
202 13 : PetscCall(PEPAllocateSolution(pep,0));
203 13 : if (ctx->weight) PetscCall(PetscFree4(ctx->weight,ctx->omega,ctx->pp,ctx->sigma));
204 13 : PetscCall(PetscMalloc4(ctx->N,&ctx->weight,ctx->N,&ctx->omega,ctx->N,&ctx->pp,ctx->L_max*ctx->M,&ctx->sigma));
205 :
206 : /* allocate basis vectors */
207 13 : PetscCall(BVDestroy(&ctx->S));
208 13 : PetscCall(BVDuplicateResize(pep->V,ctx->L*ctx->M,&ctx->S));
209 13 : PetscCall(BVDestroy(&ctx->V));
210 13 : PetscCall(BVDuplicateResize(pep->V,ctx->L,&ctx->V));
211 :
212 : /* check if a user-defined split preconditioner has been set */
213 13 : PetscCall(STGetSplitPreconditionerInfo(pep->st,&nsplit,NULL));
214 13 : if (nsplit) {
215 3 : PetscCall(PetscFree(ctx->Psplit));
216 3 : PetscCall(PetscMalloc1(nsplit,&ctx->Psplit));
217 12 : for (i=0;i<nsplit;i++) PetscCall(STGetSplitPreconditionerTerm(pep->st,i,&ctx->Psplit[i]));
218 : }
219 :
220 13 : contour = ctx->contour;
221 13 : PetscCall(SlepcContourRedundantMat(contour,pep->nmat,pep->A,ctx->Psplit));
222 13 : if (!ctx->J) PetscCall(MatDuplicate(contour->pA?contour->pA[0]:pep->A[0],MAT_DO_NOT_COPY_VALUES,&ctx->J));
223 13 : if (contour->pA) {
224 4 : PetscCall(BVGetColumn(ctx->V,0,&v0));
225 4 : PetscCall(SlepcContourScatterCreate(contour,v0));
226 4 : PetscCall(BVRestoreColumn(ctx->V,0,&v0));
227 4 : PetscCall(BVDestroy(&ctx->pV));
228 4 : PetscCall(BVCreate(PetscObjectComm((PetscObject)contour->xsub),&ctx->pV));
229 4 : PetscCall(BVSetSizesFromVec(ctx->pV,contour->xsub,pep->n));
230 4 : PetscCall(BVSetFromOptions(ctx->pV));
231 4 : PetscCall(BVResize(ctx->pV,ctx->L,PETSC_FALSE));
232 : }
233 :
234 13 : PetscCall(BVDestroy(&ctx->Y));
235 13 : if (contour->pA) {
236 4 : PetscCall(BVCreate(PetscObjectComm((PetscObject)contour->xsub),&ctx->Y));
237 4 : PetscCall(BVSetSizesFromVec(ctx->Y,contour->xsub,pep->n));
238 4 : PetscCall(BVSetFromOptions(ctx->Y));
239 4 : PetscCall(BVResize(ctx->Y,contour->npoints*ctx->L,PETSC_FALSE));
240 9 : } else PetscCall(BVDuplicateResize(pep->V,contour->npoints*ctx->L,&ctx->Y));
241 :
242 13 : if (ctx->extraction == PEP_CISS_EXTRACTION_RITZ) {
243 10 : PetscCall(DSPEPSetDegree(pep->ds,pep->nmat-1));
244 10 : PetscCall(DSPEPSetCoefficients(pep->ds,pep->pbc));
245 : }
246 13 : PetscCall(DSAllocate(pep->ds,pep->ncv));
247 13 : nwork = 2;
248 13 : PetscCall(PEPSetWorkVecs(pep,nwork));
249 13 : PetscFunctionReturn(PETSC_SUCCESS);
250 : }
251 :
252 13 : static PetscErrorCode PEPSolve_CISS(PEP pep)
253 : {
254 13 : PEP_CISS *ctx = (PEP_CISS*)pep->data;
255 13 : SlepcContourData contour = ctx->contour;
256 13 : Mat X,M,E,T,P;
257 13 : PetscInt i,j,ld,L_add=0,nv=0,L_base=ctx->L,inner,*inside,nsplit;
258 13 : PetscScalar *Mu,*H0,*H1,*rr,*temp,center;
259 13 : PetscReal error,max_error,radius,rgscale,est_eig,eta;
260 13 : PetscBool isellipse,*fl1;
261 13 : Vec si;
262 13 : SlepcSC sc;
263 13 : PetscRandom rand;
264 :
265 13 : PetscFunctionBegin;
266 13 : PetscCall(DSGetSlepcSC(pep->ds,&sc));
267 13 : sc->comparison = SlepcCompareLargestMagnitude;
268 13 : sc->comparisonctx = NULL;
269 13 : sc->map = NULL;
270 13 : sc->mapobj = NULL;
271 13 : PetscCall(DSGetLeadingDimension(pep->ds,&ld));
272 13 : PetscCall(RGComputeQuadrature(pep->rg,RG_QUADRULE_TRAPEZOIDAL,ctx->N,ctx->omega,ctx->pp,ctx->weight));
273 13 : PetscCall(STGetSplitPreconditionerInfo(pep->st,&nsplit,NULL));
274 13 : if (contour->pA) {
275 4 : T = contour->pA[0];
276 4 : P = nsplit? contour->pP[0]: T;
277 : } else {
278 9 : T = pep->A[0];
279 9 : P = nsplit? ctx->Psplit[0]: T;
280 : }
281 13 : PetscCall(PEPCISSSetUp(pep,T,P));
282 13 : PetscCall(BVSetActiveColumns(ctx->V,0,ctx->L));
283 13 : PetscCall(BVSetRandomSign(ctx->V));
284 13 : PetscCall(BVGetRandomContext(ctx->V,&rand));
285 13 : if (contour->pA) PetscCall(BVScatter(ctx->V,ctx->pV,contour->scatterin,contour->xdup));
286 13 : PetscCall(PEPCISSSolve(pep,ctx->J,(contour->pA)?ctx->pV:ctx->V,0,ctx->L));
287 13 : PetscCall(PetscObjectTypeCompare((PetscObject)pep->rg,RGELLIPSE,&isellipse));
288 13 : if (isellipse) {
289 13 : PetscCall(BVTraceQuadrature(ctx->Y,ctx->V,ctx->L,ctx->L,ctx->weight,contour->scatterin,contour->subcomm,contour->npoints,ctx->useconj,&est_eig));
290 13 : PetscCall(PetscInfo(pep,"Estimated eigenvalue count: %f\n",(double)est_eig));
291 13 : eta = PetscPowReal(10.0,-PetscLog10Real(pep->tol)/ctx->N);
292 13 : L_add = PetscMax(0,(PetscInt)PetscCeilReal((est_eig*eta)/ctx->M)-ctx->L);
293 13 : if (L_add>ctx->L_max-ctx->L) {
294 0 : PetscCall(PetscInfo(pep,"Number of eigenvalues inside the contour path may be too large\n"));
295 0 : L_add = ctx->L_max-ctx->L;
296 : }
297 : }
298 : /* Updates L after estimate the number of eigenvalue */
299 13 : if (L_add>0) {
300 2 : PetscCall(PetscInfo(pep,"Changing L %" PetscInt_FMT " -> %" PetscInt_FMT " by Estimate #Eig\n",ctx->L,ctx->L+L_add));
301 2 : PetscCall(BVCISSResizeBases(ctx->S,contour->pA?ctx->pV:ctx->V,ctx->Y,ctx->L,ctx->L+L_add,ctx->M,contour->npoints));
302 2 : PetscCall(BVSetActiveColumns(ctx->V,ctx->L,ctx->L+L_add));
303 2 : PetscCall(BVSetRandomSign(ctx->V));
304 2 : if (contour->pA) PetscCall(BVScatter(ctx->V,ctx->pV,contour->scatterin,contour->xdup));
305 2 : ctx->L += L_add;
306 2 : PetscCall(PEPCISSSolve(pep,ctx->J,(contour->pA)?ctx->pV:ctx->V,ctx->L-L_add,ctx->L));
307 : }
308 :
309 13 : PetscCall(PetscMalloc2(ctx->L*ctx->L*ctx->M*2,&Mu,ctx->L*ctx->M*ctx->L*ctx->M,&H0));
310 15 : for (i=0;i<ctx->refine_blocksize;i++) {
311 5 : PetscCall(BVDotQuadrature(ctx->Y,(contour->pA)?ctx->pV:ctx->V,Mu,ctx->M,ctx->L,ctx->L,ctx->weight,ctx->pp,contour->subcomm,contour->npoints,ctx->useconj));
312 5 : PetscCall(CISS_BlockHankel(Mu,0,ctx->L,ctx->M,H0));
313 5 : PetscCall(PetscLogEventBegin(PEP_CISS_SVD,pep,0,0,0));
314 5 : PetscCall(SlepcCISS_BH_SVD(H0,ctx->L*ctx->M,ctx->delta,ctx->sigma,&nv));
315 5 : PetscCall(PetscLogEventEnd(PEP_CISS_SVD,pep,0,0,0));
316 5 : if (ctx->sigma[0]<=ctx->delta || nv < ctx->L*ctx->M || ctx->L == ctx->L_max) break;
317 2 : L_add = L_base;
318 2 : if (ctx->L+L_add>ctx->L_max) L_add = ctx->L_max-ctx->L;
319 2 : PetscCall(PetscInfo(pep,"Changing L %" PetscInt_FMT " -> %" PetscInt_FMT " by SVD(H0)\n",ctx->L,ctx->L+L_add));
320 2 : PetscCall(BVCISSResizeBases(ctx->S,contour->pA?ctx->pV:ctx->V,ctx->Y,ctx->L,ctx->L+L_add,ctx->M,contour->npoints));
321 2 : PetscCall(BVSetActiveColumns(ctx->V,ctx->L,ctx->L+L_add));
322 2 : PetscCall(BVSetRandomSign(ctx->V));
323 2 : if (contour->pA) PetscCall(BVScatter(ctx->V,ctx->pV,contour->scatterin,contour->xdup));
324 2 : ctx->L += L_add;
325 2 : PetscCall(PEPCISSSolve(pep,ctx->J,(contour->pA)?ctx->pV:ctx->V,ctx->L-L_add,ctx->L));
326 2 : if (L_add) {
327 2 : PetscCall(PetscFree2(Mu,H0));
328 2 : PetscCall(PetscMalloc2(ctx->L*ctx->L*ctx->M*2,&Mu,ctx->L*ctx->M*ctx->L*ctx->M,&H0));
329 : }
330 : }
331 :
332 13 : PetscCall(RGGetScale(pep->rg,&rgscale));
333 13 : PetscCall(RGEllipseGetParameters(pep->rg,¢er,&radius,NULL));
334 :
335 13 : if (ctx->extraction == PEP_CISS_EXTRACTION_HANKEL) PetscCall(PetscMalloc1(ctx->L*ctx->M*ctx->L*ctx->M,&H1));
336 :
337 26 : while (pep->reason == PEP_CONVERGED_ITERATING) {
338 13 : pep->its++;
339 13 : for (inner=0;inner<=ctx->refine_inner;inner++) {
340 13 : if (ctx->extraction == PEP_CISS_EXTRACTION_HANKEL) {
341 2 : PetscCall(BVDotQuadrature(ctx->Y,(contour->pA)?ctx->pV:ctx->V,Mu,ctx->M,ctx->L,ctx->L,ctx->weight,ctx->pp,contour->subcomm,contour->npoints,ctx->useconj));
342 2 : PetscCall(CISS_BlockHankel(Mu,0,ctx->L,ctx->M,H0));
343 2 : PetscCall(PetscLogEventBegin(PEP_CISS_SVD,pep,0,0,0));
344 2 : PetscCall(SlepcCISS_BH_SVD(H0,ctx->L*ctx->M,ctx->delta,ctx->sigma,&nv));
345 2 : PetscCall(PetscLogEventEnd(PEP_CISS_SVD,pep,0,0,0));
346 : } else {
347 11 : PetscCall(BVSumQuadrature(ctx->S,ctx->Y,ctx->M,ctx->L,ctx->L,ctx->weight,ctx->pp,contour->scatterin,contour->subcomm,contour->npoints,ctx->useconj));
348 : /* compute SVD of S */
349 21 : PetscCall(BVSVDAndRank(ctx->S,ctx->M,ctx->L,ctx->delta,(ctx->extraction==PEP_CISS_EXTRACTION_CAA)?BV_SVD_METHOD_QR_CAA:BV_SVD_METHOD_QR,H0,ctx->sigma,&nv));
350 : }
351 13 : PetscCall(PetscInfo(pep,"Estimated rank: nv = %" PetscInt_FMT "\n",nv));
352 13 : if (ctx->sigma[0]>ctx->delta && nv==ctx->L*ctx->M && inner!=ctx->refine_inner) {
353 0 : PetscCall(BVSumQuadrature(ctx->S,ctx->Y,ctx->M,ctx->L,ctx->L,ctx->weight,ctx->pp,contour->scatterin,contour->subcomm,contour->npoints,ctx->useconj));
354 0 : PetscCall(BVSetActiveColumns(ctx->S,0,ctx->L));
355 0 : PetscCall(BVSetActiveColumns(ctx->V,0,ctx->L));
356 0 : PetscCall(BVCopy(ctx->S,ctx->V));
357 0 : if (contour->pA) PetscCall(BVScatter(ctx->V,ctx->pV,contour->scatterin,contour->xdup));
358 0 : PetscCall(PEPCISSSolve(pep,ctx->J,(contour->pA)?ctx->pV:ctx->V,0,ctx->L));
359 : } else break;
360 : }
361 13 : pep->nconv = 0;
362 13 : if (nv == 0) { pep->reason = PEP_CONVERGED_TOL; break; }
363 : else {
364 : /* Extracting eigenpairs */
365 13 : PetscCall(DSSetDimensions(pep->ds,nv,0,0));
366 13 : PetscCall(DSSetState(pep->ds,DS_STATE_RAW));
367 13 : if (ctx->extraction == PEP_CISS_EXTRACTION_HANKEL) {
368 2 : PetscCall(CISS_BlockHankel(Mu,0,ctx->L,ctx->M,H0));
369 2 : PetscCall(CISS_BlockHankel(Mu,1,ctx->L,ctx->M,H1));
370 2 : PetscCall(DSGetArray(pep->ds,DS_MAT_A,&temp));
371 75 : for (j=0;j<nv;j++)
372 3750 : for (i=0;i<nv;i++)
373 3677 : temp[i+j*ld] = H1[i+j*ctx->L*ctx->M];
374 2 : PetscCall(DSRestoreArray(pep->ds,DS_MAT_A,&temp));
375 2 : PetscCall(DSGetArray(pep->ds,DS_MAT_B,&temp));
376 75 : for (j=0;j<nv;j++)
377 3750 : for (i=0;i<nv;i++)
378 3677 : temp[i+j*ld] = H0[i+j*ctx->L*ctx->M];
379 2 : PetscCall(DSRestoreArray(pep->ds,DS_MAT_B,&temp));
380 11 : } else if (ctx->extraction == PEP_CISS_EXTRACTION_CAA) {
381 1 : PetscCall(BVSetActiveColumns(ctx->S,0,nv));
382 1 : PetscCall(DSGetArray(pep->ds,DS_MAT_A,&temp));
383 23 : for (i=0;i<nv;i++) PetscCall(PetscArraycpy(temp+i*ld,H0+i*nv,nv));
384 1 : PetscCall(DSRestoreArray(pep->ds,DS_MAT_A,&temp));
385 : } else {
386 10 : PetscCall(BVSetActiveColumns(ctx->S,0,nv));
387 50 : for (i=0;i<pep->nmat;i++) {
388 40 : PetscCall(DSGetMat(pep->ds,DSMatExtra[i],&E));
389 40 : PetscCall(BVMatProject(ctx->S,pep->A[i],ctx->S,E));
390 40 : PetscCall(DSRestoreMat(pep->ds,DSMatExtra[i],&E));
391 : }
392 10 : nv = (pep->nmat-1)*nv;
393 : }
394 13 : PetscCall(DSSolve(pep->ds,pep->eigr,pep->eigi));
395 13 : PetscCall(DSSynchronize(pep->ds,pep->eigr,pep->eigi));
396 13 : if (ctx->extraction == PEP_CISS_EXTRACTION_CAA || ctx->extraction == PEP_CISS_EXTRACTION_HANKEL) {
397 98 : for (i=0;i<nv;i++) {
398 95 : pep->eigr[i] = (pep->eigr[i]*radius+center)*rgscale;
399 : }
400 : }
401 13 : PetscCall(PetscMalloc3(nv,&fl1,nv,&inside,nv,&rr));
402 13 : PetscCall(DSVectors(pep->ds,DS_MAT_X,NULL,NULL));
403 13 : PetscCall(DSGetMat(pep->ds,DS_MAT_X,&X));
404 13 : PetscCall(SlepcCISS_isGhost(X,nv,ctx->sigma,ctx->spurious_threshold,fl1));
405 13 : PetscCall(DSRestoreMat(pep->ds,DS_MAT_X,&X));
406 13 : PetscCall(RGCheckInside(pep->rg,nv,pep->eigr,pep->eigi,inside));
407 1406 : for (i=0;i<nv;i++) {
408 1393 : if (fl1[i] && inside[i]>=0) {
409 101 : rr[i] = 1.0;
410 101 : pep->nconv++;
411 1292 : } else rr[i] = 0.0;
412 : }
413 13 : PetscCall(DSSort(pep->ds,pep->eigr,pep->eigi,rr,NULL,&pep->nconv));
414 13 : PetscCall(DSSynchronize(pep->ds,pep->eigr,pep->eigi));
415 13 : if (ctx->extraction == PEP_CISS_EXTRACTION_CAA || ctx->extraction == PEP_CISS_EXTRACTION_HANKEL) {
416 98 : for (i=0;i<nv;i++) pep->eigr[i] = (pep->eigr[i]*radius+center)*rgscale;
417 : }
418 13 : PetscCall(PetscFree3(fl1,inside,rr));
419 13 : PetscCall(BVSetActiveColumns(pep->V,0,nv));
420 13 : PetscCall(DSVectors(pep->ds,DS_MAT_X,NULL,NULL));
421 13 : if (ctx->extraction == PEP_CISS_EXTRACTION_HANKEL) {
422 2 : PetscCall(BVSumQuadrature(ctx->S,ctx->Y,ctx->M,ctx->L,ctx->L,ctx->weight,ctx->pp,contour->scatterin,contour->subcomm,contour->npoints,ctx->useconj));
423 2 : PetscCall(BVSetActiveColumns(ctx->S,0,nv));
424 2 : PetscCall(BVCopy(ctx->S,pep->V));
425 2 : PetscCall(DSGetMat(pep->ds,DS_MAT_X,&X));
426 2 : PetscCall(BVMultInPlace(ctx->S,X,0,pep->nconv));
427 2 : PetscCall(BVMultInPlace(pep->V,X,0,pep->nconv));
428 2 : PetscCall(DSRestoreMat(pep->ds,DS_MAT_X,&X));
429 : } else {
430 11 : PetscCall(DSGetMat(pep->ds,DS_MAT_X,&X));
431 11 : PetscCall(BVMultInPlace(ctx->S,X,0,pep->nconv));
432 11 : PetscCall(DSRestoreMat(pep->ds,DS_MAT_X,&X));
433 11 : PetscCall(BVSetActiveColumns(ctx->S,0,pep->nconv));
434 11 : PetscCall(BVCopy(ctx->S,pep->V));
435 : }
436 : max_error = 0.0;
437 114 : for (i=0;i<pep->nconv;i++) {
438 101 : PetscCall(BVGetColumn(pep->V,i,&si));
439 101 : PetscCall(VecNormalize(si,NULL));
440 101 : PetscCall(PEPComputeResidualNorm_Private(pep,pep->eigr[i],0,si,NULL,pep->work,&error));
441 101 : PetscCall((*pep->converged)(pep,pep->eigr[i],0,error,&error,pep->convergedctx));
442 101 : PetscCall(BVRestoreColumn(pep->V,i,&si));
443 132 : max_error = PetscMax(max_error,error);
444 : }
445 13 : if (max_error <= pep->tol) pep->reason = PEP_CONVERGED_TOL;
446 0 : else if (pep->its > pep->max_it) pep->reason = PEP_DIVERGED_ITS;
447 : else {
448 0 : if (pep->nconv > ctx->L) nv = pep->nconv;
449 0 : else if (ctx->L > nv) nv = ctx->L;
450 0 : nv = PetscMin(nv,ctx->L*ctx->M);
451 0 : PetscCall(MatCreateSeqDense(PETSC_COMM_SELF,nv,ctx->L,NULL,&M));
452 0 : PetscCall(MatSetRandom(M,rand));
453 0 : PetscCall(BVSetActiveColumns(ctx->S,0,nv));
454 0 : PetscCall(BVMultInPlace(ctx->S,M,0,ctx->L));
455 0 : PetscCall(MatDestroy(&M));
456 0 : PetscCall(BVSetActiveColumns(ctx->S,0,ctx->L));
457 0 : PetscCall(BVSetActiveColumns(ctx->V,0,ctx->L));
458 0 : PetscCall(BVCopy(ctx->S,ctx->V));
459 0 : if (contour->pA) PetscCall(BVScatter(ctx->V,ctx->pV,contour->scatterin,contour->xdup));
460 26 : PetscCall(PEPCISSSolve(pep,ctx->J,(contour->pA)?ctx->pV:ctx->V,0,ctx->L));
461 : }
462 : }
463 : }
464 13 : PetscCall(PetscFree2(Mu,H0));
465 13 : if (ctx->extraction == PEP_CISS_EXTRACTION_HANKEL) PetscCall(PetscFree(H1));
466 13 : PetscFunctionReturn(PETSC_SUCCESS);
467 : }
468 :
469 9 : static PetscErrorCode PEPCISSSetSizes_CISS(PEP pep,PetscInt ip,PetscInt bs,PetscInt ms,PetscInt npart,PetscInt bsmax,PetscBool realmats)
470 : {
471 9 : PEP_CISS *ctx = (PEP_CISS*)pep->data;
472 9 : PetscInt oN,oL,oM,oLmax,onpart;
473 9 : PetscMPIInt size;
474 :
475 9 : PetscFunctionBegin;
476 9 : oN = ctx->N;
477 9 : if (ip == PETSC_DETERMINE) {
478 0 : if (ctx->N!=32) { ctx->N =32; ctx->M = ctx->N/4; }
479 9 : } else if (ip != PETSC_CURRENT) {
480 9 : PetscCheck(ip>0,PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"The ip argument must be > 0");
481 9 : PetscCheck(ip%2==0,PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"The ip argument must be an even number");
482 9 : if (ctx->N!=ip) { ctx->N = ip; ctx->M = ctx->N/4; }
483 : }
484 9 : oL = ctx->L;
485 9 : if (bs == PETSC_DETERMINE) {
486 1 : ctx->L = 16;
487 8 : } else if (bs != PETSC_CURRENT) {
488 8 : PetscCheck(bs>0,PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"The bs argument must be > 0");
489 8 : ctx->L = bs;
490 : }
491 9 : oM = ctx->M;
492 9 : if (ms == PETSC_DETERMINE) {
493 1 : ctx->M = ctx->N/4;
494 8 : } else if (ms != PETSC_CURRENT) {
495 8 : PetscCheck(ms>0,PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"The ms argument must be > 0");
496 8 : PetscCheck(ms<=ctx->N,PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"The ms argument must be less than or equal to the number of integration points");
497 8 : ctx->M = ms;
498 : }
499 9 : onpart = ctx->npart;
500 9 : if (npart == PETSC_DETERMINE) {
501 0 : ctx->npart = 1;
502 9 : } else if (npart != PETSC_CURRENT) {
503 9 : PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)pep),&size));
504 9 : PetscCheck(npart>0 && npart<=size,PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of npart");
505 9 : ctx->npart = npart;
506 : }
507 9 : oLmax = ctx->L_max;
508 9 : if (bsmax == PETSC_DETERMINE) {
509 1 : ctx->L_max = 64;
510 8 : } else if (bsmax != PETSC_CURRENT) {
511 8 : PetscCheck(bsmax>0,PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"The bsmax argument must be > 0");
512 8 : ctx->L_max = PetscMax(bsmax,ctx->L);
513 : }
514 9 : if (onpart != ctx->npart || oN != ctx->N || realmats != ctx->isreal) {
515 6 : PetscCall(SlepcContourDataDestroy(&ctx->contour));
516 6 : PetscCall(PetscInfo(pep,"Resetting the contour data structure due to a change of parameters\n"));
517 6 : pep->state = PEP_STATE_INITIAL;
518 : }
519 9 : ctx->isreal = realmats;
520 9 : if (oL != ctx->L || oM != ctx->M || oLmax != ctx->L_max) pep->state = PEP_STATE_INITIAL;
521 9 : PetscFunctionReturn(PETSC_SUCCESS);
522 : }
523 :
524 : /*@
525 : PEPCISSSetSizes - Sets the values of various size parameters in the CISS solver.
526 :
527 : Logically Collective
528 :
529 : Input Parameters:
530 : + pep - the polynomial eigensolver context
531 : . ip - number of integration points
532 : . bs - block size
533 : . ms - moment size
534 : . npart - number of partitions when splitting the communicator
535 : . bsmax - max block size
536 : - realmats - all coefficient matrices of P(.) are real
537 :
538 : Options Database Keys:
539 : + -pep_ciss_integration_points - Sets the number of integration points
540 : . -pep_ciss_blocksize - Sets the block size
541 : . -pep_ciss_moments - Sets the moment size
542 : . -pep_ciss_partitions - Sets the number of partitions
543 : . -pep_ciss_maxblocksize - Sets the maximum block size
544 : - -pep_ciss_realmats - all coefficient matrices of P(.) are real
545 :
546 : Notes:
547 : For all integer arguments, you can use PETSC_CURRENT to keep the current value, and
548 : PETSC_DETERMINE to set them to a default value.
549 :
550 : The default number of partitions is 1. This means the internal KSP object is shared
551 : among all processes of the PEP communicator. Otherwise, the communicator is split
552 : into npart communicators, so that npart KSP solves proceed simultaneously.
553 :
554 : Level: advanced
555 :
556 : .seealso: PEPCISSGetSizes()
557 : @*/
558 9 : PetscErrorCode PEPCISSSetSizes(PEP pep,PetscInt ip,PetscInt bs,PetscInt ms,PetscInt npart,PetscInt bsmax,PetscBool realmats)
559 : {
560 9 : PetscFunctionBegin;
561 9 : PetscValidHeaderSpecific(pep,PEP_CLASSID,1);
562 27 : PetscValidLogicalCollectiveInt(pep,ip,2);
563 27 : PetscValidLogicalCollectiveInt(pep,bs,3);
564 27 : PetscValidLogicalCollectiveInt(pep,ms,4);
565 27 : PetscValidLogicalCollectiveInt(pep,npart,5);
566 27 : PetscValidLogicalCollectiveInt(pep,bsmax,6);
567 27 : PetscValidLogicalCollectiveBool(pep,realmats,7);
568 9 : PetscTryMethod(pep,"PEPCISSSetSizes_C",(PEP,PetscInt,PetscInt,PetscInt,PetscInt,PetscInt,PetscBool),(pep,ip,bs,ms,npart,bsmax,realmats));
569 9 : PetscFunctionReturn(PETSC_SUCCESS);
570 : }
571 :
572 13 : static PetscErrorCode PEPCISSGetSizes_CISS(PEP pep,PetscInt *ip,PetscInt *bs,PetscInt *ms,PetscInt *npart,PetscInt *bsmax,PetscBool *realmats)
573 : {
574 13 : PEP_CISS *ctx = (PEP_CISS*)pep->data;
575 :
576 13 : PetscFunctionBegin;
577 13 : if (ip) *ip = ctx->N;
578 13 : if (bs) *bs = ctx->L;
579 13 : if (ms) *ms = ctx->M;
580 13 : if (npart) *npart = ctx->npart;
581 13 : if (bsmax) *bsmax = ctx->L_max;
582 13 : if (realmats) *realmats = ctx->isreal;
583 13 : PetscFunctionReturn(PETSC_SUCCESS);
584 : }
585 :
586 : /*@
587 : PEPCISSGetSizes - Gets the values of various size parameters in the CISS solver.
588 :
589 : Not Collective
590 :
591 : Input Parameter:
592 : . pep - the polynomial eigensolver context
593 :
594 : Output Parameters:
595 : + ip - number of integration points
596 : . bs - block size
597 : . ms - moment size
598 : . npart - number of partitions when splitting the communicator
599 : . bsmax - max block size
600 : - realmats - all coefficient matrices of P(.) are real
601 :
602 : Level: advanced
603 :
604 : .seealso: PEPCISSSetSizes()
605 : @*/
606 13 : PetscErrorCode PEPCISSGetSizes(PEP pep,PetscInt *ip,PetscInt *bs,PetscInt *ms,PetscInt *npart,PetscInt *bsmax,PetscBool *realmats)
607 : {
608 13 : PetscFunctionBegin;
609 13 : PetscValidHeaderSpecific(pep,PEP_CLASSID,1);
610 13 : PetscUseMethod(pep,"PEPCISSGetSizes_C",(PEP,PetscInt*,PetscInt*,PetscInt*,PetscInt*,PetscInt*,PetscBool*),(pep,ip,bs,ms,npart,bsmax,realmats));
611 13 : PetscFunctionReturn(PETSC_SUCCESS);
612 : }
613 :
614 1 : static PetscErrorCode PEPCISSSetThreshold_CISS(PEP pep,PetscReal delta,PetscReal spur)
615 : {
616 1 : PEP_CISS *ctx = (PEP_CISS*)pep->data;
617 :
618 1 : PetscFunctionBegin;
619 1 : if (delta == (PetscReal)PETSC_DETERMINE) {
620 0 : ctx->delta = SLEPC_DEFAULT_TOL*1e-4;
621 1 : } else if (delta != (PetscReal)PETSC_CURRENT) {
622 1 : PetscCheck(delta>0.0,PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"The delta argument must be > 0.0");
623 1 : ctx->delta = delta;
624 : }
625 1 : if (spur == (PetscReal)PETSC_DETERMINE) {
626 0 : ctx->spurious_threshold = PetscSqrtReal(SLEPC_DEFAULT_TOL);
627 1 : } else if (spur != (PetscReal)PETSC_CURRENT) {
628 1 : PetscCheck(spur>0.0,PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"The spurious threshold argument must be > 0.0");
629 1 : ctx->spurious_threshold = spur;
630 : }
631 1 : PetscFunctionReturn(PETSC_SUCCESS);
632 : }
633 :
634 : /*@
635 : PEPCISSSetThreshold - Sets the values of various threshold parameters in
636 : the CISS solver.
637 :
638 : Logically Collective
639 :
640 : Input Parameters:
641 : + pep - the polynomial eigensolver context
642 : . delta - threshold for numerical rank
643 : - spur - spurious threshold (to discard spurious eigenpairs)
644 :
645 : Options Database Keys:
646 : + -pep_ciss_delta - Sets the delta
647 : - -pep_ciss_spurious_threshold - Sets the spurious threshold
648 :
649 : Note:
650 : PETSC_CURRENT can be used to preserve the current value of any of the
651 : arguments, and PETSC_DETERMINE to set them to a default value.
652 :
653 : Level: advanced
654 :
655 : .seealso: PEPCISSGetThreshold()
656 : @*/
657 1 : PetscErrorCode PEPCISSSetThreshold(PEP pep,PetscReal delta,PetscReal spur)
658 : {
659 1 : PetscFunctionBegin;
660 1 : PetscValidHeaderSpecific(pep,PEP_CLASSID,1);
661 3 : PetscValidLogicalCollectiveReal(pep,delta,2);
662 3 : PetscValidLogicalCollectiveReal(pep,spur,3);
663 1 : PetscTryMethod(pep,"PEPCISSSetThreshold_C",(PEP,PetscReal,PetscReal),(pep,delta,spur));
664 1 : PetscFunctionReturn(PETSC_SUCCESS);
665 : }
666 :
667 13 : static PetscErrorCode PEPCISSGetThreshold_CISS(PEP pep,PetscReal *delta,PetscReal *spur)
668 : {
669 13 : PEP_CISS *ctx = (PEP_CISS*)pep->data;
670 :
671 13 : PetscFunctionBegin;
672 13 : if (delta) *delta = ctx->delta;
673 13 : if (spur) *spur = ctx->spurious_threshold;
674 13 : PetscFunctionReturn(PETSC_SUCCESS);
675 : }
676 :
677 : /*@
678 : PEPCISSGetThreshold - Gets the values of various threshold parameters in
679 : the CISS solver.
680 :
681 : Not Collective
682 :
683 : Input Parameter:
684 : . pep - the polynomial eigensolver context
685 :
686 : Output Parameters:
687 : + delta - threshold for numerical rank
688 : - spur - spurious threshold (to discard spurious eigenpairs)
689 :
690 : Level: advanced
691 :
692 : .seealso: PEPCISSSetThreshold()
693 : @*/
694 13 : PetscErrorCode PEPCISSGetThreshold(PEP pep,PetscReal *delta,PetscReal *spur)
695 : {
696 13 : PetscFunctionBegin;
697 13 : PetscValidHeaderSpecific(pep,PEP_CLASSID,1);
698 13 : PetscUseMethod(pep,"PEPCISSGetThreshold_C",(PEP,PetscReal*,PetscReal*),(pep,delta,spur));
699 13 : PetscFunctionReturn(PETSC_SUCCESS);
700 : }
701 :
702 3 : static PetscErrorCode PEPCISSSetRefinement_CISS(PEP pep,PetscInt inner,PetscInt blsize)
703 : {
704 3 : PEP_CISS *ctx = (PEP_CISS*)pep->data;
705 :
706 3 : PetscFunctionBegin;
707 3 : if (inner == PETSC_DETERMINE) {
708 0 : ctx->refine_inner = 0;
709 3 : } else if (inner != PETSC_CURRENT) {
710 3 : PetscCheck(inner>=0,PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"The refine inner argument must be >= 0");
711 3 : ctx->refine_inner = inner;
712 : }
713 3 : if (blsize == PETSC_DETERMINE) {
714 0 : ctx->refine_blocksize = 0;
715 3 : } else if (blsize != PETSC_CURRENT) {
716 3 : PetscCheck(blsize>=0,PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"The refine blocksize argument must be >= 0");
717 3 : ctx->refine_blocksize = blsize;
718 : }
719 3 : PetscFunctionReturn(PETSC_SUCCESS);
720 : }
721 :
722 : /*@
723 : PEPCISSSetRefinement - Sets the values of various refinement parameters
724 : in the CISS solver.
725 :
726 : Logically Collective
727 :
728 : Input Parameters:
729 : + pep - the polynomial eigensolver context
730 : . inner - number of iterative refinement iterations (inner loop)
731 : - blsize - number of iterative refinement iterations (blocksize loop)
732 :
733 : Options Database Keys:
734 : + -pep_ciss_refine_inner - Sets number of inner iterations
735 : - -pep_ciss_refine_blocksize - Sets number of blocksize iterations
736 :
737 : Note:
738 : PETSC_CURRENT can be used to preserve the current value of any of the
739 : arguments, and PETSC_DETERMINE to set them to a default value.
740 :
741 : Level: advanced
742 :
743 : .seealso: PEPCISSGetRefinement()
744 : @*/
745 3 : PetscErrorCode PEPCISSSetRefinement(PEP pep,PetscInt inner,PetscInt blsize)
746 : {
747 3 : PetscFunctionBegin;
748 3 : PetscValidHeaderSpecific(pep,PEP_CLASSID,1);
749 9 : PetscValidLogicalCollectiveInt(pep,inner,2);
750 9 : PetscValidLogicalCollectiveInt(pep,blsize,3);
751 3 : PetscTryMethod(pep,"PEPCISSSetRefinement_C",(PEP,PetscInt,PetscInt),(pep,inner,blsize));
752 3 : PetscFunctionReturn(PETSC_SUCCESS);
753 : }
754 :
755 13 : static PetscErrorCode PEPCISSGetRefinement_CISS(PEP pep,PetscInt *inner,PetscInt *blsize)
756 : {
757 13 : PEP_CISS *ctx = (PEP_CISS*)pep->data;
758 :
759 13 : PetscFunctionBegin;
760 13 : if (inner) *inner = ctx->refine_inner;
761 13 : if (blsize) *blsize = ctx->refine_blocksize;
762 13 : PetscFunctionReturn(PETSC_SUCCESS);
763 : }
764 :
765 : /*@
766 : PEPCISSGetRefinement - Gets the values of various refinement parameters
767 : in the CISS solver.
768 :
769 : Not Collective
770 :
771 : Input Parameter:
772 : . pep - the polynomial eigensolver context
773 :
774 : Output Parameters:
775 : + inner - number of iterative refinement iterations (inner loop)
776 : - blsize - number of iterative refinement iterations (blocksize loop)
777 :
778 : Level: advanced
779 :
780 : .seealso: PEPCISSSetRefinement()
781 : @*/
782 13 : PetscErrorCode PEPCISSGetRefinement(PEP pep, PetscInt *inner, PetscInt *blsize)
783 : {
784 13 : PetscFunctionBegin;
785 13 : PetscValidHeaderSpecific(pep,PEP_CLASSID,1);
786 13 : PetscUseMethod(pep,"PEPCISSGetRefinement_C",(PEP,PetscInt*,PetscInt*),(pep,inner,blsize));
787 13 : PetscFunctionReturn(PETSC_SUCCESS);
788 : }
789 :
790 4 : static PetscErrorCode PEPCISSSetExtraction_CISS(PEP pep,PEPCISSExtraction extraction)
791 : {
792 4 : PEP_CISS *ctx = (PEP_CISS*)pep->data;
793 :
794 4 : PetscFunctionBegin;
795 4 : if (ctx->extraction != extraction) {
796 3 : ctx->extraction = extraction;
797 3 : pep->state = PEP_STATE_INITIAL;
798 : }
799 4 : PetscFunctionReturn(PETSC_SUCCESS);
800 : }
801 :
802 : /*@
803 : PEPCISSSetExtraction - Sets the extraction technique used in the CISS solver.
804 :
805 : Logically Collective
806 :
807 : Input Parameters:
808 : + pep - the polynomial eigensolver context
809 : - extraction - the extraction technique
810 :
811 : Options Database Key:
812 : . -pep_ciss_extraction - Sets the extraction technique (either 'ritz', 'hankel' or 'caa')
813 :
814 : Notes:
815 : By default, the Rayleigh-Ritz extraction is used (PEP_CISS_EXTRACTION_RITZ).
816 :
817 : If the 'hankel' or the 'caa' option is specified (PEP_CISS_EXTRACTION_HANKEL or
818 : PEP_CISS_EXTRACTION_CAA), then the Block Hankel method, or the Communication-avoiding
819 : Arnoldi method, respectively, is used for extracting eigenpairs.
820 :
821 : Level: advanced
822 :
823 : .seealso: PEPCISSGetExtraction(), PEPCISSExtraction
824 : @*/
825 4 : PetscErrorCode PEPCISSSetExtraction(PEP pep,PEPCISSExtraction extraction)
826 : {
827 4 : PetscFunctionBegin;
828 4 : PetscValidHeaderSpecific(pep,PEP_CLASSID,1);
829 12 : PetscValidLogicalCollectiveEnum(pep,extraction,2);
830 4 : PetscTryMethod(pep,"PEPCISSSetExtraction_C",(PEP,PEPCISSExtraction),(pep,extraction));
831 4 : PetscFunctionReturn(PETSC_SUCCESS);
832 : }
833 :
834 1 : static PetscErrorCode PEPCISSGetExtraction_CISS(PEP pep,PEPCISSExtraction *extraction)
835 : {
836 1 : PEP_CISS *ctx = (PEP_CISS*)pep->data;
837 :
838 1 : PetscFunctionBegin;
839 1 : *extraction = ctx->extraction;
840 1 : PetscFunctionReturn(PETSC_SUCCESS);
841 : }
842 :
843 : /*@
844 : PEPCISSGetExtraction - Gets the extraction technique used in the CISS solver.
845 :
846 : Not Collective
847 :
848 : Input Parameter:
849 : . pep - the polynomial eigensolver context
850 :
851 : Output Parameters:
852 : . extraction - extraction technique
853 :
854 : Level: advanced
855 :
856 : .seealso: PEPCISSSetExtraction() PEPCISSExtraction
857 : @*/
858 1 : PetscErrorCode PEPCISSGetExtraction(PEP pep,PEPCISSExtraction *extraction)
859 : {
860 1 : PetscFunctionBegin;
861 1 : PetscValidHeaderSpecific(pep,PEP_CLASSID,1);
862 1 : PetscAssertPointer(extraction,2);
863 1 : PetscUseMethod(pep,"PEPCISSGetExtraction_C",(PEP,PEPCISSExtraction*),(pep,extraction));
864 1 : PetscFunctionReturn(PETSC_SUCCESS);
865 : }
866 :
867 13 : static PetscErrorCode PEPCISSGetKSPs_CISS(PEP pep,PetscInt *nsolve,KSP **ksp)
868 : {
869 13 : PEP_CISS *ctx = (PEP_CISS*)pep->data;
870 13 : SlepcContourData contour;
871 13 : PetscInt i,nsplit;
872 13 : PC pc;
873 13 : MPI_Comm child;
874 :
875 13 : PetscFunctionBegin;
876 13 : if (!ctx->contour) { /* initialize contour data structure first */
877 13 : PetscCall(RGCanUseConjugates(pep->rg,ctx->isreal,&ctx->useconj));
878 13 : PetscCall(SlepcContourDataCreate(ctx->useconj?ctx->N/2:ctx->N,ctx->npart,(PetscObject)pep,&ctx->contour));
879 : }
880 13 : contour = ctx->contour;
881 13 : if (!contour->ksp) {
882 13 : PetscCall(PetscMalloc1(contour->npoints,&contour->ksp));
883 13 : PetscCall(PEPGetST(pep,&pep->st));
884 13 : PetscCall(STGetSplitPreconditionerInfo(pep->st,&nsplit,NULL));
885 13 : PetscCall(PetscSubcommGetChild(contour->subcomm,&child));
886 385 : for (i=0;i<contour->npoints;i++) {
887 372 : PetscCall(KSPCreate(child,&contour->ksp[i]));
888 372 : PetscCall(PetscObjectIncrementTabLevel((PetscObject)contour->ksp[i],(PetscObject)pep,1));
889 372 : PetscCall(KSPSetOptionsPrefix(contour->ksp[i],((PetscObject)pep)->prefix));
890 372 : PetscCall(KSPAppendOptionsPrefix(contour->ksp[i],"pep_ciss_"));
891 372 : PetscCall(PetscObjectSetOptions((PetscObject)contour->ksp[i],((PetscObject)pep)->options));
892 372 : PetscCall(KSPSetErrorIfNotConverged(contour->ksp[i],PETSC_TRUE));
893 712 : PetscCall(KSPSetTolerances(contour->ksp[i],SlepcDefaultTol(pep->tol),PETSC_CURRENT,PETSC_CURRENT,PETSC_CURRENT));
894 372 : PetscCall(KSPGetPC(contour->ksp[i],&pc));
895 372 : if (nsplit) {
896 64 : PetscCall(KSPSetType(contour->ksp[i],KSPBCGS));
897 64 : PetscCall(PCSetType(pc,PCBJACOBI));
898 : } else {
899 308 : PetscCall(KSPSetType(contour->ksp[i],KSPPREONLY));
900 372 : PetscCall(PCSetType(pc,PCLU));
901 : }
902 : }
903 : }
904 13 : if (nsolve) *nsolve = contour->npoints;
905 13 : if (ksp) *ksp = contour->ksp;
906 13 : PetscFunctionReturn(PETSC_SUCCESS);
907 : }
908 :
909 : /*@C
910 : PEPCISSGetKSPs - Retrieve the array of linear solver objects associated with
911 : the CISS solver.
912 :
913 : Collective
914 :
915 : Input Parameter:
916 : . pep - polynomial eigenvalue solver
917 :
918 : Output Parameters:
919 : + nsolve - number of solver objects
920 : - ksp - array of linear solver object
921 :
922 : Notes:
923 : The number of KSP solvers is equal to the number of integration points divided by
924 : the number of partitions. This value is halved in the case of real matrices with
925 : a region centered at the real axis.
926 :
927 : Level: advanced
928 :
929 : .seealso: PEPCISSSetSizes()
930 : @*/
931 13 : PetscErrorCode PEPCISSGetKSPs(PEP pep,PetscInt *nsolve,KSP **ksp)
932 : {
933 13 : PetscFunctionBegin;
934 13 : PetscValidHeaderSpecific(pep,PEP_CLASSID,1);
935 13 : PetscUseMethod(pep,"PEPCISSGetKSPs_C",(PEP,PetscInt*,KSP**),(pep,nsolve,ksp));
936 13 : PetscFunctionReturn(PETSC_SUCCESS);
937 : }
938 :
939 13 : static PetscErrorCode PEPReset_CISS(PEP pep)
940 : {
941 13 : PEP_CISS *ctx = (PEP_CISS*)pep->data;
942 :
943 13 : PetscFunctionBegin;
944 13 : PetscCall(BVDestroy(&ctx->S));
945 13 : PetscCall(BVDestroy(&ctx->V));
946 13 : PetscCall(BVDestroy(&ctx->Y));
947 13 : PetscCall(SlepcContourDataReset(ctx->contour));
948 13 : PetscCall(MatDestroy(&ctx->J));
949 13 : PetscCall(BVDestroy(&ctx->pV));
950 13 : PetscCall(PetscFree(ctx->Psplit));
951 13 : PetscFunctionReturn(PETSC_SUCCESS);
952 : }
953 :
954 13 : static PetscErrorCode PEPSetFromOptions_CISS(PEP pep,PetscOptionItems *PetscOptionsObject)
955 : {
956 13 : PEP_CISS *ctx = (PEP_CISS*)pep->data;
957 13 : PetscReal r1,r2;
958 13 : PetscInt i,i1,i2,i3,i4,i5,i6,i7;
959 13 : PetscBool b1,flg,flg2,flg3,flg4,flg5,flg6;
960 13 : PEPCISSExtraction extraction;
961 :
962 13 : PetscFunctionBegin;
963 13 : PetscOptionsHeadBegin(PetscOptionsObject,"PEP CISS Options");
964 :
965 13 : PetscCall(PEPCISSGetSizes(pep,&i1,&i2,&i3,&i4,&i5,&b1));
966 13 : PetscCall(PetscOptionsInt("-pep_ciss_integration_points","Number of integration points","PEPCISSSetSizes",i1,&i1,&flg));
967 13 : PetscCall(PetscOptionsInt("-pep_ciss_blocksize","Block size","PEPCISSSetSizes",i2,&i2,&flg2));
968 13 : PetscCall(PetscOptionsInt("-pep_ciss_moments","Moment size","PEPCISSSetSizes",i3,&i3,&flg3));
969 13 : PetscCall(PetscOptionsInt("-pep_ciss_partitions","Number of partitions","PEPCISSSetSizes",i4,&i4,&flg4));
970 13 : PetscCall(PetscOptionsInt("-pep_ciss_maxblocksize","Maximum block size","PEPCISSSetSizes",i5,&i5,&flg5));
971 13 : PetscCall(PetscOptionsBool("-pep_ciss_realmats","True if all coefficient matrices of P(.) are real","PEPCISSSetSizes",b1,&b1,&flg6));
972 13 : if (flg || flg2 || flg3 || flg4 || flg5 || flg6) PetscCall(PEPCISSSetSizes(pep,i1,i2,i3,i4,i5,b1));
973 :
974 13 : PetscCall(PEPCISSGetThreshold(pep,&r1,&r2));
975 13 : PetscCall(PetscOptionsReal("-pep_ciss_delta","Threshold for numerical rank","PEPCISSSetThreshold",r1,&r1,&flg));
976 13 : PetscCall(PetscOptionsReal("-pep_ciss_spurious_threshold","Threshold for the spurious eigenpairs","PEPCISSSetThreshold",r2,&r2,&flg2));
977 13 : if (flg || flg2) PetscCall(PEPCISSSetThreshold(pep,r1,r2));
978 :
979 13 : PetscCall(PEPCISSGetRefinement(pep,&i6,&i7));
980 13 : PetscCall(PetscOptionsInt("-pep_ciss_refine_inner","Number of inner iterative refinement iterations","PEPCISSSetRefinement",i6,&i6,&flg));
981 13 : PetscCall(PetscOptionsInt("-pep_ciss_refine_blocksize","Number of blocksize iterative refinement iterations","PEPCISSSetRefinement",i7,&i7,&flg2));
982 13 : if (flg || flg2) PetscCall(PEPCISSSetRefinement(pep,i6,i7));
983 :
984 13 : PetscCall(PetscOptionsEnum("-pep_ciss_extraction","Extraction technique","PEPCISSSetExtraction",PEPCISSExtractions,(PetscEnum)ctx->extraction,(PetscEnum*)&extraction,&flg));
985 13 : if (flg) PetscCall(PEPCISSSetExtraction(pep,extraction));
986 :
987 13 : PetscOptionsHeadEnd();
988 :
989 13 : if (!pep->rg) PetscCall(PEPGetRG(pep,&pep->rg));
990 13 : PetscCall(RGSetFromOptions(pep->rg)); /* this is necessary here to set useconj */
991 13 : if (!ctx->contour || !ctx->contour->ksp) PetscCall(PEPCISSGetKSPs(pep,NULL,NULL));
992 13 : PetscAssert(ctx->contour && ctx->contour->ksp,PetscObjectComm((PetscObject)pep),PETSC_ERR_PLIB,"Something went wrong with PEPCISSGetKSPs()");
993 385 : for (i=0;i<ctx->contour->npoints;i++) PetscCall(KSPSetFromOptions(ctx->contour->ksp[i]));
994 13 : PetscCall(PetscSubcommSetFromOptions(ctx->contour->subcomm));
995 13 : PetscFunctionReturn(PETSC_SUCCESS);
996 : }
997 :
998 13 : static PetscErrorCode PEPDestroy_CISS(PEP pep)
999 : {
1000 13 : PEP_CISS *ctx = (PEP_CISS*)pep->data;
1001 :
1002 13 : PetscFunctionBegin;
1003 13 : PetscCall(SlepcContourDataDestroy(&ctx->contour));
1004 13 : PetscCall(PetscFree4(ctx->weight,ctx->omega,ctx->pp,ctx->sigma));
1005 13 : PetscCall(PetscFree(pep->data));
1006 13 : PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPCISSSetSizes_C",NULL));
1007 13 : PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPCISSGetSizes_C",NULL));
1008 13 : PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPCISSSetThreshold_C",NULL));
1009 13 : PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPCISSGetThreshold_C",NULL));
1010 13 : PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPCISSSetRefinement_C",NULL));
1011 13 : PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPCISSGetRefinement_C",NULL));
1012 13 : PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPCISSSetExtraction_C",NULL));
1013 13 : PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPCISSGetExtraction_C",NULL));
1014 13 : PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPCISSGetKSPs_C",NULL));
1015 13 : PetscFunctionReturn(PETSC_SUCCESS);
1016 : }
1017 :
1018 0 : static PetscErrorCode PEPView_CISS(PEP pep,PetscViewer viewer)
1019 : {
1020 0 : PEP_CISS *ctx = (PEP_CISS*)pep->data;
1021 0 : PetscBool isascii;
1022 0 : PetscViewer sviewer;
1023 :
1024 0 : PetscFunctionBegin;
1025 0 : PetscCall(PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&isascii));
1026 0 : if (isascii) {
1027 0 : PetscCall(PetscViewerASCIIPrintf(viewer," sizes { integration points: %" PetscInt_FMT ", block size: %" PetscInt_FMT ", moment size: %" PetscInt_FMT ", partitions: %" PetscInt_FMT ", maximum block size: %" PetscInt_FMT " }\n",ctx->N,ctx->L,ctx->M,ctx->npart,ctx->L_max));
1028 0 : if (ctx->isreal) PetscCall(PetscViewerASCIIPrintf(viewer," exploiting symmetry of integration points\n"));
1029 0 : PetscCall(PetscViewerASCIIPrintf(viewer," threshold { delta: %g, spurious threshold: %g }\n",(double)ctx->delta,(double)ctx->spurious_threshold));
1030 0 : PetscCall(PetscViewerASCIIPrintf(viewer," iterative refinement { inner: %" PetscInt_FMT ", blocksize: %" PetscInt_FMT " }\n",ctx->refine_inner, ctx->refine_blocksize));
1031 0 : PetscCall(PetscViewerASCIIPrintf(viewer," extraction: %s\n",PEPCISSExtractions[ctx->extraction]));
1032 0 : if (!ctx->contour || !ctx->contour->ksp) PetscCall(PEPCISSGetKSPs(pep,NULL,NULL));
1033 0 : PetscAssert(ctx->contour && ctx->contour->ksp,PetscObjectComm((PetscObject)pep),PETSC_ERR_PLIB,"Something went wrong with PEPCISSGetKSPs()");
1034 0 : PetscCall(PetscViewerASCIIPushTab(viewer));
1035 0 : if (ctx->npart>1 && ctx->contour->subcomm) {
1036 0 : PetscCall(PetscViewerGetSubViewer(viewer,ctx->contour->subcomm->child,&sviewer));
1037 0 : if (!ctx->contour->subcomm->color) PetscCall(KSPView(ctx->contour->ksp[0],sviewer));
1038 0 : PetscCall(PetscViewerFlush(sviewer));
1039 0 : PetscCall(PetscViewerRestoreSubViewer(viewer,ctx->contour->subcomm->child,&sviewer));
1040 : /* extra call needed because of the two calls to PetscViewerASCIIPushSynchronized() in PetscViewerGetSubViewer() */
1041 0 : PetscCall(PetscViewerASCIIPopSynchronized(viewer));
1042 0 : } else PetscCall(KSPView(ctx->contour->ksp[0],viewer));
1043 0 : PetscCall(PetscViewerASCIIPopTab(viewer));
1044 : }
1045 0 : PetscFunctionReturn(PETSC_SUCCESS);
1046 : }
1047 :
1048 26 : static PetscErrorCode PEPSetDSType_CISS(PEP pep)
1049 : {
1050 26 : PEP_CISS *ctx = (PEP_CISS*)pep->data;
1051 :
1052 26 : PetscFunctionBegin;
1053 26 : switch (ctx->extraction) {
1054 20 : case PEP_CISS_EXTRACTION_RITZ: PetscCall(DSSetType(pep->ds,DSPEP)); break;
1055 4 : case PEP_CISS_EXTRACTION_HANKEL: PetscCall(DSSetType(pep->ds,DSGNHEP)); break;
1056 2 : case PEP_CISS_EXTRACTION_CAA: PetscCall(DSSetType(pep->ds,DSNHEP)); break;
1057 : }
1058 26 : PetscFunctionReturn(PETSC_SUCCESS);
1059 : }
1060 :
1061 13 : SLEPC_EXTERN PetscErrorCode PEPCreate_CISS(PEP pep)
1062 : {
1063 13 : PEP_CISS *ctx = (PEP_CISS*)pep->data;
1064 :
1065 13 : PetscFunctionBegin;
1066 13 : PetscCall(PetscNew(&ctx));
1067 13 : pep->data = ctx;
1068 : /* set default values of parameters */
1069 13 : ctx->N = 32;
1070 13 : ctx->L = 16;
1071 13 : ctx->M = ctx->N/4;
1072 13 : ctx->delta = SLEPC_DEFAULT_TOL*1e-4;
1073 13 : ctx->L_max = 64;
1074 13 : ctx->spurious_threshold = PetscSqrtReal(SLEPC_DEFAULT_TOL);
1075 13 : ctx->isreal = PETSC_FALSE;
1076 13 : ctx->npart = 1;
1077 :
1078 13 : pep->ops->solve = PEPSolve_CISS;
1079 13 : pep->ops->setup = PEPSetUp_CISS;
1080 13 : pep->ops->setfromoptions = PEPSetFromOptions_CISS;
1081 13 : pep->ops->reset = PEPReset_CISS;
1082 13 : pep->ops->destroy = PEPDestroy_CISS;
1083 13 : pep->ops->view = PEPView_CISS;
1084 13 : pep->ops->setdstype = PEPSetDSType_CISS;
1085 :
1086 13 : PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPCISSSetSizes_C",PEPCISSSetSizes_CISS));
1087 13 : PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPCISSGetSizes_C",PEPCISSGetSizes_CISS));
1088 13 : PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPCISSSetThreshold_C",PEPCISSSetThreshold_CISS));
1089 13 : PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPCISSGetThreshold_C",PEPCISSGetThreshold_CISS));
1090 13 : PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPCISSSetRefinement_C",PEPCISSSetRefinement_CISS));
1091 13 : PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPCISSGetRefinement_C",PEPCISSGetRefinement_CISS));
1092 13 : PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPCISSSetExtraction_C",PEPCISSSetExtraction_CISS));
1093 13 : PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPCISSGetExtraction_C",PEPCISSGetExtraction_CISS));
1094 13 : PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPCISSGetKSPs_C",PEPCISSGetKSPs_CISS));
1095 13 : PetscFunctionReturn(PETSC_SUCCESS);
1096 : }
|