LCOV - code coverage report
Current view: top level - nep/tests - test11.c (source / functions) Hit Total Coverage
Test: SLEPc Lines: 87 91 95.6 %
Date: 2024-11-21 00:40:22 Functions: 1 1 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       3             :    SLEPc - Scalable Library for Eigenvalue Problem Computations
       4             :    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
       5             : 
       6             :    This file is part of SLEPc.
       7             :    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
       8             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       9             : */
      10             : 
      11             : static char help[] = "Test the CISS solver with the problem of ex22.\n\n"
      12             :   "The command line options are:\n"
      13             :   "  -n <n>, where <n> = number of grid subdivisions.\n"
      14             :   "  -tau <tau>, where <tau> is the delay parameter.\n\n";
      15             : 
      16             : /*
      17             :    Solve parabolic partial differential equation with time delay tau
      18             : 
      19             :             u_t = u_xx + a*u(t) + b*u(t-tau)
      20             :             u(0,t) = u(pi,t) = 0
      21             : 
      22             :    with a = 20 and b(x) = -4.1+x*(1-exp(x-pi)).
      23             : 
      24             :    Discretization leads to a DDE of dimension n
      25             : 
      26             :             -u' = A*u(t) + B*u(t-tau)
      27             : 
      28             :    which results in the nonlinear eigenproblem
      29             : 
      30             :             (-lambda*I + A + exp(-tau*lambda)*B)*u = 0
      31             : */
      32             : 
      33             : #include <slepcnep.h>
      34             : 
      35          13 : int main(int argc,char **argv)
      36             : {
      37          13 :   NEP               nep;
      38          13 :   Mat               Id,A,B,mats[3];
      39          13 :   FN                f1,f2,f3,funs[3];
      40          13 :   RG                rg;
      41          13 :   KSP               *ksp;
      42          13 :   PC                pc;
      43          13 :   NEPCISSExtraction ext;
      44          13 :   PetscScalar       coeffs[2],b;
      45          13 :   PetscInt          n=128,Istart,Iend,i,nsolve;
      46          13 :   PetscReal         tau=0.001,h,a=20,xi;
      47          13 :   PetscBool         flg,terse;
      48             : 
      49          13 :   PetscFunctionBeginUser;
      50          13 :   PetscCall(SlepcInitialize(&argc,&argv,NULL,help));
      51          13 :   PetscCall(PetscOptionsGetInt(NULL,NULL,"-n",&n,NULL));
      52          13 :   PetscCall(PetscOptionsGetReal(NULL,NULL,"-tau",&tau,NULL));
      53          13 :   PetscCall(PetscPrintf(PETSC_COMM_WORLD,"\n1-D Delay Eigenproblem, n=%" PetscInt_FMT ", tau=%g\n\n",n,(double)tau));
      54          13 :   h = PETSC_PI/(PetscReal)(n+1);
      55             : 
      56             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      57             :      Create nonlinear eigensolver context
      58             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
      59             : 
      60          13 :   PetscCall(NEPCreate(PETSC_COMM_WORLD,&nep));
      61             : 
      62             :   /* Identity matrix */
      63          13 :   PetscCall(MatCreateConstantDiagonal(PETSC_COMM_WORLD,PETSC_DECIDE,PETSC_DECIDE,n,n,1.0,&Id));
      64          13 :   PetscCall(MatSetOption(Id,MAT_HERMITIAN,PETSC_TRUE));
      65             : 
      66             :   /* A = 1/h^2*tridiag(1,-2,1) + a*I */
      67          13 :   PetscCall(MatCreate(PETSC_COMM_WORLD,&A));
      68          13 :   PetscCall(MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,n,n));
      69          13 :   PetscCall(MatSetFromOptions(A));
      70          13 :   PetscCall(MatGetOwnershipRange(A,&Istart,&Iend));
      71        1293 :   for (i=Istart;i<Iend;i++) {
      72        1280 :     if (i>0) PetscCall(MatSetValue(A,i,i-1,1.0/(h*h),INSERT_VALUES));
      73        1280 :     if (i<n-1) PetscCall(MatSetValue(A,i,i+1,1.0/(h*h),INSERT_VALUES));
      74        1280 :     PetscCall(MatSetValue(A,i,i,-2.0/(h*h)+a,INSERT_VALUES));
      75             :   }
      76          13 :   PetscCall(MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY));
      77          13 :   PetscCall(MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY));
      78          13 :   PetscCall(MatSetOption(A,MAT_HERMITIAN,PETSC_TRUE));
      79             : 
      80             :   /* B = diag(b(xi)) */
      81          13 :   PetscCall(MatCreate(PETSC_COMM_WORLD,&B));
      82          13 :   PetscCall(MatSetSizes(B,PETSC_DECIDE,PETSC_DECIDE,n,n));
      83          13 :   PetscCall(MatSetFromOptions(B));
      84          13 :   PetscCall(MatGetOwnershipRange(B,&Istart,&Iend));
      85        1293 :   for (i=Istart;i<Iend;i++) {
      86        1280 :     xi = (i+1)*h;
      87        1280 :     b = -4.1+xi*(1.0-PetscExpReal(xi-PETSC_PI));
      88        1280 :     PetscCall(MatSetValues(B,1,&i,1,&i,&b,INSERT_VALUES));
      89             :   }
      90          13 :   PetscCall(MatAssemblyBegin(B,MAT_FINAL_ASSEMBLY));
      91          13 :   PetscCall(MatAssemblyEnd(B,MAT_FINAL_ASSEMBLY));
      92          13 :   PetscCall(MatSetOption(B,MAT_HERMITIAN,PETSC_TRUE));
      93             : 
      94             :   /* Functions: f1=-lambda, f2=1.0, f3=exp(-tau*lambda) */
      95          13 :   PetscCall(FNCreate(PETSC_COMM_WORLD,&f1));
      96          13 :   PetscCall(FNSetType(f1,FNRATIONAL));
      97          13 :   coeffs[0] = -1.0; coeffs[1] = 0.0;
      98          13 :   PetscCall(FNRationalSetNumerator(f1,2,coeffs));
      99             : 
     100          13 :   PetscCall(FNCreate(PETSC_COMM_WORLD,&f2));
     101          13 :   PetscCall(FNSetType(f2,FNRATIONAL));
     102          13 :   coeffs[0] = 1.0;
     103          13 :   PetscCall(FNRationalSetNumerator(f2,1,coeffs));
     104             : 
     105          13 :   PetscCall(FNCreate(PETSC_COMM_WORLD,&f3));
     106          13 :   PetscCall(FNSetType(f3,FNEXP));
     107          13 :   PetscCall(FNSetScale(f3,-tau,1.0));
     108             : 
     109             :   /* Set the split operator */
     110          13 :   mats[0] = A;  funs[0] = f2;
     111          13 :   mats[1] = Id; funs[1] = f1;
     112          13 :   mats[2] = B;  funs[2] = f3;
     113          13 :   PetscCall(NEPSetSplitOperator(nep,3,mats,funs,SUBSET_NONZERO_PATTERN));
     114             : 
     115             :   /* Customize nonlinear solver; set runtime options */
     116          13 :   PetscCall(NEPSetType(nep,NEPCISS));
     117          13 :   PetscCall(NEPSetDimensions(nep,1,24,PETSC_DETERMINE));
     118          13 :   PetscCall(NEPSetTolerances(nep,1e-9,PETSC_CURRENT));
     119          13 :   PetscCall(NEPGetRG(nep,&rg));
     120          13 :   PetscCall(RGSetType(rg,RGELLIPSE));
     121          13 :   PetscCall(RGEllipseSetParameters(rg,10.0,9.5,0.1));
     122          13 :   PetscCall(NEPCISSSetSizes(nep,PETSC_DETERMINE,PETSC_DETERMINE,PETSC_DETERMINE,1,PETSC_DETERMINE,PETSC_TRUE));
     123          13 :   PetscCall(NEPCISSGetKSPs(nep,&nsolve,&ksp));
     124         221 :   for (i=0;i<nsolve;i++) {
     125         208 :     PetscCall(KSPSetTolerances(ksp[i],1e-12,PETSC_CURRENT,PETSC_CURRENT,PETSC_CURRENT));
     126         208 :     PetscCall(KSPSetType(ksp[i],KSPBCGS));
     127         208 :     PetscCall(KSPGetPC(ksp[i],&pc));
     128         208 :     PetscCall(PCSetType(pc,PCSOR));
     129             :   }
     130          13 :   PetscCall(NEPSetFromOptions(nep));
     131             : 
     132             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     133             :                       Solve the eigensystem
     134             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
     135             : 
     136          13 :   PetscCall(PetscObjectTypeCompare((PetscObject)nep,NEPCISS,&flg));
     137          13 :   if (flg) {
     138          13 :     PetscCall(NEPCISSGetExtraction(nep,&ext));
     139          13 :     PetscCall(PetscPrintf(PETSC_COMM_WORLD," Running CISS with %" PetscInt_FMT " KSP solvers (%s extraction)\n",nsolve,NEPCISSExtractions[ext]));
     140             :   }
     141          13 :   PetscCall(NEPSolve(nep));
     142             : 
     143             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     144             :                     Display solution and clean up
     145             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
     146             : 
     147             :   /* show detailed info unless -terse option is given by user */
     148          13 :   PetscCall(PetscOptionsHasName(NULL,NULL,"-terse",&terse));
     149          13 :   if (terse) PetscCall(NEPErrorView(nep,NEP_ERROR_RELATIVE,NULL));
     150             :   else {
     151           0 :     PetscCall(PetscViewerPushFormat(PETSC_VIEWER_STDOUT_WORLD,PETSC_VIEWER_ASCII_INFO_DETAIL));
     152           0 :     PetscCall(NEPConvergedReasonView(nep,PETSC_VIEWER_STDOUT_WORLD));
     153           0 :     PetscCall(NEPErrorView(nep,NEP_ERROR_RELATIVE,PETSC_VIEWER_STDOUT_WORLD));
     154           0 :     PetscCall(PetscViewerPopFormat(PETSC_VIEWER_STDOUT_WORLD));
     155             :   }
     156          13 :   PetscCall(NEPDestroy(&nep));
     157          13 :   PetscCall(MatDestroy(&Id));
     158          13 :   PetscCall(MatDestroy(&A));
     159          13 :   PetscCall(MatDestroy(&B));
     160          13 :   PetscCall(FNDestroy(&f1));
     161          13 :   PetscCall(FNDestroy(&f2));
     162          13 :   PetscCall(FNDestroy(&f3));
     163          13 :   PetscCall(SlepcFinalize());
     164             :   return 0;
     165             : }
     166             : 
     167             : /*TEST
     168             : 
     169             :    build:
     170             :       requires: complex
     171             : 
     172             :    testset:
     173             :       args: -nep_ciss_extraction {{ritz hankel caa}} -terse
     174             :       requires: complex !single
     175             :       output_file: output/test11_1.out
     176             :       filter: sed -e "s/([A-Z]* extraction)//"
     177             :       test:
     178             :          suffix: 1
     179             :          args: -nep_ciss_delta 1e-10
     180             :       test:
     181             :          suffix: 2
     182             :          nsize: 2
     183             :          args: -nep_ciss_partitions 2
     184             :       test:
     185             :          suffix: 3
     186             :          args: -nep_ciss_moments 6 -nep_ciss_blocksize 4 -nep_ciss_refine_inner 1 -nep_ciss_refine_blocksize 2
     187             : 
     188             :    test:
     189             :       suffix: 4
     190             :       args: -terse -nep_view
     191             :       requires: complex !single
     192             :       filter: grep -v tolerance | grep -v threshold
     193             : 
     194             : TEST*/

Generated by: LCOV version 1.14