LCOV - code coverage report
Current view: top level - nep/interface - nepdefault.c (source / functions) Hit Total Coverage
Test: SLEPc Lines: 65 83 78.3 %
Date: 2025-01-08 00:41:22 Functions: 7 7 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       3             :    SLEPc - Scalable Library for Eigenvalue Problem Computations
       4             :    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
       5             : 
       6             :    This file is part of SLEPc.
       7             :    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
       8             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       9             : */
      10             : /*
      11             :    Simple default routines for common NEP operations
      12             : */
      13             : 
      14             : #include <slepc/private/nepimpl.h>     /*I "slepcnep.h" I*/
      15             : 
      16             : /*@
      17             :    NEPSetWorkVecs - Sets a number of work vectors into a NEP object
      18             : 
      19             :    Collective
      20             : 
      21             :    Input Parameters:
      22             : +  nep - nonlinear eigensolver context
      23             : -  nw  - number of work vectors to allocate
      24             : 
      25             :    Developer Notes:
      26             :    This is SLEPC_EXTERN because it may be required by user plugin NEP
      27             :    implementations.
      28             : 
      29             :    Level: developer
      30             : 
      31             : .seealso: NEPSetUp()
      32             : @*/
      33         798 : PetscErrorCode NEPSetWorkVecs(NEP nep,PetscInt nw)
      34             : {
      35         798 :   Vec            t;
      36             : 
      37         798 :   PetscFunctionBegin;
      38         798 :   PetscValidHeaderSpecific(nep,NEP_CLASSID,1);
      39        2394 :   PetscValidLogicalCollectiveInt(nep,nw,2);
      40         798 :   PetscCheck(nw>0,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"nw must be > 0: nw = %" PetscInt_FMT,nw);
      41         798 :   if (nep->nwork < nw) {
      42         214 :     PetscCall(VecDestroyVecs(nep->nwork,&nep->work));
      43         214 :     nep->nwork = nw;
      44         214 :     PetscCall(BVGetColumn(nep->V,0,&t));
      45         214 :     PetscCall(VecDuplicateVecs(t,nw,&nep->work));
      46         214 :     PetscCall(BVRestoreColumn(nep->V,0,&t));
      47             :   }
      48         798 :   PetscFunctionReturn(PETSC_SUCCESS);
      49             : }
      50             : 
      51             : /*
      52             :   NEPGetDefaultShift - Return the value of sigma to start the nonlinear iteration.
      53             :  */
      54          70 : PetscErrorCode NEPGetDefaultShift(NEP nep,PetscScalar *sigma)
      55             : {
      56          70 :   PetscFunctionBegin;
      57          70 :   PetscAssertPointer(sigma,2);
      58          70 :   switch (nep->which) {
      59           0 :     case NEP_LARGEST_MAGNITUDE:
      60             :     case NEP_LARGEST_IMAGINARY:
      61             :     case NEP_ALL:
      62             :     case NEP_WHICH_USER:
      63           0 :       *sigma = 1.0;   /* arbitrary value */
      64           0 :       break;
      65           0 :     case NEP_SMALLEST_MAGNITUDE:
      66             :     case NEP_SMALLEST_IMAGINARY:
      67           0 :       *sigma = 0.0;
      68           0 :       break;
      69           0 :     case NEP_LARGEST_REAL:
      70           0 :       *sigma = PETSC_MAX_REAL;
      71           0 :       break;
      72           0 :     case NEP_SMALLEST_REAL:
      73           0 :       *sigma = PETSC_MIN_REAL;
      74           0 :       break;
      75          70 :     case NEP_TARGET_MAGNITUDE:
      76             :     case NEP_TARGET_REAL:
      77             :     case NEP_TARGET_IMAGINARY:
      78          70 :       *sigma = nep->target;
      79          70 :       break;
      80             :   }
      81          70 :   PetscFunctionReturn(PETSC_SUCCESS);
      82             : }
      83             : 
      84             : /*
      85             :   NEPConvergedRelative - Checks convergence relative to the eigenvalue.
      86             : */
      87        1094 : PetscErrorCode NEPConvergedRelative(NEP nep,PetscScalar eigr,PetscScalar eigi,PetscReal res,PetscReal *errest,void *ctx)
      88             : {
      89        1094 :   PetscReal w;
      90             : 
      91        1094 :   PetscFunctionBegin;
      92        1094 :   w = SlepcAbsEigenvalue(eigr,eigi);
      93        1094 :   *errest = (w!=0.0)? res/w: PETSC_MAX_REAL;
      94        1094 :   PetscFunctionReturn(PETSC_SUCCESS);
      95             : }
      96             : 
      97             : /*
      98             :   NEPConvergedAbsolute - Checks convergence absolutely.
      99             : */
     100           9 : PetscErrorCode NEPConvergedAbsolute(NEP nep,PetscScalar eigr,PetscScalar eigi,PetscReal res,PetscReal *errest,void *ctx)
     101             : {
     102           9 :   PetscFunctionBegin;
     103           9 :   *errest = res;
     104           9 :   PetscFunctionReturn(PETSC_SUCCESS);
     105             : }
     106             : 
     107             : /*
     108             :   NEPConvergedNorm - Checks convergence relative to the matrix norms.
     109             : */
     110           8 : PetscErrorCode NEPConvergedNorm(NEP nep,PetscScalar eigr,PetscScalar eigi,PetscReal res,PetscReal *errest,void *ctx)
     111             : {
     112           8 :   PetscScalar    s;
     113           8 :   PetscReal      w=0.0;
     114           8 :   PetscInt       j;
     115           8 :   PetscBool      flg;
     116             : 
     117           8 :   PetscFunctionBegin;
     118           8 :   if (nep->fui!=NEP_USER_INTERFACE_SPLIT) {
     119           0 :     PetscCall(NEPComputeFunction(nep,eigr,nep->function,nep->function));
     120           0 :     PetscCall(MatHasOperation(nep->function,MATOP_NORM,&flg));
     121           0 :     PetscCheck(flg,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_WRONG,"The computation of backward errors requires a matrix norm operation");
     122           0 :     PetscCall(MatNorm(nep->function,NORM_INFINITY,&w));
     123             :   } else {
     124             :     /* initialization of matrix norms */
     125           8 :     if (!nep->nrma[0]) {
     126           3 :       for (j=0;j<nep->nt;j++) {
     127           2 :         PetscCall(MatHasOperation(nep->A[j],MATOP_NORM,&flg));
     128           2 :         PetscCheck(flg,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_WRONG,"The convergence test related to the matrix norms requires a matrix norm operation");
     129           2 :         PetscCall(MatNorm(nep->A[j],NORM_INFINITY,&nep->nrma[j]));
     130             :       }
     131             :     }
     132          24 :     for (j=0;j<nep->nt;j++) {
     133          16 :       PetscCall(FNEvaluateFunction(nep->f[j],eigr,&s));
     134          16 :       w = w + nep->nrma[j]*PetscAbsScalar(s);
     135             :     }
     136             :   }
     137           8 :   *errest = res/w;
     138           8 :   PetscFunctionReturn(PETSC_SUCCESS);
     139             : }
     140             : 
     141             : /*@C
     142             :    NEPStoppingBasic - Default routine to determine whether the outer eigensolver
     143             :    iteration must be stopped.
     144             : 
     145             :    Collective
     146             : 
     147             :    Input Parameters:
     148             : +  nep    - nonlinear eigensolver context obtained from NEPCreate()
     149             : .  its    - current number of iterations
     150             : .  max_it - maximum number of iterations
     151             : .  nconv  - number of currently converged eigenpairs
     152             : .  nev    - number of requested eigenpairs
     153             : -  ctx    - context (not used here)
     154             : 
     155             :    Output Parameter:
     156             : .  reason - result of the stopping test
     157             : 
     158             :    Notes:
     159             :    A positive value of reason indicates that the iteration has finished successfully
     160             :    (converged), and a negative value indicates an error condition (diverged). If
     161             :    the iteration needs to be continued, reason must be set to NEP_CONVERGED_ITERATING
     162             :    (zero).
     163             : 
     164             :    NEPStoppingBasic() will stop if all requested eigenvalues are converged, or if
     165             :    the maximum number of iterations has been reached.
     166             : 
     167             :    Use NEPSetStoppingTest() to provide your own test instead of using this one.
     168             : 
     169             :    Level: advanced
     170             : 
     171             : .seealso: NEPSetStoppingTest(), NEPConvergedReason, NEPGetConvergedReason()
     172             : @*/
     173         800 : PetscErrorCode NEPStoppingBasic(NEP nep,PetscInt its,PetscInt max_it,PetscInt nconv,PetscInt nev,NEPConvergedReason *reason,void *ctx)
     174             : {
     175         800 :   PetscFunctionBegin;
     176         800 :   *reason = NEP_CONVERGED_ITERATING;
     177         800 :   if (nconv >= nev) {
     178          93 :     PetscCall(PetscInfo(nep,"Nonlinear eigensolver finished successfully: %" PetscInt_FMT " eigenpairs converged at iteration %" PetscInt_FMT "\n",nconv,its));
     179          93 :     *reason = NEP_CONVERGED_TOL;
     180         707 :   } else if (its >= max_it) {
     181           0 :     *reason = NEP_DIVERGED_ITS;
     182           0 :     PetscCall(PetscInfo(nep,"Nonlinear eigensolver iteration reached maximum number of iterations (%" PetscInt_FMT ")\n",its));
     183             :   }
     184         800 :   PetscFunctionReturn(PETSC_SUCCESS);
     185             : }
     186             : 
     187          88 : PetscErrorCode NEPComputeVectors_Schur(NEP nep)
     188             : {
     189          88 :   Mat            Z;
     190             : 
     191          88 :   PetscFunctionBegin;
     192          88 :   PetscCall(DSVectors(nep->ds,DS_MAT_X,NULL,NULL));
     193          88 :   PetscCall(DSGetMat(nep->ds,DS_MAT_X,&Z));
     194          88 :   PetscCall(BVMultInPlace(nep->V,Z,0,nep->nconv));
     195          88 :   PetscCall(DSRestoreMat(nep->ds,DS_MAT_X,&Z));
     196          88 :   PetscCall(BVNormalize(nep->V,nep->eigi));
     197          88 :   PetscFunctionReturn(PETSC_SUCCESS);
     198             : }

Generated by: LCOV version 1.14