LCOV - code coverage report
Current view: top level - nep/impls/narnoldi - narnoldi.c (source / functions) Hit Total Coverage
Test: SLEPc Lines: 236 244 96.7 %
Date: 2024-12-18 00:51:33 Functions: 15 15 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       3             :    SLEPc - Scalable Library for Eigenvalue Problem Computations
       4             :    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
       5             : 
       6             :    This file is part of SLEPc.
       7             :    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
       8             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       9             : */
      10             : /*
      11             :    SLEPc nonlinear eigensolver: "narnoldi"
      12             : 
      13             :    Method: Nonlinear Arnoldi
      14             : 
      15             :    Algorithm:
      16             : 
      17             :        Arnoldi for nonlinear eigenproblems.
      18             : 
      19             :    References:
      20             : 
      21             :        [1] H. Voss, "An Arnoldi method for nonlinear eigenvalue problems",
      22             :            BIT 44:387-401, 2004.
      23             : */
      24             : 
      25             : #include <slepc/private/nepimpl.h>         /*I "slepcnep.h" I*/
      26             : #include <../src/nep/impls/nepdefl.h>
      27             : 
      28             : typedef struct {
      29             :   PetscInt lag;             /* interval to rebuild preconditioner */
      30             :   KSP      ksp;             /* linear solver object */
      31             : } NEP_NARNOLDI;
      32             : 
      33          18 : static PetscErrorCode NEPSetUp_NArnoldi(NEP nep)
      34             : {
      35          18 :   PetscFunctionBegin;
      36          18 :   PetscCall(NEPSetDimensions_Default(nep,nep->nev,&nep->ncv,&nep->mpd));
      37          18 :   PetscCheck(nep->ncv<=nep->nev+nep->mpd,PetscObjectComm((PetscObject)nep),PETSC_ERR_USER_INPUT,"The value of ncv must not be larger than nev+mpd");
      38          18 :   if (nep->max_it==PETSC_DETERMINE) nep->max_it = nep->nev*nep->ncv;
      39          18 :   if (!nep->which) nep->which = NEP_TARGET_MAGNITUDE;
      40          18 :   PetscCheck(nep->which==NEP_TARGET_MAGNITUDE,PetscObjectComm((PetscObject)nep),PETSC_ERR_SUP,"This solver supports only target magnitude eigenvalues");
      41          18 :   NEPCheckUnsupported(nep,NEP_FEATURE_CALLBACK | NEP_FEATURE_REGION | NEP_FEATURE_TWOSIDED);
      42          18 :   PetscCall(NEPAllocateSolution(nep,0));
      43          18 :   PetscCall(NEPSetWorkVecs(nep,3));
      44          18 :   PetscFunctionReturn(PETSC_SUCCESS);
      45             : }
      46             : 
      47          17 : static PetscErrorCode NEPSolve_NArnoldi(NEP nep)
      48             : {
      49          17 :   NEP_NARNOLDI       *ctx = (NEP_NARNOLDI*)nep->data;
      50          17 :   Mat                T,H,A;
      51          17 :   Vec                f,r,u,uu;
      52          17 :   PetscScalar        *X,lambda=0.0,lambda2=0.0,*eigr,sigma;
      53          17 :   PetscReal          beta,resnorm=0.0,nrm,perr=0.0;
      54          17 :   PetscInt           n;
      55          17 :   PetscBool          breakdown,skip=PETSC_FALSE;
      56          17 :   BV                 Vext;
      57          17 :   DS                 ds;
      58          17 :   NEP_EXT_OP         extop=NULL;
      59          17 :   SlepcSC            sc;
      60          17 :   KSPConvergedReason kspreason;
      61             : 
      62          17 :   PetscFunctionBegin;
      63             :   /* get initial space and shift */
      64          17 :   PetscCall(NEPGetDefaultShift(nep,&sigma));
      65          17 :   if (!nep->nini) {
      66          16 :     PetscCall(BVSetRandomColumn(nep->V,0));
      67          16 :     PetscCall(BVNormColumn(nep->V,0,NORM_2,&nrm));
      68          16 :     PetscCall(BVScaleColumn(nep->V,0,1.0/nrm));
      69             :     n = 1;
      70             :   } else n = nep->nini;
      71             : 
      72          17 :   if (!ctx->ksp) PetscCall(NEPNArnoldiGetKSP(nep,&ctx->ksp));
      73          17 :   PetscCall(NEPDeflationInitialize(nep,nep->V,ctx->ksp,PETSC_FALSE,nep->nev,&extop));
      74          17 :   PetscCall(NEPDeflationCreateBV(extop,nep->ncv,&Vext));
      75             : 
      76             :   /* prepare linear solver */
      77          17 :   PetscCall(NEPDeflationSolveSetUp(extop,sigma));
      78             : 
      79          17 :   PetscCall(BVGetColumn(Vext,0,&f));
      80          17 :   PetscCall(VecDuplicate(f,&r));
      81          17 :   PetscCall(VecDuplicate(f,&u));
      82          17 :   PetscCall(BVGetColumn(nep->V,0,&uu));
      83          17 :   PetscCall(NEPDeflationCopyToExtendedVec(extop,uu,NULL,f,PETSC_FALSE));
      84          17 :   PetscCall(BVRestoreColumn(nep->V,0,&uu));
      85          17 :   PetscCall(VecCopy(f,r));
      86          17 :   PetscCall(NEPDeflationFunctionSolve(extop,r,f));
      87          17 :   PetscCall(VecNorm(f,NORM_2,&nrm));
      88          17 :   PetscCall(VecScale(f,1.0/nrm));
      89          17 :   PetscCall(BVRestoreColumn(Vext,0,&f));
      90             : 
      91          17 :   PetscCall(DSCreate(PetscObjectComm((PetscObject)nep),&ds));
      92          17 :   PetscCall(DSSetType(ds,DSNEP));
      93          17 :   PetscCall(DSNEPSetFN(ds,nep->nt,nep->f));
      94          17 :   PetscCall(DSAllocate(ds,nep->ncv));
      95          17 :   PetscCall(DSGetSlepcSC(ds,&sc));
      96          17 :   sc->comparison    = nep->sc->comparison;
      97          17 :   sc->comparisonctx = nep->sc->comparisonctx;
      98          17 :   PetscCall(DSSetFromOptions(ds));
      99             : 
     100             :   /* build projected matrices for initial space */
     101          17 :   PetscCall(DSSetDimensions(ds,n,0,0));
     102          17 :   PetscCall(NEPDeflationProjectOperator(extop,Vext,ds,0,n));
     103             : 
     104          17 :   PetscCall(PetscMalloc1(nep->ncv,&eigr));
     105             : 
     106             :   /* Restart loop */
     107         177 :   while (nep->reason == NEP_CONVERGED_ITERATING) {
     108         160 :     nep->its++;
     109             : 
     110             :     /* solve projected problem */
     111         160 :     PetscCall(DSSetDimensions(ds,n,0,0));
     112         160 :     PetscCall(DSSetState(ds,DS_STATE_RAW));
     113         160 :     PetscCall(DSSolve(ds,eigr,NULL));
     114         160 :     PetscCall(DSSynchronize(ds,eigr,NULL));
     115         160 :     if (nep->its>1) lambda2 = lambda;
     116         160 :     lambda = eigr[0];
     117         160 :     nep->eigr[nep->nconv] = lambda;
     118             : 
     119             :     /* compute Ritz vector, x = V*s */
     120         160 :     PetscCall(DSGetArray(ds,DS_MAT_X,&X));
     121         160 :     PetscCall(BVSetActiveColumns(Vext,0,n));
     122         160 :     PetscCall(BVMultVec(Vext,1.0,0.0,u,X));
     123         160 :     PetscCall(DSRestoreArray(ds,DS_MAT_X,&X));
     124             : 
     125             :     /* compute the residual, r = T(lambda)*x */
     126         160 :     PetscCall(NEPDeflationComputeFunction(extop,lambda,&T));
     127         160 :     PetscCall(MatMult(T,u,r));
     128             : 
     129             :     /* convergence test */
     130         160 :     PetscCall(VecNorm(r,NORM_2,&resnorm));
     131         160 :     if (nep->its>1) perr=nep->errest[nep->nconv];
     132         160 :     PetscCall((*nep->converged)(nep,lambda,0,resnorm,&nep->errest[nep->nconv],nep->convergedctx));
     133         160 :     if (nep->errest[nep->nconv]<=nep->tol) {
     134          23 :       nep->nconv = nep->nconv + 1;
     135          23 :       PetscCall(NEPDeflationLocking(extop,u,lambda));
     136             :       skip = PETSC_TRUE;
     137             :     }
     138         160 :     PetscCall((*nep->stopping)(nep,nep->its,nep->max_it,nep->nconv,nep->nev,&nep->reason,nep->stoppingctx));
     139         160 :     if (!skip || nep->reason>0) PetscCall(NEPMonitor(nep,nep->its,nep->nconv,nep->eigr,nep->eigi,nep->errest,(nep->reason>0)?nep->nconv:nep->nconv+1));
     140             : 
     141         160 :     if (nep->reason == NEP_CONVERGED_ITERATING) {
     142         143 :       if (!skip) {
     143         137 :         if (n>=nep->ncv) {
     144           0 :           nep->reason = NEP_DIVERGED_SUBSPACE_EXHAUSTED;
     145           0 :           break;
     146             :         }
     147         137 :         if (ctx->lag && !(nep->its%ctx->lag) && nep->its>=2*ctx->lag && perr && nep->errest[nep->nconv]>.5*perr) PetscCall(NEPDeflationSolveSetUp(extop,lambda2));
     148             : 
     149             :         /* continuation vector: f = T(sigma)\r */
     150         137 :         PetscCall(BVGetColumn(Vext,n,&f));
     151         137 :         PetscCall(NEPDeflationFunctionSolve(extop,r,f));
     152         137 :         PetscCall(BVRestoreColumn(Vext,n,&f));
     153         137 :         PetscCall(KSPGetConvergedReason(ctx->ksp,&kspreason));
     154         137 :         if (kspreason<0) {
     155           0 :           PetscCall(PetscInfo(nep,"iter=%" PetscInt_FMT ", linear solve failed, stopping solve\n",nep->its));
     156           0 :           nep->reason = NEP_DIVERGED_LINEAR_SOLVE;
     157           0 :           break;
     158             :         }
     159             : 
     160             :         /* orthonormalize */
     161         137 :         PetscCall(BVOrthonormalizeColumn(Vext,n,PETSC_FALSE,&beta,&breakdown));
     162         137 :         if (breakdown || beta==0.0) {
     163           0 :           PetscCall(PetscInfo(nep,"iter=%" PetscInt_FMT ", orthogonalization failed, stopping solve\n",nep->its));
     164           0 :           nep->reason = NEP_DIVERGED_BREAKDOWN;
     165           0 :           break;
     166             :         }
     167             : 
     168             :         /* update projected matrices */
     169         137 :         PetscCall(DSSetDimensions(ds,n+1,0,0));
     170         137 :         PetscCall(NEPDeflationProjectOperator(extop,Vext,ds,n,n+1));
     171             :         n++;
     172             :       } else {
     173           6 :         nep->its--;  /* do not count this as a full iteration */
     174           6 :         PetscCall(BVGetColumn(Vext,0,&f));
     175           6 :         PetscCall(NEPDeflationSetRandomVec(extop,f));
     176           6 :         PetscCall(NEPDeflationSolveSetUp(extop,sigma));
     177           6 :         PetscCall(VecCopy(f,r));
     178           6 :         PetscCall(NEPDeflationFunctionSolve(extop,r,f));
     179           6 :         PetscCall(VecNorm(f,NORM_2,&nrm));
     180           6 :         PetscCall(VecScale(f,1.0/nrm));
     181           6 :         PetscCall(BVRestoreColumn(Vext,0,&f));
     182           6 :         n = 1;
     183           6 :         PetscCall(DSSetDimensions(ds,n,0,0));
     184           6 :         PetscCall(NEPDeflationProjectOperator(extop,Vext,ds,n-1,n));
     185             :         skip = PETSC_FALSE;
     186             :       }
     187             :     }
     188             :   }
     189             : 
     190          17 :   PetscCall(NEPDeflationGetInvariantPair(extop,NULL,&H));
     191          17 :   PetscCall(DSSetType(nep->ds,DSNHEP));
     192          17 :   PetscCall(DSAllocate(nep->ds,PetscMax(nep->nconv,1)));
     193          17 :   PetscCall(DSSetDimensions(nep->ds,nep->nconv,0,nep->nconv));
     194          17 :   PetscCall(DSGetMat(nep->ds,DS_MAT_A,&A));
     195          17 :   PetscCall(MatCopy(H,A,SAME_NONZERO_PATTERN));
     196          17 :   PetscCall(DSRestoreMat(nep->ds,DS_MAT_A,&A));
     197          17 :   PetscCall(MatDestroy(&H));
     198          17 :   PetscCall(DSSolve(nep->ds,nep->eigr,nep->eigi));
     199          17 :   PetscCall(NEPDeflationReset(extop));
     200          17 :   PetscCall(VecDestroy(&u));
     201          17 :   PetscCall(VecDestroy(&r));
     202          17 :   PetscCall(BVDestroy(&Vext));
     203          17 :   PetscCall(DSDestroy(&ds));
     204          17 :   PetscCall(PetscFree(eigr));
     205          17 :   PetscFunctionReturn(PETSC_SUCCESS);
     206             : }
     207             : 
     208           2 : static PetscErrorCode NEPNArnoldiSetLagPreconditioner_NArnoldi(NEP nep,PetscInt lag)
     209             : {
     210           2 :   NEP_NARNOLDI *ctx = (NEP_NARNOLDI*)nep->data;
     211             : 
     212           2 :   PetscFunctionBegin;
     213           2 :   PetscCheck(lag>=0,PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Lag must be non-negative");
     214           2 :   ctx->lag = lag;
     215           2 :   PetscFunctionReturn(PETSC_SUCCESS);
     216             : }
     217             : 
     218             : /*@
     219             :    NEPNArnoldiSetLagPreconditioner - Determines when the preconditioner is rebuilt in the
     220             :    nonlinear solve.
     221             : 
     222             :    Logically Collective
     223             : 
     224             :    Input Parameters:
     225             : +  nep - nonlinear eigenvalue solver
     226             : -  lag - 0 indicates NEVER rebuild, 1 means rebuild every time the Jacobian is
     227             :           computed within the nonlinear iteration, 2 means every second time
     228             :           the Jacobian is built, etc.
     229             : 
     230             :    Options Database Keys:
     231             : .  -nep_narnoldi_lag_preconditioner <lag> - the lag value
     232             : 
     233             :    Notes:
     234             :    The default is 1.
     235             :    The preconditioner is ALWAYS built in the first iteration of a nonlinear solve.
     236             : 
     237             :    Level: intermediate
     238             : 
     239             : .seealso: NEPNArnoldiGetLagPreconditioner()
     240             : @*/
     241           2 : PetscErrorCode NEPNArnoldiSetLagPreconditioner(NEP nep,PetscInt lag)
     242             : {
     243           2 :   PetscFunctionBegin;
     244           2 :   PetscValidHeaderSpecific(nep,NEP_CLASSID,1);
     245           6 :   PetscValidLogicalCollectiveInt(nep,lag,2);
     246           2 :   PetscTryMethod(nep,"NEPNArnoldiSetLagPreconditioner_C",(NEP,PetscInt),(nep,lag));
     247           2 :   PetscFunctionReturn(PETSC_SUCCESS);
     248             : }
     249             : 
     250           1 : static PetscErrorCode NEPNArnoldiGetLagPreconditioner_NArnoldi(NEP nep,PetscInt *lag)
     251             : {
     252           1 :   NEP_NARNOLDI *ctx = (NEP_NARNOLDI*)nep->data;
     253             : 
     254           1 :   PetscFunctionBegin;
     255           1 :   *lag = ctx->lag;
     256           1 :   PetscFunctionReturn(PETSC_SUCCESS);
     257             : }
     258             : 
     259             : /*@
     260             :    NEPNArnoldiGetLagPreconditioner - Indicates how often the preconditioner is rebuilt.
     261             : 
     262             :    Not Collective
     263             : 
     264             :    Input Parameter:
     265             : .  nep - nonlinear eigenvalue solver
     266             : 
     267             :    Output Parameter:
     268             : .  lag - the lag parameter
     269             : 
     270             :    Level: intermediate
     271             : 
     272             : .seealso: NEPNArnoldiSetLagPreconditioner()
     273             : @*/
     274           1 : PetscErrorCode NEPNArnoldiGetLagPreconditioner(NEP nep,PetscInt *lag)
     275             : {
     276           1 :   PetscFunctionBegin;
     277           1 :   PetscValidHeaderSpecific(nep,NEP_CLASSID,1);
     278           1 :   PetscAssertPointer(lag,2);
     279           1 :   PetscUseMethod(nep,"NEPNArnoldiGetLagPreconditioner_C",(NEP,PetscInt*),(nep,lag));
     280           1 :   PetscFunctionReturn(PETSC_SUCCESS);
     281             : }
     282             : 
     283          12 : static PetscErrorCode NEPSetFromOptions_NArnoldi(NEP nep,PetscOptionItems *PetscOptionsObject)
     284             : {
     285          12 :   PetscInt       i;
     286          12 :   PetscBool      flg;
     287          12 :   NEP_NARNOLDI   *ctx = (NEP_NARNOLDI*)nep->data;
     288             : 
     289          12 :   PetscFunctionBegin;
     290          12 :   PetscOptionsHeadBegin(PetscOptionsObject,"NEP N-Arnoldi Options");
     291          12 :     i = 0;
     292          12 :     PetscCall(PetscOptionsInt("-nep_narnoldi_lag_preconditioner","Interval to rebuild preconditioner","NEPNArnoldiSetLagPreconditioner",ctx->lag,&i,&flg));
     293          12 :     if (flg) PetscCall(NEPNArnoldiSetLagPreconditioner(nep,i));
     294             : 
     295          12 :   PetscOptionsHeadEnd();
     296             : 
     297          12 :   if (!ctx->ksp) PetscCall(NEPNArnoldiGetKSP(nep,&ctx->ksp));
     298          12 :   PetscCall(KSPSetFromOptions(ctx->ksp));
     299          12 :   PetscFunctionReturn(PETSC_SUCCESS);
     300             : }
     301             : 
     302           1 : static PetscErrorCode NEPNArnoldiSetKSP_NArnoldi(NEP nep,KSP ksp)
     303             : {
     304           1 :   NEP_NARNOLDI   *ctx = (NEP_NARNOLDI*)nep->data;
     305             : 
     306           1 :   PetscFunctionBegin;
     307           1 :   PetscCall(PetscObjectReference((PetscObject)ksp));
     308           1 :   PetscCall(KSPDestroy(&ctx->ksp));
     309           1 :   ctx->ksp = ksp;
     310           1 :   nep->state = NEP_STATE_INITIAL;
     311           1 :   PetscFunctionReturn(PETSC_SUCCESS);
     312             : }
     313             : 
     314             : /*@
     315             :    NEPNArnoldiSetKSP - Associate a linear solver object (KSP) to the nonlinear
     316             :    eigenvalue solver.
     317             : 
     318             :    Collective
     319             : 
     320             :    Input Parameters:
     321             : +  nep - eigenvalue solver
     322             : -  ksp - the linear solver object
     323             : 
     324             :    Level: advanced
     325             : 
     326             : .seealso: NEPNArnoldiGetKSP()
     327             : @*/
     328           1 : PetscErrorCode NEPNArnoldiSetKSP(NEP nep,KSP ksp)
     329             : {
     330           1 :   PetscFunctionBegin;
     331           1 :   PetscValidHeaderSpecific(nep,NEP_CLASSID,1);
     332           1 :   PetscValidHeaderSpecific(ksp,KSP_CLASSID,2);
     333           1 :   PetscCheckSameComm(nep,1,ksp,2);
     334           1 :   PetscTryMethod(nep,"NEPNArnoldiSetKSP_C",(NEP,KSP),(nep,ksp));
     335           1 :   PetscFunctionReturn(PETSC_SUCCESS);
     336             : }
     337             : 
     338          11 : static PetscErrorCode NEPNArnoldiGetKSP_NArnoldi(NEP nep,KSP *ksp)
     339             : {
     340          11 :   NEP_NARNOLDI   *ctx = (NEP_NARNOLDI*)nep->data;
     341             : 
     342          11 :   PetscFunctionBegin;
     343          11 :   if (!ctx->ksp) {
     344          11 :     PetscCall(KSPCreate(PetscObjectComm((PetscObject)nep),&ctx->ksp));
     345          11 :     PetscCall(PetscObjectIncrementTabLevel((PetscObject)ctx->ksp,(PetscObject)nep,1));
     346          11 :     PetscCall(KSPSetOptionsPrefix(ctx->ksp,((PetscObject)nep)->prefix));
     347          11 :     PetscCall(KSPAppendOptionsPrefix(ctx->ksp,"nep_narnoldi_"));
     348          11 :     PetscCall(PetscObjectSetOptions((PetscObject)ctx->ksp,((PetscObject)nep)->options));
     349          11 :     PetscCall(KSPSetErrorIfNotConverged(ctx->ksp,PETSC_TRUE));
     350          12 :     PetscCall(KSPSetTolerances(ctx->ksp,SlepcDefaultTol(nep->tol),PETSC_CURRENT,PETSC_CURRENT,PETSC_CURRENT));
     351             :   }
     352          11 :   *ksp = ctx->ksp;
     353          11 :   PetscFunctionReturn(PETSC_SUCCESS);
     354             : }
     355             : 
     356             : /*@
     357             :    NEPNArnoldiGetKSP - Retrieve the linear solver object (KSP) associated with
     358             :    the nonlinear eigenvalue solver.
     359             : 
     360             :    Collective
     361             : 
     362             :    Input Parameter:
     363             : .  nep - nonlinear eigenvalue solver
     364             : 
     365             :    Output Parameter:
     366             : .  ksp - the linear solver object
     367             : 
     368             :    Level: advanced
     369             : 
     370             : .seealso: NEPNArnoldiSetKSP()
     371             : @*/
     372          11 : PetscErrorCode NEPNArnoldiGetKSP(NEP nep,KSP *ksp)
     373             : {
     374          11 :   PetscFunctionBegin;
     375          11 :   PetscValidHeaderSpecific(nep,NEP_CLASSID,1);
     376          11 :   PetscAssertPointer(ksp,2);
     377          11 :   PetscUseMethod(nep,"NEPNArnoldiGetKSP_C",(NEP,KSP*),(nep,ksp));
     378          11 :   PetscFunctionReturn(PETSC_SUCCESS);
     379             : }
     380             : 
     381           1 : static PetscErrorCode NEPView_NArnoldi(NEP nep,PetscViewer viewer)
     382             : {
     383           1 :   NEP_NARNOLDI   *ctx = (NEP_NARNOLDI*)nep->data;
     384           1 :   PetscBool      isascii;
     385             : 
     386           1 :   PetscFunctionBegin;
     387           1 :   PetscCall(PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&isascii));
     388           1 :   if (isascii) {
     389           1 :     if (ctx->lag) PetscCall(PetscViewerASCIIPrintf(viewer,"  updating the preconditioner every %" PetscInt_FMT " iterations\n",ctx->lag));
     390           1 :     if (!ctx->ksp) PetscCall(NEPNArnoldiGetKSP(nep,&ctx->ksp));
     391           1 :     PetscCall(PetscViewerASCIIPushTab(viewer));
     392           1 :     PetscCall(KSPView(ctx->ksp,viewer));
     393           1 :     PetscCall(PetscViewerASCIIPopTab(viewer));
     394             :   }
     395           1 :   PetscFunctionReturn(PETSC_SUCCESS);
     396             : }
     397             : 
     398          18 : static PetscErrorCode NEPReset_NArnoldi(NEP nep)
     399             : {
     400          18 :   NEP_NARNOLDI   *ctx = (NEP_NARNOLDI*)nep->data;
     401             : 
     402          18 :   PetscFunctionBegin;
     403          18 :   PetscCall(KSPReset(ctx->ksp));
     404          18 :   PetscFunctionReturn(PETSC_SUCCESS);
     405             : }
     406             : 
     407          12 : static PetscErrorCode NEPDestroy_NArnoldi(NEP nep)
     408             : {
     409          12 :   NEP_NARNOLDI   *ctx = (NEP_NARNOLDI*)nep->data;
     410             : 
     411          12 :   PetscFunctionBegin;
     412          12 :   PetscCall(KSPDestroy(&ctx->ksp));
     413          12 :   PetscCall(PetscFree(nep->data));
     414          12 :   PetscCall(PetscObjectComposeFunction((PetscObject)nep,"NEPNArnoldiSetLagPreconditioner_C",NULL));
     415          12 :   PetscCall(PetscObjectComposeFunction((PetscObject)nep,"NEPNArnoldiGetLagPreconditioner_C",NULL));
     416          12 :   PetscCall(PetscObjectComposeFunction((PetscObject)nep,"NEPNArnoldiSetKSP_C",NULL));
     417          12 :   PetscCall(PetscObjectComposeFunction((PetscObject)nep,"NEPNArnoldiGetKSP_C",NULL));
     418          12 :   PetscFunctionReturn(PETSC_SUCCESS);
     419             : }
     420             : 
     421          12 : SLEPC_EXTERN PetscErrorCode NEPCreate_NArnoldi(NEP nep)
     422             : {
     423          12 :   NEP_NARNOLDI   *ctx;
     424             : 
     425          12 :   PetscFunctionBegin;
     426          12 :   PetscCall(PetscNew(&ctx));
     427          12 :   nep->data = (void*)ctx;
     428          12 :   ctx->lag  = 1;
     429             : 
     430          12 :   nep->useds = PETSC_TRUE;
     431             : 
     432          12 :   nep->ops->solve          = NEPSolve_NArnoldi;
     433          12 :   nep->ops->setup          = NEPSetUp_NArnoldi;
     434          12 :   nep->ops->setfromoptions = NEPSetFromOptions_NArnoldi;
     435          12 :   nep->ops->reset          = NEPReset_NArnoldi;
     436          12 :   nep->ops->destroy        = NEPDestroy_NArnoldi;
     437          12 :   nep->ops->view           = NEPView_NArnoldi;
     438          12 :   nep->ops->computevectors = NEPComputeVectors_Schur;
     439             : 
     440          12 :   PetscCall(PetscObjectComposeFunction((PetscObject)nep,"NEPNArnoldiSetLagPreconditioner_C",NEPNArnoldiSetLagPreconditioner_NArnoldi));
     441          12 :   PetscCall(PetscObjectComposeFunction((PetscObject)nep,"NEPNArnoldiGetLagPreconditioner_C",NEPNArnoldiGetLagPreconditioner_NArnoldi));
     442          12 :   PetscCall(PetscObjectComposeFunction((PetscObject)nep,"NEPNArnoldiSetKSP_C",NEPNArnoldiSetKSP_NArnoldi));
     443          12 :   PetscCall(PetscObjectComposeFunction((PetscObject)nep,"NEPNArnoldiGetKSP_C",NEPNArnoldiGetKSP_NArnoldi));
     444          12 :   PetscFunctionReturn(PETSC_SUCCESS);
     445             : }

Generated by: LCOV version 1.14