LCOV - code coverage report
Current view: top level - mfn/tutorials - ex39.c (source / functions) Hit Total Coverage
Test: SLEPc Lines: 118 118 100.0 %
Date: 2024-11-21 00:40:22 Functions: 2 2 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       3             :    SLEPc - Scalable Library for Eigenvalue Problem Computations
       4             :    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
       5             : 
       6             :    This file is part of SLEPc.
       7             :    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
       8             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       9             : */
      10             : /*
      11             :    This example illustrates the use of Phi functions in exponential integrators.
      12             :    In particular, it implements the Norsett-Euler scheme of stiff order 1.
      13             : 
      14             :    The problem is the 1-D heat equation with source term
      15             : 
      16             :              y_t = y_xx + 1/(1+u^2) + psi
      17             : 
      18             :    where psi is chosen so that the exact solution is yex = x*(1-x)*exp(tend).
      19             :    The space domain is [0,1] and the time interval is [0,tend].
      20             : 
      21             :        [1] M. Hochbruck and A. Ostermann, "Explicit exponential Runge-Kutta
      22             :            methods for semilinear parabolic problems", SIAM J. Numer. Anal. 43(3),
      23             :            1069-1090, 2005.
      24             : */
      25             : 
      26             : static char help[] = "Exponential integrator for the heat equation with source term.\n\n"
      27             :   "The command line options are:\n"
      28             :   "  -n <idim>, where <idim> = dimension of the spatial discretization.\n"
      29             :   "  -tend <rval>, where <rval> = real value that corresponding to the final time.\n"
      30             :   "  -deltat <rval>, where <rval> = real value for the time increment.\n"
      31             :   "  -combine <bool>, to represent the phi function with FNCOMBINE instead of FNPHI.\n\n";
      32             : 
      33             : #include <slepcmfn.h>
      34             : 
      35             : /*
      36             :    BuildFNPhi: builds an FNCOMBINE object representing the phi_1 function
      37             : 
      38             :         f(x) = (exp(x)-1)/x
      39             : 
      40             :    with the following tree:
      41             : 
      42             :             f(x)                  f(x)              (combined by division)
      43             :            /    \                 p(x) = x          (polynomial)
      44             :         a(x)    p(x)              a(x)              (combined by addition)
      45             :        /    \                     e(x) = exp(x)     (exponential)
      46             :      e(x)   c(x)                  c(x) = -1         (constant)
      47             : */
      48           1 : PetscErrorCode BuildFNPhi(FN fphi)
      49             : {
      50           1 :   FN             fexp,faux,fconst,fpol;
      51           1 :   PetscScalar    coeffs[2];
      52             : 
      53           1 :   PetscFunctionBeginUser;
      54           1 :   PetscCall(FNCreate(PETSC_COMM_WORLD,&fexp));
      55           1 :   PetscCall(FNCreate(PETSC_COMM_WORLD,&fconst));
      56           1 :   PetscCall(FNCreate(PETSC_COMM_WORLD,&faux));
      57           1 :   PetscCall(FNCreate(PETSC_COMM_WORLD,&fpol));
      58             : 
      59           1 :   PetscCall(FNSetType(fexp,FNEXP));
      60             : 
      61           1 :   PetscCall(FNSetType(fconst,FNRATIONAL));
      62           1 :   coeffs[0] = -1.0;
      63           1 :   PetscCall(FNRationalSetNumerator(fconst,1,coeffs));
      64             : 
      65           1 :   PetscCall(FNSetType(faux,FNCOMBINE));
      66           1 :   PetscCall(FNCombineSetChildren(faux,FN_COMBINE_ADD,fexp,fconst));
      67             : 
      68           1 :   PetscCall(FNSetType(fpol,FNRATIONAL));
      69           1 :   coeffs[0] = 1.0; coeffs[1] = 0.0;
      70           1 :   PetscCall(FNRationalSetNumerator(fpol,2,coeffs));
      71             : 
      72           1 :   PetscCall(FNSetType(fphi,FNCOMBINE));
      73           1 :   PetscCall(FNCombineSetChildren(fphi,FN_COMBINE_DIVIDE,faux,fpol));
      74             : 
      75           1 :   PetscCall(FNDestroy(&faux));
      76           1 :   PetscCall(FNDestroy(&fpol));
      77           1 :   PetscCall(FNDestroy(&fconst));
      78           1 :   PetscCall(FNDestroy(&fexp));
      79           1 :   PetscFunctionReturn(PETSC_SUCCESS);
      80             : }
      81             : 
      82           2 : int main(int argc,char **argv)
      83             : {
      84           2 :   Mat               L;
      85           2 :   Vec               u,w,z,yex;
      86           2 :   MFN               mfnexp,mfnphi;
      87           2 :   FN                fexp,fphi;
      88           2 :   PetscBool         combine=PETSC_FALSE;
      89           2 :   PetscInt          i,k,Istart,Iend,n=199,steps;
      90           2 :   PetscReal         t,tend=1.0,deltat=0.01,nrmd,nrmu,x,h;
      91           2 :   const PetscReal   half=0.5;
      92           2 :   PetscScalar       value,c,uval,*warray;
      93           2 :   const PetscScalar *uarray;
      94             : 
      95           2 :   PetscFunctionBeginUser;
      96           2 :   PetscCall(SlepcInitialize(&argc,&argv,NULL,help));
      97             : 
      98           2 :   PetscCall(PetscOptionsGetInt(NULL,NULL,"-n",&n,NULL));
      99           2 :   PetscCall(PetscOptionsGetReal(NULL,NULL,"-tend",&tend,NULL));
     100           2 :   PetscCall(PetscOptionsGetReal(NULL,NULL,"-deltat",&deltat,NULL));
     101           2 :   PetscCall(PetscOptionsGetBool(NULL,NULL,"-combine",&combine,NULL));
     102           2 :   h = 1.0/(n+1.0);
     103           2 :   c = (n+1)*(n+1);
     104             : 
     105           2 :   steps = (PetscInt)(tend/deltat);
     106           2 :   PetscCheck(PetscAbsReal(tend-steps*deltat)<10*PETSC_MACHINE_EPSILON,PETSC_COMM_WORLD,PETSC_ERR_SUP,"This example requires tend being a multiple of deltat");
     107           3 :   PetscCall(PetscPrintf(PETSC_COMM_WORLD,"\nHeat equation via phi functions, n=%" PetscInt_FMT ", tend=%g, deltat=%g%s\n\n",n,(double)tend,(double)deltat,combine?" (combine)":""));
     108             : 
     109             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     110             :                  Build the 1-D Laplacian and various vectors
     111             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
     112           2 :   PetscCall(MatCreate(PETSC_COMM_WORLD,&L));
     113           2 :   PetscCall(MatSetSizes(L,PETSC_DECIDE,PETSC_DECIDE,n,n));
     114           2 :   PetscCall(MatSetFromOptions(L));
     115           2 :   PetscCall(MatGetOwnershipRange(L,&Istart,&Iend));
     116         256 :   for (i=Istart;i<Iend;i++) {
     117         254 :     if (i>0) PetscCall(MatSetValue(L,i,i-1,c,INSERT_VALUES));
     118         254 :     if (i<n-1) PetscCall(MatSetValue(L,i,i+1,c,INSERT_VALUES));
     119         254 :     PetscCall(MatSetValue(L,i,i,-2.0*c,INSERT_VALUES));
     120             :   }
     121           2 :   PetscCall(MatAssemblyBegin(L,MAT_FINAL_ASSEMBLY));
     122           2 :   PetscCall(MatAssemblyEnd(L,MAT_FINAL_ASSEMBLY));
     123           2 :   PetscCall(MatCreateVecs(L,NULL,&u));
     124           2 :   PetscCall(VecDuplicate(u,&yex));
     125           2 :   PetscCall(VecDuplicate(u,&w));
     126           2 :   PetscCall(VecDuplicate(u,&z));
     127             : 
     128             :   /*
     129             :      Compute various vectors:
     130             :      - the exact solution yex = x*(1-x)*exp(tend)
     131             :      - the initial condition u = abs(x-0.5)-0.5
     132             :   */
     133         256 :   for (i=Istart;i<Iend;i++) {
     134         254 :     x = (i+1)*h;
     135         254 :     value = x*(1.0-x)*PetscExpReal(tend);
     136         254 :     PetscCall(VecSetValue(yex,i,value,INSERT_VALUES));
     137         254 :     value = PetscAbsReal(x-half)-half;
     138         254 :     PetscCall(VecSetValue(u,i,value,INSERT_VALUES));
     139             :   }
     140           2 :   PetscCall(VecAssemblyBegin(yex));
     141           2 :   PetscCall(VecAssemblyBegin(u));
     142           2 :   PetscCall(VecAssemblyEnd(yex));
     143           2 :   PetscCall(VecAssemblyEnd(u));
     144           2 :   PetscCall(VecViewFromOptions(yex,NULL,"-exact_sol"));
     145           2 :   PetscCall(VecViewFromOptions(u,NULL,"-initial_cond"));
     146             : 
     147             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     148             :               Create two MFN solvers, for exp() and phi_1()
     149             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
     150           2 :   PetscCall(MFNCreate(PETSC_COMM_WORLD,&mfnexp));
     151           2 :   PetscCall(MFNSetOperator(mfnexp,L));
     152           2 :   PetscCall(MFNGetFN(mfnexp,&fexp));
     153           2 :   PetscCall(FNSetType(fexp,FNEXP));
     154           2 :   PetscCall(FNSetScale(fexp,deltat,1.0));
     155           2 :   PetscCall(MFNSetErrorIfNotConverged(mfnexp,PETSC_TRUE));
     156           2 :   PetscCall(MFNSetFromOptions(mfnexp));
     157             : 
     158           2 :   PetscCall(MFNCreate(PETSC_COMM_WORLD,&mfnphi));
     159           2 :   PetscCall(MFNSetOperator(mfnphi,L));
     160           2 :   PetscCall(MFNGetFN(mfnphi,&fphi));
     161           2 :   if (combine) PetscCall(BuildFNPhi(fphi));
     162             :   else {
     163           1 :     PetscCall(FNSetType(fphi,FNPHI));
     164           1 :     PetscCall(FNPhiSetIndex(fphi,1));
     165             :   }
     166           2 :   PetscCall(FNSetScale(fphi,deltat,1.0));
     167           2 :   PetscCall(MFNSetErrorIfNotConverged(mfnphi,PETSC_TRUE));
     168           2 :   PetscCall(MFNSetFromOptions(mfnphi));
     169             : 
     170             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     171             :              Solve the problem with the Norsett-Euler scheme
     172             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
     173             :   t = 0.0;
     174          12 :   for (k=0;k<steps;k++) {
     175             : 
     176             :     /* evaluate nonlinear part */
     177          10 :     PetscCall(VecGetArrayRead(u,&uarray));
     178          10 :     PetscCall(VecGetArray(w,&warray));
     179        1280 :     for (i=Istart;i<Iend;i++) {
     180        1270 :       x = (i+1)*h;
     181        1270 :       uval = uarray[i-Istart];
     182        1270 :       value = x*(1.0-x)*PetscExpReal(t);
     183        1270 :       value = value + 2.0*PetscExpReal(t) - 1.0/(1.0+value*value);
     184        1270 :       value = value + 1.0/(1.0+uval*uval);
     185        1270 :       warray[i-Istart] = deltat*value;
     186             :     }
     187          10 :     PetscCall(VecRestoreArrayRead(u,&uarray));
     188          10 :     PetscCall(VecRestoreArray(w,&warray));
     189          10 :     PetscCall(MFNSolve(mfnphi,w,z));
     190             : 
     191             :     /* evaluate linear part */
     192          10 :     PetscCall(MFNSolve(mfnexp,u,u));
     193          10 :     PetscCall(VecAXPY(u,1.0,z));
     194          10 :     t = t + deltat;
     195             : 
     196             :   }
     197           2 :   PetscCall(VecViewFromOptions(u,NULL,"-computed_sol"));
     198             : 
     199             :   /*
     200             :      Compare with exact solution and show error norm
     201             :   */
     202           2 :   PetscCall(VecCopy(u,z));
     203           2 :   PetscCall(VecAXPY(z,-1.0,yex));
     204           2 :   PetscCall(VecNorm(z,NORM_2,&nrmd));
     205           2 :   PetscCall(VecNorm(u,NORM_2,&nrmu));
     206           2 :   PetscCall(PetscPrintf(PETSC_COMM_WORLD," The relative error at t=%g is %.4f\n\n",(double)t,(double)(nrmd/nrmu)));
     207             : 
     208             :   /*
     209             :      Free work space
     210             :   */
     211           2 :   PetscCall(MFNDestroy(&mfnexp));
     212           2 :   PetscCall(MFNDestroy(&mfnphi));
     213           2 :   PetscCall(MatDestroy(&L));
     214           2 :   PetscCall(VecDestroy(&u));
     215           2 :   PetscCall(VecDestroy(&yex));
     216           2 :   PetscCall(VecDestroy(&w));
     217           2 :   PetscCall(VecDestroy(&z));
     218           2 :   PetscCall(SlepcFinalize());
     219             :   return 0;
     220             : }
     221             : 
     222             : /*TEST
     223             : 
     224             :    test:
     225             :       suffix: 1
     226             :       args: -n 127 -tend 0.125 -mfn_tol 1e-3 -deltat 0.025
     227             :       timeoutfactor: 2
     228             : 
     229             :    test:
     230             :       suffix: 2
     231             :       args: -n 127 -tend 0.125 -mfn_tol 1e-3 -deltat 0.025 -combine
     232             :       filter: sed -e "s/ (combine)//"
     233             :       requires: !single
     234             :       output_file: output/ex39_1.out
     235             :       timeoutfactor: 2
     236             : 
     237             : TEST*/

Generated by: LCOV version 1.14