LCOV - code coverage report
Current view: top level - lme/interface - lmeopts.c (source / functions) Hit Total Coverage
Test: SLEPc Lines: 152 160 95.0 %
Date: 2024-11-21 00:40:22 Functions: 13 13 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       3             :    SLEPc - Scalable Library for Eigenvalue Problem Computations
       4             :    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
       5             : 
       6             :    This file is part of SLEPc.
       7             :    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
       8             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       9             : */
      10             : /*
      11             :    LME routines related to options that can be set via the command-line
      12             :    or procedurally
      13             : */
      14             : 
      15             : #include <slepc/private/lmeimpl.h>   /*I "slepclme.h" I*/
      16             : #include <petscdraw.h>
      17             : 
      18             : /*@C
      19             :    LMEMonitorSetFromOptions - Sets a monitor function and viewer appropriate for the type
      20             :    indicated by the user.
      21             : 
      22             :    Collective
      23             : 
      24             :    Input Parameters:
      25             : +  lme      - the linear matrix equation context
      26             : .  opt  - the command line option for this monitor
      27             : .  name - the monitor type one is seeking
      28             : -  ctx  - an optional user context for the monitor, or NULL
      29             : 
      30             :    Level: developer
      31             : 
      32             : .seealso: LMEMonitorSet()
      33             : @*/
      34           7 : PetscErrorCode LMEMonitorSetFromOptions(LME lme,const char opt[],const char name[],void *ctx)
      35             : {
      36           7 :   PetscErrorCode       (*mfunc)(LME,PetscInt,PetscReal,void*);
      37           7 :   PetscErrorCode       (*cfunc)(PetscViewer,PetscViewerFormat,void*,PetscViewerAndFormat**);
      38           7 :   PetscErrorCode       (*dfunc)(PetscViewerAndFormat**);
      39           7 :   PetscViewerAndFormat *vf;
      40           7 :   PetscViewer          viewer;
      41           7 :   PetscViewerFormat    format;
      42           7 :   PetscViewerType      vtype;
      43           7 :   char                 key[PETSC_MAX_PATH_LEN];
      44           7 :   PetscBool            flg;
      45             : 
      46           7 :   PetscFunctionBegin;
      47           7 :   PetscCall(PetscOptionsCreateViewer(PetscObjectComm((PetscObject)lme),((PetscObject)lme)->options,((PetscObject)lme)->prefix,opt,&viewer,&format,&flg));
      48           7 :   if (!flg) PetscFunctionReturn(PETSC_SUCCESS);
      49             : 
      50           1 :   PetscCall(PetscViewerGetType(viewer,&vtype));
      51           1 :   PetscCall(SlepcMonitorMakeKey_Internal(name,vtype,format,key));
      52           1 :   PetscCall(PetscFunctionListFind(LMEMonitorList,key,&mfunc));
      53           1 :   PetscCheck(mfunc,PetscObjectComm((PetscObject)lme),PETSC_ERR_SUP,"Specified viewer and format not supported");
      54           1 :   PetscCall(PetscFunctionListFind(LMEMonitorCreateList,key,&cfunc));
      55           1 :   PetscCall(PetscFunctionListFind(LMEMonitorDestroyList,key,&dfunc));
      56           1 :   if (!cfunc) cfunc = PetscViewerAndFormatCreate_Internal;
      57           1 :   if (!dfunc) dfunc = PetscViewerAndFormatDestroy;
      58             : 
      59           1 :   PetscCall((*cfunc)(viewer,format,ctx,&vf));
      60           1 :   PetscCall(PetscViewerDestroy(&viewer));
      61           1 :   PetscCall(LMEMonitorSet(lme,mfunc,vf,(PetscErrorCode(*)(void **))dfunc));
      62           1 :   PetscFunctionReturn(PETSC_SUCCESS);
      63             : }
      64             : 
      65             : /*@
      66             :    LMESetFromOptions - Sets LME options from the options database.
      67             :    This routine must be called before LMESetUp() if the user is to be
      68             :    allowed to set the solver type.
      69             : 
      70             :    Collective
      71             : 
      72             :    Input Parameters:
      73             : .  lme - the linear matrix equation solver context
      74             : 
      75             :    Notes:
      76             :    To see all options, run your program with the -help option.
      77             : 
      78             :    Level: beginner
      79             : 
      80             : .seealso: LMESetOptionsPrefix()
      81             : @*/
      82           7 : PetscErrorCode LMESetFromOptions(LME lme)
      83             : {
      84           7 :   char           type[256];
      85           7 :   PetscBool      set,flg,flg1,flg2;
      86           7 :   PetscReal      r;
      87           7 :   PetscInt       i;
      88             : 
      89           7 :   PetscFunctionBegin;
      90           7 :   PetscValidHeaderSpecific(lme,LME_CLASSID,1);
      91           7 :   PetscCall(LMERegisterAll());
      92          21 :   PetscObjectOptionsBegin((PetscObject)lme);
      93           7 :     PetscCall(PetscOptionsFList("-lme_type","Linear matrix equation","LMESetType",LMEList,(char*)(((PetscObject)lme)->type_name?((PetscObject)lme)->type_name:LMEKRYLOV),type,sizeof(type),&flg));
      94           7 :     if (flg) PetscCall(LMESetType(lme,type));
      95           7 :     else if (!((PetscObject)lme)->type_name) PetscCall(LMESetType(lme,LMEKRYLOV));
      96             : 
      97           7 :     PetscCall(PetscOptionsBoolGroupBegin("-lme_lyapunov","Continuous-time Lyapunov equation","LMESetProblemType",&flg));
      98           7 :     if (flg) PetscCall(LMESetProblemType(lme,LME_LYAPUNOV));
      99           7 :     PetscCall(PetscOptionsBoolGroup("-lme_sylvester","Continuous-time Sylvester equation","LMESetProblemType",&flg));
     100           7 :     if (flg) PetscCall(LMESetProblemType(lme,LME_SYLVESTER));
     101           7 :     PetscCall(PetscOptionsBoolGroup("-lme_gen_lyapunov","Generalized Lyapunov equation","LMESetProblemType",&flg));
     102           7 :     if (flg) PetscCall(LMESetProblemType(lme,LME_GEN_LYAPUNOV));
     103           7 :     PetscCall(PetscOptionsBoolGroup("-lme_gen_sylvester","Generalized Sylvester equation","LMESetProblemType",&flg));
     104           7 :     if (flg) PetscCall(LMESetProblemType(lme,LME_GEN_SYLVESTER));
     105           7 :     PetscCall(PetscOptionsBoolGroup("-lme_dt_lyapunov","Discrete-time Lyapunov equation","LMESetProblemType",&flg));
     106           7 :     if (flg) PetscCall(LMESetProblemType(lme,LME_DT_LYAPUNOV));
     107           7 :     PetscCall(PetscOptionsBoolGroupEnd("-lme_stein","Stein equation","LMESetProblemType",&flg));
     108           7 :     if (flg) PetscCall(LMESetProblemType(lme,LME_STEIN));
     109             : 
     110           7 :     i = lme->max_it;
     111           7 :     PetscCall(PetscOptionsInt("-lme_max_it","Maximum number of iterations","LMESetTolerances",lme->max_it,&i,&flg1));
     112           7 :     if (!flg1) i = PETSC_DETERMINE;
     113           7 :     r = lme->tol;
     114          12 :     PetscCall(PetscOptionsReal("-lme_tol","Tolerance","LMESetTolerances",SlepcDefaultTol(lme->tol),&r,&flg2));
     115           7 :     if (flg1 || flg2) PetscCall(LMESetTolerances(lme,r,i));
     116             : 
     117           7 :     PetscCall(PetscOptionsInt("-lme_ncv","Number of basis vectors","LMESetDimensions",lme->ncv,&i,&flg));
     118           7 :     if (flg) PetscCall(LMESetDimensions(lme,i));
     119             : 
     120           7 :     PetscCall(PetscOptionsBool("-lme_error_if_not_converged","Generate error if solver does not converge","LMESetErrorIfNotConverged",lme->errorifnotconverged,&lme->errorifnotconverged,NULL));
     121             : 
     122             :     /* -----------------------------------------------------------------------*/
     123             :     /*
     124             :       Cancels all monitors hardwired into code before call to LMESetFromOptions()
     125             :     */
     126           7 :     PetscCall(PetscOptionsBool("-lme_monitor_cancel","Remove any hardwired monitor routines","LMEMonitorCancel",PETSC_FALSE,&flg,&set));
     127           7 :     if (set && flg) PetscCall(LMEMonitorCancel(lme));
     128           7 :     PetscCall(LMEMonitorSetFromOptions(lme,"-lme_monitor","error_estimate",NULL));
     129             : 
     130             :     /* -----------------------------------------------------------------------*/
     131           7 :     PetscCall(PetscOptionsName("-lme_view","Print detailed information on solver used","LMEView",&set));
     132             : 
     133           7 :     PetscTryTypeMethod(lme,setfromoptions,PetscOptionsObject);
     134           7 :     PetscCall(PetscObjectProcessOptionsHandlers((PetscObject)lme,PetscOptionsObject));
     135           7 :   PetscOptionsEnd();
     136             : 
     137           7 :   if (!lme->V) PetscCall(LMEGetBV(lme,&lme->V));
     138           7 :   PetscCall(BVSetFromOptions(lme->V));
     139           7 :   PetscFunctionReturn(PETSC_SUCCESS);
     140             : }
     141             : 
     142             : /*@
     143             :    LMESetProblemType - Specifies the type of matrix equation to be solved.
     144             : 
     145             :    Logically Collective
     146             : 
     147             :    Input Parameters:
     148             : +  lme  - the linear matrix equation solver context
     149             : -  type - a known type of matrix equation
     150             : 
     151             :    Options Database Keys:
     152             : +  -lme_lyapunov - continuous-time Lyapunov equation A*X+X*A'=-C
     153             : .  -lme_sylvester - continuous-time Sylvester equation A*X+X*B=C
     154             : .  -lme_gen_lyapunov - generalized Lyapunov equation A*X*D'+D*X*A'=-C
     155             : .  -lme_gen_sylvester - generalized Sylvester equation A*X*E+D*X*B=C
     156             : .  -lme_dt_lyapunov - discrete-time Lyapunov equation A*X*A'-X=-C
     157             : -  -lme_stein - Stein equation A*X*E+X=C
     158             : 
     159             :    Notes:
     160             :    The coefficient matrices A, B, D, E must be provided via LMESetCoefficients(),
     161             :    but some of them are optional depending on the matrix equation.
     162             : 
     163             : .vb
     164             :                             equation              A    B    D    E
     165             :                           -----------------      ---  ---  ---  ---
     166             :        LME_LYAPUNOV        A*X+X*A'=-C           yes (A-t)  -    -
     167             :        LME_SYLVESTER       A*X+X*B=C             yes  yes   -    -
     168             :        LME_GEN_LYAPUNOV    A*X*D'+D*X*A'=-C      yes (A-t) yes (D-t)
     169             :        LME_GEN_SYLVESTER   A*X*E+D*X*B=C         yes  yes  yes  yes
     170             :        LME_DT_LYAPUNOV     A*X*A'-X=-C           yes   -    -  (A-t)
     171             :        LME_STEIN           A*X*E+X=C             yes   -    -   yes
     172             : .ve
     173             : 
     174             :    In the above table, the notation (A-t) means that this matrix need
     175             :    not be passed, but the user may choose to pass an explicit transpose
     176             :    of matrix A (for improved efficiency).
     177             : 
     178             :    Also note that some of the equation types impose restrictions on the
     179             :    properties of the coefficient matrices and possibly on the right-hand
     180             :    side C.
     181             : 
     182             :    Level: beginner
     183             : 
     184             : .seealso: LMESetCoefficients(), LMESetType(), LMEGetProblemType(), LMEProblemType
     185             : @*/
     186           9 : PetscErrorCode LMESetProblemType(LME lme,LMEProblemType type)
     187             : {
     188           9 :   PetscFunctionBegin;
     189           9 :   PetscValidHeaderSpecific(lme,LME_CLASSID,1);
     190          27 :   PetscValidLogicalCollectiveEnum(lme,type,2);
     191           9 :   if (type == lme->problem_type) PetscFunctionReturn(PETSC_SUCCESS);
     192           4 :   switch (type) {
     193             :     case LME_LYAPUNOV:
     194             :     case LME_SYLVESTER:
     195             :     case LME_GEN_LYAPUNOV:
     196             :     case LME_GEN_SYLVESTER:
     197             :     case LME_DT_LYAPUNOV:
     198             :     case LME_STEIN:
     199           4 :       break;
     200           0 :     default:
     201           0 :       SETERRQ(PetscObjectComm((PetscObject)lme),PETSC_ERR_ARG_WRONG,"Unknown matrix equation type");
     202             :   }
     203           4 :   lme->problem_type = type;
     204           4 :   lme->setupcalled  = PETSC_FALSE;
     205           4 :   PetscFunctionReturn(PETSC_SUCCESS);
     206             : }
     207             : 
     208             : /*@
     209             :    LMEGetProblemType - Gets the matrix equation type from the LME object.
     210             : 
     211             :    Not Collective
     212             : 
     213             :    Input Parameter:
     214             : .  lme - the linear matrix equation solver context
     215             : 
     216             :    Output Parameter:
     217             : .  type - name of LME problem type
     218             : 
     219             :    Level: intermediate
     220             : 
     221             : .seealso: LMESetProblemType(), LMEProblemType
     222             : @*/
     223           4 : PetscErrorCode LMEGetProblemType(LME lme,LMEProblemType *type)
     224             : {
     225           4 :   PetscFunctionBegin;
     226           4 :   PetscValidHeaderSpecific(lme,LME_CLASSID,1);
     227           4 :   PetscAssertPointer(type,2);
     228           4 :   *type = lme->problem_type;
     229           4 :   PetscFunctionReturn(PETSC_SUCCESS);
     230             : }
     231             : 
     232             : /*@
     233             :    LMEGetTolerances - Gets the tolerance and maximum iteration count used
     234             :    by the LME convergence tests.
     235             : 
     236             :    Not Collective
     237             : 
     238             :    Input Parameter:
     239             : .  lme - the linear matrix equation solver context
     240             : 
     241             :    Output Parameters:
     242             : +  tol - the convergence tolerance
     243             : -  maxits - maximum number of iterations
     244             : 
     245             :    Notes:
     246             :    The user can specify NULL for any parameter that is not needed.
     247             : 
     248             :    Level: intermediate
     249             : 
     250             : .seealso: LMESetTolerances()
     251             : @*/
     252           4 : PetscErrorCode LMEGetTolerances(LME lme,PetscReal *tol,PetscInt *maxits)
     253             : {
     254           4 :   PetscFunctionBegin;
     255           4 :   PetscValidHeaderSpecific(lme,LME_CLASSID,1);
     256           4 :   if (tol)    *tol    = lme->tol;
     257           4 :   if (maxits) *maxits = lme->max_it;
     258           4 :   PetscFunctionReturn(PETSC_SUCCESS);
     259             : }
     260             : 
     261             : /*@
     262             :    LMESetTolerances - Sets the tolerance and maximum iteration count used
     263             :    by the LME convergence tests.
     264             : 
     265             :    Logically Collective
     266             : 
     267             :    Input Parameters:
     268             : +  lme - the linear matrix equation solver context
     269             : .  tol - the convergence tolerance
     270             : -  maxits - maximum number of iterations to use
     271             : 
     272             :    Options Database Keys:
     273             : +  -lme_tol <tol> - Sets the convergence tolerance
     274             : -  -lme_max_it <maxits> - Sets the maximum number of iterations allowed
     275             : 
     276             :    Notes:
     277             :    Use PETSC_CURRENT to retain the current value of any of the parameters.
     278             :    Use PETSC_DETERMINE for either argument to assign a default value computed
     279             :    internally (may be different in each solver).
     280             :    For maxits use PETSC_UMLIMITED to indicate there is no upper bound on this value.
     281             : 
     282             :    Level: intermediate
     283             : 
     284             : .seealso: LMEGetTolerances()
     285             : @*/
     286           4 : PetscErrorCode LMESetTolerances(LME lme,PetscReal tol,PetscInt maxits)
     287             : {
     288           4 :   PetscFunctionBegin;
     289           4 :   PetscValidHeaderSpecific(lme,LME_CLASSID,1);
     290          12 :   PetscValidLogicalCollectiveReal(lme,tol,2);
     291          12 :   PetscValidLogicalCollectiveInt(lme,maxits,3);
     292           4 :   if (tol == (PetscReal)PETSC_DETERMINE) {
     293           0 :     lme->tol = PETSC_DETERMINE;
     294           0 :     lme->setupcalled = 0;
     295           4 :   } else if (tol != (PetscReal)PETSC_CURRENT) {
     296           2 :     PetscCheck(tol>0.0,PetscObjectComm((PetscObject)lme),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of tol. Must be > 0");
     297           2 :     lme->tol = tol;
     298             :   }
     299           4 :   if (maxits == PETSC_DETERMINE) {
     300           0 :     lme->max_it = PETSC_DETERMINE;
     301           0 :     lme->setupcalled = 0;
     302           4 :   } else if (maxits == PETSC_UNLIMITED) {
     303           0 :     lme->max_it = PETSC_INT_MAX;
     304           4 :   } else if (maxits != PETSC_CURRENT) {
     305           2 :     PetscCheck(maxits>0,PetscObjectComm((PetscObject)lme),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of maxits. Must be > 0");
     306           2 :     lme->max_it = maxits;
     307             :   }
     308           4 :   PetscFunctionReturn(PETSC_SUCCESS);
     309             : }
     310             : 
     311             : /*@
     312             :    LMEGetDimensions - Gets the dimension of the subspace used by the solver.
     313             : 
     314             :    Not Collective
     315             : 
     316             :    Input Parameter:
     317             : .  lme - the linear matrix equation solver context
     318             : 
     319             :    Output Parameter:
     320             : .  ncv - the maximum dimension of the subspace to be used by the solver
     321             : 
     322             :    Level: intermediate
     323             : 
     324             : .seealso: LMESetDimensions()
     325             : @*/
     326           4 : PetscErrorCode LMEGetDimensions(LME lme,PetscInt *ncv)
     327             : {
     328           4 :   PetscFunctionBegin;
     329           4 :   PetscValidHeaderSpecific(lme,LME_CLASSID,1);
     330           4 :   PetscAssertPointer(ncv,2);
     331           4 :   *ncv = lme->ncv;
     332           4 :   PetscFunctionReturn(PETSC_SUCCESS);
     333             : }
     334             : 
     335             : /*@
     336             :    LMESetDimensions - Sets the dimension of the subspace to be used by the solver.
     337             : 
     338             :    Logically Collective
     339             : 
     340             :    Input Parameters:
     341             : +  lme - the linear matrix equation solver context
     342             : -  ncv - the maximum dimension of the subspace to be used by the solver
     343             : 
     344             :    Options Database Keys:
     345             : .  -lme_ncv <ncv> - Sets the dimension of the subspace
     346             : 
     347             :    Notes:
     348             :    Use PETSC_DETERMINE for ncv to assign a reasonably good value, which is
     349             :    dependent on the solution method.
     350             : 
     351             :    Level: intermediate
     352             : 
     353             : .seealso: LMEGetDimensions()
     354             : @*/
     355           2 : PetscErrorCode LMESetDimensions(LME lme,PetscInt ncv)
     356             : {
     357           2 :   PetscFunctionBegin;
     358           2 :   PetscValidHeaderSpecific(lme,LME_CLASSID,1);
     359           6 :   PetscValidLogicalCollectiveInt(lme,ncv,2);
     360           2 :   if (ncv == PETSC_DECIDE || ncv == PETSC_DEFAULT) {
     361           0 :     lme->ncv = PETSC_DETERMINE;
     362             :   } else {
     363           2 :     PetscCheck(ncv>0,PetscObjectComm((PetscObject)lme),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of ncv. Must be > 0");
     364           2 :     lme->ncv = ncv;
     365             :   }
     366           2 :   lme->setupcalled = 0;
     367           2 :   PetscFunctionReturn(PETSC_SUCCESS);
     368             : }
     369             : 
     370             : /*@
     371             :    LMESetErrorIfNotConverged - Causes LMESolve() to generate an error if the
     372             :    solver has not converged.
     373             : 
     374             :    Logically Collective
     375             : 
     376             :    Input Parameters:
     377             : +  lme - the linear matrix equation solver context
     378             : -  flg - PETSC_TRUE indicates you want the error generated
     379             : 
     380             :    Options Database Keys:
     381             : .  -lme_error_if_not_converged - this takes an optional truth value (0/1/no/yes/true/false)
     382             : 
     383             :    Level: intermediate
     384             : 
     385             :    Note:
     386             :    Normally SLEPc continues if the solver fails to converge, you can call
     387             :    LMEGetConvergedReason() after a LMESolve() to determine if it has converged.
     388             : 
     389             : .seealso: LMEGetErrorIfNotConverged()
     390             : @*/
     391           5 : PetscErrorCode LMESetErrorIfNotConverged(LME lme,PetscBool flg)
     392             : {
     393           5 :   PetscFunctionBegin;
     394           5 :   PetscValidHeaderSpecific(lme,LME_CLASSID,1);
     395          15 :   PetscValidLogicalCollectiveBool(lme,flg,2);
     396           5 :   lme->errorifnotconverged = flg;
     397           5 :   PetscFunctionReturn(PETSC_SUCCESS);
     398             : }
     399             : 
     400             : /*@
     401             :    LMEGetErrorIfNotConverged - Return a flag indicating whether LMESolve() will
     402             :    generate an error if the solver does not converge.
     403             : 
     404             :    Not Collective
     405             : 
     406             :    Input Parameter:
     407             : .  lme - the linear matrix equation solver context
     408             : 
     409             :    Output Parameter:
     410             : .  flag - PETSC_TRUE if it will generate an error, else PETSC_FALSE
     411             : 
     412             :    Level: intermediate
     413             : 
     414             : .seealso: LMESetErrorIfNotConverged()
     415             : @*/
     416           2 : PetscErrorCode LMEGetErrorIfNotConverged(LME lme,PetscBool *flag)
     417             : {
     418           2 :   PetscFunctionBegin;
     419           2 :   PetscValidHeaderSpecific(lme,LME_CLASSID,1);
     420           2 :   PetscAssertPointer(flag,2);
     421           2 :   *flag = lme->errorifnotconverged;
     422           2 :   PetscFunctionReturn(PETSC_SUCCESS);
     423             : }
     424             : 
     425             : /*@
     426             :    LMESetOptionsPrefix - Sets the prefix used for searching for all
     427             :    LME options in the database.
     428             : 
     429             :    Logically Collective
     430             : 
     431             :    Input Parameters:
     432             : +  lme - the linear matrix equation solver context
     433             : -  prefix - the prefix string to prepend to all LME option requests
     434             : 
     435             :    Notes:
     436             :    A hyphen (-) must NOT be given at the beginning of the prefix name.
     437             :    The first character of all runtime options is AUTOMATICALLY the
     438             :    hyphen.
     439             : 
     440             :    For example, to distinguish between the runtime options for two
     441             :    different LME contexts, one could call
     442             : .vb
     443             :       LMESetOptionsPrefix(lme1,"fun1_")
     444             :       LMESetOptionsPrefix(lme2,"fun2_")
     445             : .ve
     446             : 
     447             :    Level: advanced
     448             : 
     449             : .seealso: LMEAppendOptionsPrefix(), LMEGetOptionsPrefix()
     450             : @*/
     451           4 : PetscErrorCode LMESetOptionsPrefix(LME lme,const char *prefix)
     452             : {
     453           4 :   PetscFunctionBegin;
     454           4 :   PetscValidHeaderSpecific(lme,LME_CLASSID,1);
     455           4 :   if (!lme->V) PetscCall(LMEGetBV(lme,&lme->V));
     456           4 :   PetscCall(BVSetOptionsPrefix(lme->V,prefix));
     457           4 :   PetscCall(PetscObjectSetOptionsPrefix((PetscObject)lme,prefix));
     458           4 :   PetscFunctionReturn(PETSC_SUCCESS);
     459             : }
     460             : 
     461             : /*@
     462             :    LMEAppendOptionsPrefix - Appends to the prefix used for searching for all
     463             :    LME options in the database.
     464             : 
     465             :    Logically Collective
     466             : 
     467             :    Input Parameters:
     468             : +  lme - the linear matrix equation solver context
     469             : -  prefix - the prefix string to prepend to all LME option requests
     470             : 
     471             :    Notes:
     472             :    A hyphen (-) must NOT be given at the beginning of the prefix name.
     473             :    The first character of all runtime options is AUTOMATICALLY the hyphen.
     474             : 
     475             :    Level: advanced
     476             : 
     477             : .seealso: LMESetOptionsPrefix(), LMEGetOptionsPrefix()
     478             : @*/
     479           4 : PetscErrorCode LMEAppendOptionsPrefix(LME lme,const char *prefix)
     480             : {
     481           4 :   PetscFunctionBegin;
     482           4 :   PetscValidHeaderSpecific(lme,LME_CLASSID,1);
     483           4 :   if (!lme->V) PetscCall(LMEGetBV(lme,&lme->V));
     484           4 :   PetscCall(BVAppendOptionsPrefix(lme->V,prefix));
     485           4 :   PetscCall(PetscObjectAppendOptionsPrefix((PetscObject)lme,prefix));
     486           4 :   PetscFunctionReturn(PETSC_SUCCESS);
     487             : }
     488             : 
     489             : /*@
     490             :    LMEGetOptionsPrefix - Gets the prefix used for searching for all
     491             :    LME options in the database.
     492             : 
     493             :    Not Collective
     494             : 
     495             :    Input Parameters:
     496             : .  lme - the linear matrix equation solver context
     497             : 
     498             :    Output Parameters:
     499             : .  prefix - pointer to the prefix string used is returned
     500             : 
     501             :    Note:
     502             :    On the Fortran side, the user should pass in a string 'prefix' of
     503             :    sufficient length to hold the prefix.
     504             : 
     505             :    Level: advanced
     506             : 
     507             : .seealso: LMESetOptionsPrefix(), LMEAppendOptionsPrefix()
     508             : @*/
     509           1 : PetscErrorCode LMEGetOptionsPrefix(LME lme,const char *prefix[])
     510             : {
     511           1 :   PetscFunctionBegin;
     512           1 :   PetscValidHeaderSpecific(lme,LME_CLASSID,1);
     513           1 :   PetscAssertPointer(prefix,2);
     514           1 :   PetscCall(PetscObjectGetOptionsPrefix((PetscObject)lme,prefix));
     515           1 :   PetscFunctionReturn(PETSC_SUCCESS);
     516             : }

Generated by: LCOV version 1.14